搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金属元素掺杂对TiAl合金力学性能的影响

王海燕 胡前库 杨文朋 李旭升

引用本文:
Citation:

金属元素掺杂对TiAl合金力学性能的影响

王海燕, 胡前库, 杨文朋, 李旭升

Influence of metal element doping on the mechanical properties of TiAl alloy

Wang Hai-Yan, Hu Qian-Ku, Yang Wen-Peng, Li Xu-Sheng
PDF
导出引用
  • 利用基于密度泛函理论的第一性原理方法研究了金属元素X (X分别表示V, Nb, Ta, Cr, Mo和W)掺杂对TiAl合金性能的影响. 研究发现, 掺杂可以有效减小合金的各向异性, 增强Ti-Al 原子间的相互作用, 同时增强金属键性, 减弱共价键性, 有利于塑性变形. 在相同的压力下, 不同的掺杂浓度和掺杂元素对体积的影响不同. 通过计算不同掺杂体系的弹性常数、体弹模量和剪切模量可知: 当掺杂浓度为6.25%时, 相对于V, Nb和Ta, Cr, Mo和W掺杂能较好地改善TiAl金属间化合物的韧性; 当掺杂浓度为12.5%时, 相对其他掺杂元素Mo的韧化作用最强. 从Mo掺杂后TiAl体系的分波态密度和电荷密度图, 发现Mo和Ti 原子发生强烈的s-s, p-p, d-d电子相互作用, 有效地束缚了合金中Ti和Al原子的迁移, 有助于提高合金的稳定性和强度.
    TiAl alloy has attracted significant attention as a candidate material with high melting temperature, low density, relatively high hardness and excellent corrosion resistance, good oxidation and creep resistance at high temperatures. The inherent brittleness at low temperatures is by far the greatest hurdle that prevents it from being widely used in industries. Doping has long been considered as an effective way to improve the performance of alloy. The properties of TiAl alloy are highly dependent on the third alloying element. Although the mechanical properties of TiAl alloy are improved to a certain extent by adjusting the composition, to date the physical mechanism has been still unclear. In this paper, from the microscopic electronic structure the influence of metal element X (X represents V, Nb, Ta, Cr, Mo and W) doping on the mechanical properties of TiAl alloy is studied by first-principle method. The first-principle calculations presented here are based on electronic density-functional theory framework. The ultrasoft pseudopotentials and a plane-wave basis set with a cut-off energy of 350.00 eV are used. The generalized gradient approximation refined by Perdew and Zunger is employed for determining the exchange-correlation energy. Brillouin zone is set to be within 888 k point mesh generated by the Monkhorst-Pack scheme. The self-consistent convergence of total energy is at 5.010-7 eV/atom. The supercell (222), (221) and (121) are selected as a computational model. According to the calculated structural parameters of the doped systems, we find that the lattice constant ratio c/a decreases with the increase of doping ratio, correspondingly the anisotropy of crystal reduces. The interactions between Ti and Al atoms are enhanced. Under the same pressure, the influences of doping concentration and type of doping element on volume are different. According to the obtained elastic constants, bulk moduli and shear moduli of doping systems, we find that with a doping concentration of 6.25%, Cr, Mo and W doping can improve the toughness of TiAl alloy more than V, Nb and Ta doping. For a doping concentration of 12.5%, the toughening effect of Mo is the strongest in all the six doping elements. The strong s-s, p-p and d-d electron interactions exist between the Ti and Mo atom, which is verified by the results of partial electron density of state and charge density. The strong interaction caused by doping restricts effectively the migration of Ti and Al atom. It is beneficial to enhance the stability and strength of the TiAl alloy. In summary, starting from the microscopic electronic structure we find that doping can effectively reduce the anisotropy of TiAl alloy, enhance the interaction between Ti and Al atoms, weaken covalent bond energy, enhance metal bond energy and then promote the plastic deformation of TiAl alloy. The results can provide theoretical support for improving the performances of TiAl based alloys.
      通信作者: 胡前库, hqk@hpu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11404099, 51271073)和河南理工大学杰出青年基金(批准号: J2014-05)资助的课题.
      Corresponding author: Hu Qian-Ku, hqk@hpu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11404099, 51271073) and Funds of Outstanding Youth of Henan Polytechnic University, China (Grant No. J2014-05).
    [1]

    Rananujan R V 2000 Int. Mater. Rev. 45 217

    [2]

    Chen Y Y, Kong F T, Han J C, Chen Z Y, Tian J 2005 Intermetallics 13 263

    [3]

    Appel F, Oehring M 2005 γ -Titanium Aluminide Alloys: Alloy Design and Properties//Titanium and Titanium Alloys-Fundamentals and Applications (Weinheim: Wiley-Vch Verlag GmbH & Co KGaA) pp114-120

    [4]

    Greenberg B A 1989 Scripta Metall. 23 631

    [5]

    Greenberg B F, Amismov V I, Gornostirev Yu N, Taluts G G 1988 Scripta Metall. 22 859

    [6]

    Morinaga M, Saito J, Yukawa N, Adachi H 1990 Acta Metall. Mater. 38 25

    [7]

    Chubb S R, Papaconstantopoulos D A, Klein B M 1988 Phys. Rev. B 38 12120

    [8]

    Nozawa K, Ishii Y 2010 Phys. Rev. Lett. 104 226406

    [9]

    Froideval A, Iglesias R, Samaras M, Schuppler S, Nagel P, Grolimund D, Victoria M, Hoffelner W 2007 Phys. Rev. Lett. 99 237201

    [10]

    Tse J S, Frapper G, Ker A, Rousseau R, Klug D D 1999 Phys. Rev. Lett. 82 4472

    [11]

    Jahnátek M, Krajčí, Hafner J 2005 Phys. Rev. B 71 024101

    [12]

    Music D, Schneider J M 2006 Phys. Rev. B 74 174110

    [13]

    Nenghabi E N, Myles C W 2008 Phys. Rev. B 77 205203

    [14]

    Hu Q M, Yang R, Lu J M, Wang L, Johansson B, Vitos L 2007 Phys. Rev. B 76 224201

    [15]

    Song Q G, Qin G S, Yang B B, Jiang Q J, Hu X L 2016 Acta Phys. Sin. 65 046102 (in Chinese) [宋庆功, 秦国顺, 杨宝宝, 蒋清杰, 胡雪兰 2016 物理学报 65 046102]

    [16]

    Zhu G L, Shu D, Dai Y B, Wang J, Sun B D 2009 Acta Phys. Sin. 58 S210 (in Chinese) [祝国梁, 疏达, 戴永兵, 王俊, 孙宝德 2009 物理学报 58 S210]

    [17]

    Liu X K, Liu C, Zheng Z, Lan X H 2013 Chin. Phys. B 22 087102

    [18]

    Perdew J P, Burke K, Ernzerhof M. 1996 Phys. Rev. Lett. 77 3865

    [19]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [20]

    Shang J X, Yu X Y 2008 Acta Phys. Sin. 57 2380 (in Chinese) [尚家香, 喻显扬 2008 物理学报 57 2380]

    [21]

    Pugh S F 1954 Philos. Mag. 45 823

  • [1]

    Rananujan R V 2000 Int. Mater. Rev. 45 217

    [2]

    Chen Y Y, Kong F T, Han J C, Chen Z Y, Tian J 2005 Intermetallics 13 263

    [3]

    Appel F, Oehring M 2005 γ -Titanium Aluminide Alloys: Alloy Design and Properties//Titanium and Titanium Alloys-Fundamentals and Applications (Weinheim: Wiley-Vch Verlag GmbH & Co KGaA) pp114-120

    [4]

    Greenberg B A 1989 Scripta Metall. 23 631

    [5]

    Greenberg B F, Amismov V I, Gornostirev Yu N, Taluts G G 1988 Scripta Metall. 22 859

    [6]

    Morinaga M, Saito J, Yukawa N, Adachi H 1990 Acta Metall. Mater. 38 25

    [7]

    Chubb S R, Papaconstantopoulos D A, Klein B M 1988 Phys. Rev. B 38 12120

    [8]

    Nozawa K, Ishii Y 2010 Phys. Rev. Lett. 104 226406

    [9]

    Froideval A, Iglesias R, Samaras M, Schuppler S, Nagel P, Grolimund D, Victoria M, Hoffelner W 2007 Phys. Rev. Lett. 99 237201

    [10]

    Tse J S, Frapper G, Ker A, Rousseau R, Klug D D 1999 Phys. Rev. Lett. 82 4472

    [11]

    Jahnátek M, Krajčí, Hafner J 2005 Phys. Rev. B 71 024101

    [12]

    Music D, Schneider J M 2006 Phys. Rev. B 74 174110

    [13]

    Nenghabi E N, Myles C W 2008 Phys. Rev. B 77 205203

    [14]

    Hu Q M, Yang R, Lu J M, Wang L, Johansson B, Vitos L 2007 Phys. Rev. B 76 224201

    [15]

    Song Q G, Qin G S, Yang B B, Jiang Q J, Hu X L 2016 Acta Phys. Sin. 65 046102 (in Chinese) [宋庆功, 秦国顺, 杨宝宝, 蒋清杰, 胡雪兰 2016 物理学报 65 046102]

    [16]

    Zhu G L, Shu D, Dai Y B, Wang J, Sun B D 2009 Acta Phys. Sin. 58 S210 (in Chinese) [祝国梁, 疏达, 戴永兵, 王俊, 孙宝德 2009 物理学报 58 S210]

    [17]

    Liu X K, Liu C, Zheng Z, Lan X H 2013 Chin. Phys. B 22 087102

    [18]

    Perdew J P, Burke K, Ernzerhof M. 1996 Phys. Rev. Lett. 77 3865

    [19]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [20]

    Shang J X, Yu X Y 2008 Acta Phys. Sin. 57 2380 (in Chinese) [尚家香, 喻显扬 2008 物理学报 57 2380]

    [21]

    Pugh S F 1954 Philos. Mag. 45 823

  • [1] 梁婷, 王阳阳, 刘国宏, 符汪洋, 王怀璋, 陈静飞. V掺杂二维MoS2体系气体吸附性能的第一性原理研究. 物理学报, 2021, 70(8): 080701. doi: 10.7498/aps.70.20202043
    [2] 张小娅, 宋佳讯, 王鑫豪, 王金斌, 钟向丽. In掺杂h-LuFeO3光吸收及极化性能的第一性原理计算. 物理学报, 2021, 70(3): 037101. doi: 10.7498/aps.70.20201287
    [3] 戚玉敏, 陈恒利, 金朋, 路洪艳, 崔春翔. 第一性原理研究Mn和Cu掺杂六钛酸钾(K2Ti6O13)的电子结构和光学性质. 物理学报, 2018, 67(6): 067101. doi: 10.7498/aps.67.20172356
    [4] 贾婉丽, 周淼, 王馨梅, 纪卫莉. Fe掺杂GaN光电特性的第一性原理研究. 物理学报, 2018, 67(10): 107102. doi: 10.7498/aps.67.20172290
    [5] 严顺涛, 姜振益. Cu掺杂对TiNi合金马氏体相变路径影响的第一性原理研究. 物理学报, 2017, 66(13): 130501. doi: 10.7498/aps.66.130501
    [6] 邓世杰, 赵宇宏, 侯华, 文志勤, 韩培德. 高压下Ti2AlX(X=C,N)的结构、力学性能及热力学性质. 物理学报, 2017, 66(14): 146101. doi: 10.7498/aps.66.146101
    [7] 陈治鹏, 马亚楠, 林雪玲, 潘凤春, 席丽莹, 马治, 郑富, 汪燕青, 陈焕铭. Nb掺杂-TiAl金属间化合物的电子结构与力学性能. 物理学报, 2017, 66(19): 196101. doi: 10.7498/aps.66.196101
    [8] 樊涛, 曾庆丰, 于树印. Hf-N体系的晶体结构预测和性质的第一性原理研究. 物理学报, 2016, 65(11): 118102. doi: 10.7498/aps.65.118102
    [9] 朱玥, 李永成, 王福合. Li掺杂对MgH2(001)表面H2分子扩散释放影响的第一性原理研究. 物理学报, 2016, 65(5): 056801. doi: 10.7498/aps.65.056801
    [10] 潘新东, 魏燕, 蔡宏中, 祁小红, 郑旭, 胡昌义, 张诩翔. 基于第一性原理计算Rh含量对Ir-Rh合金力学性能的影响. 物理学报, 2016, 65(15): 156201. doi: 10.7498/aps.65.156201
    [11] 徐晶, 梁家青, 李红萍, 李长生, 刘孝娟, 孟健. Ti掺杂NbSe2电子结构的第一性原理研究. 物理学报, 2015, 64(20): 207101. doi: 10.7498/aps.64.207101
    [12] 嘉明珍, 王红艳, 陈元正, 马存良, 王辉. Al, Fe, Mg掺杂Li2MnSiO4的电子结构和电化学性能的第一性原理研究. 物理学报, 2015, 64(8): 087101. doi: 10.7498/aps.64.087101
    [13] 廖建, 谢召起, 袁健美, 黄艳平, 毛宇亮. 3d过渡金属Co掺杂核壳结构硅纳米线的第一性原理研究. 物理学报, 2014, 63(16): 163101. doi: 10.7498/aps.63.163101
    [14] 令狐佳珺, 梁工英. In掺杂ZnTe发光性能的第一性原理计算. 物理学报, 2013, 62(10): 103102. doi: 10.7498/aps.62.103102
    [15] 曹娟, 崔磊, 潘靖. V,Cr,Mn掺杂MoS2磁性的第一性原理研究. 物理学报, 2013, 62(18): 187102. doi: 10.7498/aps.62.187102
    [16] 吴木生, 徐波, 刘刚, 欧阳楚英. Cr和W掺杂的单层MoS2电子结构的第一性原理研究. 物理学报, 2013, 62(3): 037103. doi: 10.7498/aps.62.037103
    [17] 李泓霖, 张仲, 吕英波, 黄金昭, 张英, 刘如喜. 第一性原理研究稀土掺杂ZnO结构的光电性质. 物理学报, 2013, 62(4): 047101. doi: 10.7498/aps.62.047101
    [18] 侯清玉, 赵春旺, 李继军, 王钢. Al高掺杂浓度对ZnO导电性能影响的第一性原理研究. 物理学报, 2011, 60(4): 047104. doi: 10.7498/aps.60.047104
    [19] 余伟阳, 唐壁玉, 彭立明, 丁文江. α-Mg3Sb2的电子结构和力学性能. 物理学报, 2009, 58(13): 216-S223. doi: 10.7498/aps.58.216
    [20] 彭丽萍, 徐 凌, 尹建武. N掺杂锐钛矿TiO2光学性能的第一性原理研究. 物理学报, 2007, 56(3): 1585-1589. doi: 10.7498/aps.56.1585
计量
  • 文章访问数:  3753
  • PDF下载量:  274
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-17
  • 修回日期:  2016-01-21
  • 刊出日期:  2016-04-05

金属元素掺杂对TiAl合金力学性能的影响

  • 1. 河南理工大学材料科学与工程学院, 焦作 454000
  • 通信作者: 胡前库, hqk@hpu.edu.cn
    基金项目: 国家自然科学基金(批准号: 11404099, 51271073)和河南理工大学杰出青年基金(批准号: J2014-05)资助的课题.

摘要: 利用基于密度泛函理论的第一性原理方法研究了金属元素X (X分别表示V, Nb, Ta, Cr, Mo和W)掺杂对TiAl合金性能的影响. 研究发现, 掺杂可以有效减小合金的各向异性, 增强Ti-Al 原子间的相互作用, 同时增强金属键性, 减弱共价键性, 有利于塑性变形. 在相同的压力下, 不同的掺杂浓度和掺杂元素对体积的影响不同. 通过计算不同掺杂体系的弹性常数、体弹模量和剪切模量可知: 当掺杂浓度为6.25%时, 相对于V, Nb和Ta, Cr, Mo和W掺杂能较好地改善TiAl金属间化合物的韧性; 当掺杂浓度为12.5%时, 相对其他掺杂元素Mo的韧化作用最强. 从Mo掺杂后TiAl体系的分波态密度和电荷密度图, 发现Mo和Ti 原子发生强烈的s-s, p-p, d-d电子相互作用, 有效地束缚了合金中Ti和Al原子的迁移, 有助于提高合金的稳定性和强度.

English Abstract

参考文献 (21)

目录

    /

    返回文章
    返回