搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多粒子纠缠的保护方案

宗晓岚 杨名

引用本文:
Citation:

多粒子纠缠的保护方案

宗晓岚, 杨名

Scheme for protecting multipartite quantum entanglement

Zong Xiao-Lan, Yang Ming
PDF
导出引用
  • 量子纠缠是量子信息的重要物理资源. 然而当量子系统与环境相互作用时, 会不可避免地产生消相干导致纠缠下降, 因此保护纠缠不受环境的影响具有重要意义. 振幅衰减是一种典型的衰减机制. 如果探测环境保证没有激发从系统中流出, 即视为对系统的一种弱测量. 本文基于局域脉冲序列和弱测量, 提出了一种可以保护多粒子纠缠不受振幅衰减影响的有效物理方案, 保护的对象是在量子通信和量子计算中发挥重要作用的Cluster态和Maximal slice态.
    Entanglement is a vital resource for many quantum information processes. However, the unavoidable interaction between quantum system and its environment will lead to quantum decoherence. So protecting remote entanglement against decoherence is of great importance for realizing quantum information and quantum communication. In fact, there are many types of decoherences. Besides the depolarization and phase damping, amplitude damping is a typical decoherence mechanism. If we monitor the environments to guarantee that no excitation escapes from the system, the amplitude damping is modified into a weak measurement induced amplitude damping of the system. Amplitude damping decoherence can affect both single-qubit quantum states and multipartite entangled states. However, in most of previous quantum state protection schemes, the authors only pay attention to the single-qubit system or two-qubit system. Compared with bipartite entangled states, multipartite entangled states possess many advantages, but the entanglement property of multipartite entangled state is much more complicated than bipartite entanglement, so bipartite entanglement reversal (protection) scheme may not be suitable for multipartite case. Thus, in this paper, according to local pulse series and weak measurement, we propose an effective scheme for protecting two multipartite entangled states against amplitude damping, and these two multipartite states are Cluster state and Maximal slice (MS) state. Cluster state and MS state are two typical classes of multipartite entangled states, which play important roles in quantum computation and communication, respectively. These two states cannot be converted into each other with local operation and classical communication. Owing to its good operational and computable properties, here we choose negativity as a measure to quantify the multipartite entanglement. For the case of MS sate, no matter what the initial parameter is, when the local pulses are exerted on all qubits, the entanglement can be fixed around the entanglement of the initial state. Similarly, in the four-qubit cluster state case, if a series of flip operations is exerted on all qubits, it is shown that the multipartite entanglement can be recovered to the maximum 1.0. All these results show that this protocol can protect remote multipartite entanglement effectively. The physical mechanism behind this scheme is that the weak measurement combining with flip operation can balance the weight of different terms of the state, and move the entanglement toward the initial value. To summarize, our scheme is much simpler and feasible, which may warrant its experimental realization. Moreover, our scheme could be extended to protect other multipartite states.
      通信作者: 杨名, mingyang@ahu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11274010)和高等学校博士学科点专项科研基金(批准号: 20113401110002)资助的课题.
      Corresponding author: Yang Ming, mingyang@ahu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11274010) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20113401110002).
    [1]

    Xue Z Y, Zhou J, Wang Z D 2015 Phys. Rev. A 92 022320

    [2]

    Masanes L, Pironio S, Acn A 2011 Nat. Commun. 2 238

    [3]

    Bennett C H, Brassard G, Crpeau C, Jozsa R, Peres A, Wootters W K 1993 Phys. Rev. Lett. 70 1895

    [4]

    Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H, Zeilinger A 1997 Nature 390 575

    [5]

    Kim Y H, Kulik S P, Shih Y 2001 Phys. Rev. Lett. 86 1370

    [6]

    Giovannetti V, Lloyd S, Maccone L 2011 Nature Photon. 5 222

    [7]

    Xue Z Y 2010 J. Anhui Univ. 34 12

    [8]

    Steane A M 1996 Phys. Rev. Lett. 77 793

    [9]

    Lidar D A, Chuang I L, Whaley K B 1998 Phys. Rev. Lett. 81 2594

    [10]

    Kwiat P G, Berglund A J, Altepeter J B, White A G 2000 Science 290 498

    [11]

    Facchi P, Lidar D A, Pascazio S 2004 Phys. Rev. A 69 183

    [12]

    Maniscalco S, Francica F, Zaffino R L, Zaffino R L, Gullo N L, Plastina F 2008 Phys. Rev. Lett. 100 1937

    [13]

    Sun Q H, Yang M, Cao Z L 2011 J. Anhui Univ. 35 34

    [14]

    Viola L, Knill E, Lloyd S 1999 Phys. Rev. Lett. 82 2417

    [15]

    Koashi M, Ueda M 1999 Phys. Rev. Lett. 82 2598

    [16]

    Korotkov A N, Jordan A N 2006 Phys. Rev. Lett. 97 166805

    [17]

    Katz N 2008 Phys. Rev. Lett. 101 200401

    [18]

    Kim Y S, Cho Y W, Ra Y S, Kim Y H 2009 Opt. Express 17 11978

    [19]

    Sun Q, Al-Amri M, Zubairy M S 2009 Phys. Rev. A 80 033838

    [20]

    Sun Q, Al-Amri M, Davidovich L, Zubairy M S 2010 Phys. Rev. A 82 052323

    [21]

    Kim Y S, Lee J C, Kwon O, Kim Y H 2012 Nature Phys. 8 117

    [22]

    Liao X P, Fang M F, Fang J S, Zhu Q Q 2014 Chin. Phys. B 23 020304

    [23]

    Wang M J, Xia Y J 2015 Phys. Sin. 64 40303

    [24]

    Greenberger D M, Horne M A, Shimony A, Zeilinger A 1990 Am. J. Phys 58 1131

    [25]

    Dr W 2001 Phys. Rev. A 63 020303

    [26]

    Briegel H J, Raussendorf R 2001 Phys. Rev. Lett. 86 910

    [27]

    Gao T, Yan F L, Li Y C 2008 Eur. Phys. Lett. 84 50001

    [28]

    Zhao Z, Chen Y A, Zhang A N, Yang T, Briegel H J, Pan J W 2004 Nature 430 54

    [29]

    Kempe J 1999 Phys. Rev. A 60 910

    [30]

    Wang J, Zhang Q, Tang C J 2007 Commun. Theor. Phys. 48 637

    [31]

    Menicucci N C, Loock P V, Gu M, Weedbrook C, Ralph T C, Nielsen M A 2006 Phys. Rev. Lett. 97 110501

    [32]

    Ukai R, Iwata N, Shimokawa Y, Armstrong S C, Politi A, Yoshikawa J, van Peter L, Furusawa A 2011 Phys. Rev. Lett. 106 240504

    [33]

    Vidal G, Werner R F 2002 Phys. Rev. A 65 032314

  • [1]

    Xue Z Y, Zhou J, Wang Z D 2015 Phys. Rev. A 92 022320

    [2]

    Masanes L, Pironio S, Acn A 2011 Nat. Commun. 2 238

    [3]

    Bennett C H, Brassard G, Crpeau C, Jozsa R, Peres A, Wootters W K 1993 Phys. Rev. Lett. 70 1895

    [4]

    Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H, Zeilinger A 1997 Nature 390 575

    [5]

    Kim Y H, Kulik S P, Shih Y 2001 Phys. Rev. Lett. 86 1370

    [6]

    Giovannetti V, Lloyd S, Maccone L 2011 Nature Photon. 5 222

    [7]

    Xue Z Y 2010 J. Anhui Univ. 34 12

    [8]

    Steane A M 1996 Phys. Rev. Lett. 77 793

    [9]

    Lidar D A, Chuang I L, Whaley K B 1998 Phys. Rev. Lett. 81 2594

    [10]

    Kwiat P G, Berglund A J, Altepeter J B, White A G 2000 Science 290 498

    [11]

    Facchi P, Lidar D A, Pascazio S 2004 Phys. Rev. A 69 183

    [12]

    Maniscalco S, Francica F, Zaffino R L, Zaffino R L, Gullo N L, Plastina F 2008 Phys. Rev. Lett. 100 1937

    [13]

    Sun Q H, Yang M, Cao Z L 2011 J. Anhui Univ. 35 34

    [14]

    Viola L, Knill E, Lloyd S 1999 Phys. Rev. Lett. 82 2417

    [15]

    Koashi M, Ueda M 1999 Phys. Rev. Lett. 82 2598

    [16]

    Korotkov A N, Jordan A N 2006 Phys. Rev. Lett. 97 166805

    [17]

    Katz N 2008 Phys. Rev. Lett. 101 200401

    [18]

    Kim Y S, Cho Y W, Ra Y S, Kim Y H 2009 Opt. Express 17 11978

    [19]

    Sun Q, Al-Amri M, Zubairy M S 2009 Phys. Rev. A 80 033838

    [20]

    Sun Q, Al-Amri M, Davidovich L, Zubairy M S 2010 Phys. Rev. A 82 052323

    [21]

    Kim Y S, Lee J C, Kwon O, Kim Y H 2012 Nature Phys. 8 117

    [22]

    Liao X P, Fang M F, Fang J S, Zhu Q Q 2014 Chin. Phys. B 23 020304

    [23]

    Wang M J, Xia Y J 2015 Phys. Sin. 64 40303

    [24]

    Greenberger D M, Horne M A, Shimony A, Zeilinger A 1990 Am. J. Phys 58 1131

    [25]

    Dr W 2001 Phys. Rev. A 63 020303

    [26]

    Briegel H J, Raussendorf R 2001 Phys. Rev. Lett. 86 910

    [27]

    Gao T, Yan F L, Li Y C 2008 Eur. Phys. Lett. 84 50001

    [28]

    Zhao Z, Chen Y A, Zhang A N, Yang T, Briegel H J, Pan J W 2004 Nature 430 54

    [29]

    Kempe J 1999 Phys. Rev. A 60 910

    [30]

    Wang J, Zhang Q, Tang C J 2007 Commun. Theor. Phys. 48 637

    [31]

    Menicucci N C, Loock P V, Gu M, Weedbrook C, Ralph T C, Nielsen M A 2006 Phys. Rev. Lett. 97 110501

    [32]

    Ukai R, Iwata N, Shimokawa Y, Armstrong S C, Politi A, Yoshikawa J, van Peter L, Furusawa A 2011 Phys. Rev. Lett. 106 240504

    [33]

    Vidal G, Werner R F 2002 Phys. Rev. A 65 032314

  • [1] 胡强, 曾柏云, 辜鹏宇, 贾欣燕, 樊代和. 退相干条件下两比特纠缠态的量子非局域关联检验. 物理学报, 2022, 71(7): 070301. doi: 10.7498/aps.71.20211453
    [2] 丁晨, 李坦, 张硕, 郭楚, 黄合良, 鲍皖苏. 基于辅助单比特测量的量子态读取算法. 物理学报, 2021, 70(21): 210303. doi: 10.7498/aps.70.20211066
    [3] 宋悦, 李军奇, 梁九卿. 级联环境下三量子比特量子关联动力学研究. 物理学报, 2021, 70(10): 100301. doi: 10.7498/aps.70.20202133
    [4] 张晓东, 於亚飞, 张智明. 量子弱测量中纠缠对参数估计精度的影响. 物理学报, 2021, 70(24): 240302. doi: 10.7498/aps.70.20210796
    [5] 巩龙延, 杨慧, 赵生妹. 中间测量对受驱单量子比特统计复杂度的影响. 物理学报, 2020, 69(23): 230301. doi: 10.7498/aps.69.20200802
    [6] 武莹, 李锦芳, 刘金明. 基于部分测量增强量子隐形传态过程的量子Fisher信息. 物理学报, 2018, 67(14): 140304. doi: 10.7498/aps.67.20180330
    [7] 黄江. 弱测量对四个量子比特量子态的保护. 物理学报, 2017, 66(1): 010301. doi: 10.7498/aps.66.010301
    [8] 王美姣, 夏云杰. 在有限温度下运用弱测量保护量子纠缠. 物理学报, 2015, 64(24): 240303. doi: 10.7498/aps.64.240303
    [9] 卢道明. 弱相干场耦合腔系统中的纠缠特性. 物理学报, 2013, 62(3): 030302. doi: 10.7498/aps.62.030302
    [10] 辛璟焘, 高春清, 李辰, 王铮. 螺旋光束经过振幅型衍射光学元件的传输特性及其拓扑电荷数的测量. 物理学报, 2012, 61(17): 174202. doi: 10.7498/aps.61.174202
    [11] 王东. 正交振幅正关联正交位相反关联光束的贝尔态直接测量. 物理学报, 2010, 59(11): 7596-7601. doi: 10.7498/aps.59.7596
    [12] 林青. 利用弱交叉科尔效应实现多光子任意高维空间纠缠态的确定性制备. 物理学报, 2010, 59(5): 2976-2981. doi: 10.7498/aps.59.2976
    [13] 高晓峰, 徐之海, 冯华君, 李奇. 振幅指数衰减正弦干涉信号线性预测模型的求解. 物理学报, 2009, 58(10): 6719-6724. doi: 10.7498/aps.58.6719
    [14] 雷 亮, 文锦辉, 焦中兴, 赖天树, 林位株. 飞秒脉冲振幅和相位的无干涉条纹重构法测量. 物理学报, 2008, 57(1): 307-312. doi: 10.7498/aps.57.307
    [15] 唐有良, 刘 翔, 张小伟, 唐筱芳. 用一个纠缠态实现多粒子纠缠态的量子隐形传送. 物理学报, 2008, 57(12): 7447-7451. doi: 10.7498/aps.57.7447
    [16] 李艳玲, 冯 健, 孟祥国, 梁宝龙. 量子比特的普适远程翻转和克隆. 物理学报, 2007, 56(10): 5591-5596. doi: 10.7498/aps.56.5591
    [17] 朱贤方, 水嘉鹏. 自由衰减法测量线性内耗的准确公式. 物理学报, 1996, 45(6): 1010-1015. doi: 10.7498/aps.45.1010
    [18] 王大椿, 罗平安, 杨华, 王志东. 硅烷与硅的质量衰减截面实验测量. 物理学报, 1995, 44(11): 1853-1860. doi: 10.7498/aps.44.1853
    [19] 忻贤杰. 施密特电路的触发过程及它在测量窄脉冲振幅时的准确度. 物理学报, 1957, 13(6): 500-514. doi: 10.7498/aps.13.500
    [20] 魏荣爵. 低频声音在水雾中衰减的测量. 物理学报, 1954, 10(3): 187-208. doi: 10.7498/aps.10.187
计量
  • 文章访问数:  3494
  • PDF下载量:  193
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-09
  • 修回日期:  2016-01-14
  • 刊出日期:  2016-04-05

多粒子纠缠的保护方案

  • 1. 安徽大学物理与材料科学学院, 合肥 230601
  • 通信作者: 杨名, mingyang@ahu.edu.cn
    基金项目: 国家自然科学基金(批准号: 11274010)和高等学校博士学科点专项科研基金(批准号: 20113401110002)资助的课题.

摘要: 量子纠缠是量子信息的重要物理资源. 然而当量子系统与环境相互作用时, 会不可避免地产生消相干导致纠缠下降, 因此保护纠缠不受环境的影响具有重要意义. 振幅衰减是一种典型的衰减机制. 如果探测环境保证没有激发从系统中流出, 即视为对系统的一种弱测量. 本文基于局域脉冲序列和弱测量, 提出了一种可以保护多粒子纠缠不受振幅衰减影响的有效物理方案, 保护的对象是在量子通信和量子计算中发挥重要作用的Cluster态和Maximal slice态.

English Abstract

参考文献 (33)

目录

    /

    返回文章
    返回