搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低强度周期量级脉冲驱动排列分子的非次序双电离

黄诚 钟明敏 吴正茂

引用本文:
Citation:

低强度周期量级脉冲驱动排列分子的非次序双电离

黄诚, 钟明敏, 吴正茂

Nonsequential double ionization of aligned molecules by few-cycle laser pulses at low intensity

Huang Cheng, Zhong Ming-Min, Wu Zheng-Mao
PDF
导出引用
  • 本文利用三维经典系综模型研究了低强度周期量级脉冲驱动排列分子的非次序双电离. 结果表明, 电子对的关联特性强烈地依赖于分子的排列方向和激光脉冲的载波包络相位; 垂直分子反关联电子对的比例总是高于平行分子反关联电子对的比例; 当载波包络相位从0到 逐渐增加时, 反关联电子对的数目先增加再减少; 对于平行分子, 电子对的释放总是以正关联为主; 而垂直分子的主导关联模式则依赖于激光脉冲的载波包络相位, 当载波包络相位为0.3-0.7之间时, 电子对以反关联释放为主, 其他相位下以正关联为主. 本文利用分子势能曲线和电子返回能量很好地解释了电子关联特性对分子排列方向和载波包络相位的依赖关系.
    Using the three-dimensional classical ensemble model, nonsequential double ionization (NSDI) of aligned molecules by the few-cycle laser pulse at the low intensity is investigated. Here the two electrons involved in NSDI finally are ionized through a transition doubly excited state induced by the recollision. The results show that the electron correlation behavior in NSDI is strongly dependent on the molecular alignment and the carrier-envelope phase (CEP) of the laser pulse. There are more anti-correlated emissions for the perpendicular molecules than those for the parallel molecules regardless of CEP. The dependence of the electron correlation behavior on molecular alignment can be well explained by the potential energy curves of molecules. That is because the suppressed potential barrier for perpendicular molecules is higher and the electron is more difficult to ionize than for parallel molecules. Thus for perpendicular molecules the ionization of the two electrons has longer time delay, which results in more anticorrelated emissions. Additionally, because the potential barrier for the perpendicular molecules is higher than that for the parallel molecules, the ionization yield of NSDI is about an order of magnitude smaller than that for the parallel molecules. With CEP increasing from 0 to , the anti-correlated emission first increases and then decreases. For parallel alignment, the correlated emission is always dominant at all CEPs. However, for perpendicular alignment, the dominant correlation behavior depends on the CEP of the laser pulse. When the CEP is in a range from 0.3 to 0.7, the anti-correlated emission is dominant. At other CEPs, the correlated emission is dominant. The dependence of the electron correlation behavior on the CEP of the laser pulse is well explained by the dependence of the returning energy of the electron on the CEP of the laser pulse. For different CEPs, the single ionization times resulting in NSDI and the corresponding acceleration electric field are different, which leads to at some CEPs the returning energy of the electron being large and at some other CEPs the returning energy of the electron being small. When those CEPs are available where the returning energy of the electron is larger, the doubly excited state induced by the recollision is more energetic. Thus at those CEPs the emissions of the two electrons from the doubly excited state have smaller time delays and more correlated emissions occur. On the contrary, at those CEPs where the returning energy of the electron is small, more anti-correlated emissions are produced.
      通信作者: 黄诚, huangcheng@swu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11504302, 61178011, 61475127, 11504301)和中央高校基本科研业务费专项资金 (批准号: SWU114069, XDJK2015C148) 资助的课题.
      Corresponding author: Huang Cheng, huangcheng@swu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11504302, 61178011, 61475127, 11504301) and the Fundamental Research Funds for the Central Universities, China (Grant Nos. SWU114069, XDJK2015C148).
    [1]

    L'Huillier A, Lompre L A, Mainfray G, Manus C 1983 Phys. Rev. A 27 2503

    [2]

    Walker B, Sheehy B, DiMauro L F, Agostini P, Schafer K J, Kulander K C 1994 Phys. Rev. Lett. 73 1227

    [3]

    Weber T, Giessen H, Weckenbrock M, Urbasch G, Staudte A, Spielberger L, Jagutzki O, Mergel V, Vollmer M, Drner R 2000 Nature 405 658

    [4]

    Becker W, Liu X, Jo Ho P, Eberly J H 2012 Rev. Mod. Phys. 84 1011

    [5]

    Figueira de Morisson Faria C, Liu X 2011 J. Mod. Opt. 58 1076

    [6]

    Corkum P B 1993 Phys. Rev. Lett. 71 1994

    [7]

    Schafer K J, Young B, DiMauro L F, Kulander K C 1993 Phys. Rev. Lett. 70 1599

    [8]

    Feuerstein B, Moshammer R, Fischer D, Dorn A, Schrter C D, Deipenwisch J, Crespo Lopez-Urrutia J R, Hhr C, Neumayer P, Ullrich J, Rottke H, Trump C, Wittmann M, Korn G, Sandner W 2001 Phys. Rev. Lett. 87 043003

    [9]

    Eckhardt B, Prauzner-Bechcickib J S, Sachac K, Zakrzewski J 2010 Chem. Phys. 370 168

    [10]

    Camus N, Fischer B, Kremer M, Sharma V, Rudenko A, Bergues B, Kubel M, Johnson N G, Kling M F, Pfeifer T, Ullrich J, Moshammer R 2012 Phys. Rev. Lett. 108 073003

    [11]

    Liao Q, Lu P X 2010 Phys. Rev. A 82 021403

    [12]

    Lein M, Gross E K U, Engel V 2000 Phys. Rev. Lett. 85 4707

    [13]

    Tong A H, Zhou Y M, Lu P X 2015 Opt. Express 23 15774

    [14]

    Zhou Y M, Huang C, Lu P X 2011 Phys. Rev. A 84 023405

    [15]

    Hao X L, Chen J, Li W D, Wang B B, Wang X D, Becker W 2014 Phys. Rev. Lett. 112 073002

    [16]

    Wu M Y, Wang Y L, Liu X J 2013 Phys. Rev. A 87 013431

    [17]

    Guo J, Liu X S, Chu S I 2013 Phys. Rev. A 88 023405

    [18]

    Dong S S, Zhang Z L, Bai L H, Zhang J T 2015 Phys. Rev. A 92 033409

    [19]

    Staudte A, Ruiz C, Schffler M, Schssler S, Zeidler D, Weber T, Meckel M, Villeneuve D M, Corkum P B, Becker A, Drner R 2007 Phys. Rev. Lett. 99 263002

    [20]

    Rudenko A, Jesus V L B, Ergler T, Zrost K, Feuerstein B, Schrter C D, Moshammer R, Ullrich J 2007 Phys.Rev. Lett. 99 263003

    [21]

    Ye D F, Liu X J, Liu J 2008 Phys. Rev. Lett. 101 233003

    [22]

    Zhou Y M, Liao Q, Lu P X 2010 Phys. Rev. A 82 053402

    [23]

    Chen Z J, Liang Y, Lin C D 2010 Phys. Rev. Lett. 104 253201

    [24]

    Liao Q, Zhou Y M, Huang C, Lu P X 2012 New J. Phys. 14 013001

    [25]

    Liu Y Q, Tschuch S, Rudenko A, Drr M, Siegel M, Morgner U, Moshammer R, Ullrich J 2008 Phys. Rev. Lett. 101 053001

    [26]

    Sun X F, Li M, Ye D F, Xin G G, Fu L B, Xie X G, Deng Y K, Wu C Y, Liu J, Gong Q H, Liu Y Q 2014 Phys. Rev. Lett. 113 103001

    [27]

    Parker J S, Doherty B J S, Taylor K T, Schultz K D, Blaga C I, DiMauro L F 2006 Phys. Rev. Lett. 96 133001

    [28]

    Wang X, Eberly J H 2009 Phys. Rev. Lett. 103 103007

    [29]

    Fu L B, Xin G G, Ye D F, Liu J 2012 Phys. Rev. Lett. 108 103601

    [30]

    Tong A H, Feng G Q 2014 Acta Phys. Sin. 63 023303 (in Chinese) [童爱红, 冯国强 2014 物理学报 63 023303]

    [31]

    Yu W W, Guo J, Liu X S 2010 Chin. Phys. B 19 023201

    [32]

    Tong A H, Liu D, Feng G Q 2014 Chin. Phys. B 23 103302

    [33]

    Jia X Y, Fan D H, Li W D, Chen J 2013 Chin. Phys. B 22 013303

    [34]

    Huang C, Guo W L, Zhou Y M, Wu Z M 2016 Phys. Rev. A 93 013416

    [35]

    Ma X M, Zhou Y M, Lu P X 2016 Phys. Rev. A 93 013425

    [36]

    Zhou Y M, Huang C, Tong A H, Liao Q, Lu P X 2011 Opt. Express 19 2301

    [37]

    Zhou Y M, Huang C, Liao Q, Hong W Y, Lu P X 2011 Opt. Lett. 36 2758

    [38]

    Zhang L, Xie X H, Roither S, Zhou Y M, Lu P X, Kartashov D, Schoffler M, Shafir D, Corkum P B, Baltuska A, Staudte A, Kitzler M 2014 Phys. Rev. Lett. 112 193002

    [39]

    Tong A H, Feng G Q, Deng Y J 2012 Acta Phys. Sin. 61 093303 (in Chinese) [童爱红, 冯国强, 邓永菊 2012 物理学报 61 093303]

    [40]

    Liu X, Rottke H, Eremina E, Sandner W, Goulielmakis E, Keeffe K O, Lezius M, Krausz F, Lindner F, Schatzel M G, Paulus G G, Walther H 2004 Phys. Rev. Lett. 93 263001

    [41]

    Morisson Faria C F, Liu X, Sanpera A, Lewenstein A 2004 Phys. Rev. A 70 043406

    [42]

    Liao Q, Lu P X, Zhang Q B, Hong W Y, Yang Z Y 2008 J. Phys. B 41 125601

    [43]

    Li H Y, Chen J, Jiang H B, Liu J, Fu P M, Gong Q H, Yan Z C, Wang B B 2009 J. Phys. B 42 125601

    [44]

    Tang Q B, Zhang D L, Yu B H, Chen D 2010 Acta Phys. Sin. 59 7775 (in Chinese) [汤清彬, 张东玲, 余本海, 陈东 2010 物理学报 59 7775]

    [45]

    Zhou Y M, Liao Q, Lan P F, Lu P X 2008 Chin. Phys. Lett. 25 3950

    [46]

    Bergues B, Kubel M, Johnson N G, Fischer B, Camus N, Betsch K J, Herrwerth O, Senftleben A, Sayler A M, Rathje T, Pfeifer T, Ben-Itzhak I, Jones R R, Paulus G G, Krausz F, Moshammer R, Ullrich J, Kling M F 2012 Nature Commun. 3 813

    [47]

    Huang C, Zhou Y M, Zhang Q B, Lu P X 2013 Opt. Express 19 11382

    [48]

    Zeidler D, Staudte A, Bardon A B, Villeneuve D M, Drner R, Corkum P B 2005 Phys. Rev. Lett. 95 203003

    [49]

    Huang C, Zhou Y M, Tong A H, Liao H Q, Y, Lu P X 2011 Opt. Express 19 5627

    [50]

    Liao Q, Lu P X 2009 Opt. Express 17 15550

    [51]

    Haan S L, Breen L, Karim A, Eberly J H 2006 Phys. Rev. Lett. 97 103008

    [52]

    Haan S L, Dyke J S V, Smith Z S 2008 Phys. Rev. Lett. 101 113001

    [53]

    Zhou Y M, Huang C, Liao Q, Lu P X 2012 Phys. Rev. Lett. 109 053004

    [54]

    Zhou Y M, Zhang Q B, Huang C, Lu P X 2012 Phys. Rev. A 86 043427

  • [1]

    L'Huillier A, Lompre L A, Mainfray G, Manus C 1983 Phys. Rev. A 27 2503

    [2]

    Walker B, Sheehy B, DiMauro L F, Agostini P, Schafer K J, Kulander K C 1994 Phys. Rev. Lett. 73 1227

    [3]

    Weber T, Giessen H, Weckenbrock M, Urbasch G, Staudte A, Spielberger L, Jagutzki O, Mergel V, Vollmer M, Drner R 2000 Nature 405 658

    [4]

    Becker W, Liu X, Jo Ho P, Eberly J H 2012 Rev. Mod. Phys. 84 1011

    [5]

    Figueira de Morisson Faria C, Liu X 2011 J. Mod. Opt. 58 1076

    [6]

    Corkum P B 1993 Phys. Rev. Lett. 71 1994

    [7]

    Schafer K J, Young B, DiMauro L F, Kulander K C 1993 Phys. Rev. Lett. 70 1599

    [8]

    Feuerstein B, Moshammer R, Fischer D, Dorn A, Schrter C D, Deipenwisch J, Crespo Lopez-Urrutia J R, Hhr C, Neumayer P, Ullrich J, Rottke H, Trump C, Wittmann M, Korn G, Sandner W 2001 Phys. Rev. Lett. 87 043003

    [9]

    Eckhardt B, Prauzner-Bechcickib J S, Sachac K, Zakrzewski J 2010 Chem. Phys. 370 168

    [10]

    Camus N, Fischer B, Kremer M, Sharma V, Rudenko A, Bergues B, Kubel M, Johnson N G, Kling M F, Pfeifer T, Ullrich J, Moshammer R 2012 Phys. Rev. Lett. 108 073003

    [11]

    Liao Q, Lu P X 2010 Phys. Rev. A 82 021403

    [12]

    Lein M, Gross E K U, Engel V 2000 Phys. Rev. Lett. 85 4707

    [13]

    Tong A H, Zhou Y M, Lu P X 2015 Opt. Express 23 15774

    [14]

    Zhou Y M, Huang C, Lu P X 2011 Phys. Rev. A 84 023405

    [15]

    Hao X L, Chen J, Li W D, Wang B B, Wang X D, Becker W 2014 Phys. Rev. Lett. 112 073002

    [16]

    Wu M Y, Wang Y L, Liu X J 2013 Phys. Rev. A 87 013431

    [17]

    Guo J, Liu X S, Chu S I 2013 Phys. Rev. A 88 023405

    [18]

    Dong S S, Zhang Z L, Bai L H, Zhang J T 2015 Phys. Rev. A 92 033409

    [19]

    Staudte A, Ruiz C, Schffler M, Schssler S, Zeidler D, Weber T, Meckel M, Villeneuve D M, Corkum P B, Becker A, Drner R 2007 Phys. Rev. Lett. 99 263002

    [20]

    Rudenko A, Jesus V L B, Ergler T, Zrost K, Feuerstein B, Schrter C D, Moshammer R, Ullrich J 2007 Phys.Rev. Lett. 99 263003

    [21]

    Ye D F, Liu X J, Liu J 2008 Phys. Rev. Lett. 101 233003

    [22]

    Zhou Y M, Liao Q, Lu P X 2010 Phys. Rev. A 82 053402

    [23]

    Chen Z J, Liang Y, Lin C D 2010 Phys. Rev. Lett. 104 253201

    [24]

    Liao Q, Zhou Y M, Huang C, Lu P X 2012 New J. Phys. 14 013001

    [25]

    Liu Y Q, Tschuch S, Rudenko A, Drr M, Siegel M, Morgner U, Moshammer R, Ullrich J 2008 Phys. Rev. Lett. 101 053001

    [26]

    Sun X F, Li M, Ye D F, Xin G G, Fu L B, Xie X G, Deng Y K, Wu C Y, Liu J, Gong Q H, Liu Y Q 2014 Phys. Rev. Lett. 113 103001

    [27]

    Parker J S, Doherty B J S, Taylor K T, Schultz K D, Blaga C I, DiMauro L F 2006 Phys. Rev. Lett. 96 133001

    [28]

    Wang X, Eberly J H 2009 Phys. Rev. Lett. 103 103007

    [29]

    Fu L B, Xin G G, Ye D F, Liu J 2012 Phys. Rev. Lett. 108 103601

    [30]

    Tong A H, Feng G Q 2014 Acta Phys. Sin. 63 023303 (in Chinese) [童爱红, 冯国强 2014 物理学报 63 023303]

    [31]

    Yu W W, Guo J, Liu X S 2010 Chin. Phys. B 19 023201

    [32]

    Tong A H, Liu D, Feng G Q 2014 Chin. Phys. B 23 103302

    [33]

    Jia X Y, Fan D H, Li W D, Chen J 2013 Chin. Phys. B 22 013303

    [34]

    Huang C, Guo W L, Zhou Y M, Wu Z M 2016 Phys. Rev. A 93 013416

    [35]

    Ma X M, Zhou Y M, Lu P X 2016 Phys. Rev. A 93 013425

    [36]

    Zhou Y M, Huang C, Tong A H, Liao Q, Lu P X 2011 Opt. Express 19 2301

    [37]

    Zhou Y M, Huang C, Liao Q, Hong W Y, Lu P X 2011 Opt. Lett. 36 2758

    [38]

    Zhang L, Xie X H, Roither S, Zhou Y M, Lu P X, Kartashov D, Schoffler M, Shafir D, Corkum P B, Baltuska A, Staudte A, Kitzler M 2014 Phys. Rev. Lett. 112 193002

    [39]

    Tong A H, Feng G Q, Deng Y J 2012 Acta Phys. Sin. 61 093303 (in Chinese) [童爱红, 冯国强, 邓永菊 2012 物理学报 61 093303]

    [40]

    Liu X, Rottke H, Eremina E, Sandner W, Goulielmakis E, Keeffe K O, Lezius M, Krausz F, Lindner F, Schatzel M G, Paulus G G, Walther H 2004 Phys. Rev. Lett. 93 263001

    [41]

    Morisson Faria C F, Liu X, Sanpera A, Lewenstein A 2004 Phys. Rev. A 70 043406

    [42]

    Liao Q, Lu P X, Zhang Q B, Hong W Y, Yang Z Y 2008 J. Phys. B 41 125601

    [43]

    Li H Y, Chen J, Jiang H B, Liu J, Fu P M, Gong Q H, Yan Z C, Wang B B 2009 J. Phys. B 42 125601

    [44]

    Tang Q B, Zhang D L, Yu B H, Chen D 2010 Acta Phys. Sin. 59 7775 (in Chinese) [汤清彬, 张东玲, 余本海, 陈东 2010 物理学报 59 7775]

    [45]

    Zhou Y M, Liao Q, Lan P F, Lu P X 2008 Chin. Phys. Lett. 25 3950

    [46]

    Bergues B, Kubel M, Johnson N G, Fischer B, Camus N, Betsch K J, Herrwerth O, Senftleben A, Sayler A M, Rathje T, Pfeifer T, Ben-Itzhak I, Jones R R, Paulus G G, Krausz F, Moshammer R, Ullrich J, Kling M F 2012 Nature Commun. 3 813

    [47]

    Huang C, Zhou Y M, Zhang Q B, Lu P X 2013 Opt. Express 19 11382

    [48]

    Zeidler D, Staudte A, Bardon A B, Villeneuve D M, Drner R, Corkum P B 2005 Phys. Rev. Lett. 95 203003

    [49]

    Huang C, Zhou Y M, Tong A H, Liao H Q, Y, Lu P X 2011 Opt. Express 19 5627

    [50]

    Liao Q, Lu P X 2009 Opt. Express 17 15550

    [51]

    Haan S L, Breen L, Karim A, Eberly J H 2006 Phys. Rev. Lett. 97 103008

    [52]

    Haan S L, Dyke J S V, Smith Z S 2008 Phys. Rev. Lett. 101 113001

    [53]

    Zhou Y M, Huang C, Liao Q, Lu P X 2012 Phys. Rev. Lett. 109 053004

    [54]

    Zhou Y M, Zhang Q B, Huang C, Lu P X 2012 Phys. Rev. A 86 043427

  • [1] 孙艳玲, 曹瑞, 王子豪, 廖家莉, 刘其鑫, 冯俊波, 吴蓓蓓. 基于光学相控阵双周期光场的关联成像. 物理学报, 2021, 70(23): 234203. doi: 10.7498/aps.70.20211208
    [2] 曾雪, 苏杰, 黄雪飞, 庞惠玲, 黄诚. 同向旋转双色圆偏场中非次序双电离的频率比依赖. 物理学报, 2021, 70(24): 243201. doi: 10.7498/aps.70.20211112
    [3] 黄诚, 钟明敏, 吴正茂. 强场非次序双电离中再碰撞动力学的强度依赖. 物理学报, 2019, 68(3): 033201. doi: 10.7498/aps.68.20181811
    [4] 余佳益, 陈亚红, 蔡阳健. 非均匀拉盖尔-高斯关联光束及其传输特性. 物理学报, 2016, 65(21): 214202. doi: 10.7498/aps.65.214202
    [5] 张方樱, 胡维, 陈新兵, 陈虹, 唐雄民. 基于状态关联性的Boost变换器混沌与反混沌控制. 物理学报, 2015, 64(4): 048401. doi: 10.7498/aps.64.048401
    [6] 童爱红, 冯国强, 邓永菊. 氦原子非次序双电离对正交双色场强度比的依赖关系. 物理学报, 2012, 61(9): 093303. doi: 10.7498/aps.61.093303
    [7] 辛国国, 赵清, 刘杰. 非序列双电离向饱和区过渡的电子最大关联度. 物理学报, 2012, 61(13): 133201. doi: 10.7498/aps.61.133201
    [8] 余本海, 李盈傧. 椭圆偏振激光脉冲驱动的氩原子非次序双电离对激光强度的依赖. 物理学报, 2012, 61(23): 233202. doi: 10.7498/aps.61.233202
    [9] 余本海, 李盈傧, 汤清彬. 椭圆偏振激光脉冲驱动的氩原子非次序双电离. 物理学报, 2012, 61(20): 203201. doi: 10.7498/aps.61.203201
    [10] 童爱红, 廖青, 周月明, 陆培祥. 不同分子取向下氢分子非次序双电离对核间距的依赖关系. 物理学报, 2011, 60(4): 043301. doi: 10.7498/aps.60.043301
    [11] 张东玲, 汤清彬, 余本海, 陈东. 碰撞阈值下氩原子非次序双电离. 物理学报, 2011, 60(5): 053205. doi: 10.7498/aps.60.053205
    [12] 汤清彬, 张东玲, 余本海, 陈东. 周期量级激光脉冲驱动下非次序双电离的三维经典系综模拟. 物理学报, 2010, 59(11): 7775-7781. doi: 10.7498/aps.59.7775
    [13] 马松山, 徐 慧, 李燕峰, 张鹏华. 一维二元非对角关联无序体系交流跳跃电导特性. 物理学报, 2007, 56(9): 5394-5399. doi: 10.7498/aps.56.5394
    [14] 马松山, 徐 慧, 刘小良, 王焕友. 一维二元非对角关联无序体系跳跃电导特性. 物理学报, 2007, 56(5): 2852-2857. doi: 10.7498/aps.56.2852
    [15] 张 鹏, 宋晏蓉, 张志刚. 周期量级激光脉冲的Thomson散射. 物理学报, 2006, 55(12): 6208-6213. doi: 10.7498/aps.55.6208
    [16] 王晓峰, 贾天卿, 徐至展. 周期量级超短激光脉冲作用下导带电子的光吸收与碰撞电离. 物理学报, 2005, 54(7): 3451-3456. doi: 10.7498/aps.54.3451
    [17] 董瑞芳, 张俊香, 张天才, 张靖, 谢常德, 彭堃墀. 通过λ/2波片外腔同位相弱反馈实现激光二极管激光的强度噪声压缩. 物理学报, 2001, 50(3): 462-466. doi: 10.7498/aps.50.462
    [18] 赖振讲, 刘自信. 附加Kerr介质非关联双模相干态场与V型三能级原子的相互作用系统中原子(场)的熵特性. 物理学报, 2000, 49(9): 1714-1718. doi: 10.7498/aps.49.1714
    [19] 胡响明, 彭金生. 双模双光子关联发射激光的稳态特性及其量子噪声压缩特性. 物理学报, 1997, 46(2): 255-266. doi: 10.7498/aps.46.255
    [20] 江鸿伟;邵金山;冯伟国;孙鑫. 半导体反型层中的电子关联和多体波函数. 物理学报, 1989, 38(8): 1271-1279. doi: 10.7498/aps.38.1271
计量
  • 文章访问数:  2647
  • PDF下载量:  202
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-07
  • 修回日期:  2016-01-29
  • 刊出日期:  2016-04-05

低强度周期量级脉冲驱动排列分子的非次序双电离

    基金项目: 国家自然科学基金(批准号:11504302, 61178011, 61475127, 11504301)和中央高校基本科研业务费专项资金 (批准号: SWU114069, XDJK2015C148) 资助的课题.

摘要: 本文利用三维经典系综模型研究了低强度周期量级脉冲驱动排列分子的非次序双电离. 结果表明, 电子对的关联特性强烈地依赖于分子的排列方向和激光脉冲的载波包络相位; 垂直分子反关联电子对的比例总是高于平行分子反关联电子对的比例; 当载波包络相位从0到 逐渐增加时, 反关联电子对的数目先增加再减少; 对于平行分子, 电子对的释放总是以正关联为主; 而垂直分子的主导关联模式则依赖于激光脉冲的载波包络相位, 当载波包络相位为0.3-0.7之间时, 电子对以反关联释放为主, 其他相位下以正关联为主. 本文利用分子势能曲线和电子返回能量很好地解释了电子关联特性对分子排列方向和载波包络相位的依赖关系.

English Abstract

参考文献 (54)

目录

    /

    返回文章
    返回