搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ni-X-In(X=Mn,Fe和Co)合金的缺陷稳定性和磁性能的第一性原理研究

白静 王晓书 俎启睿 赵骧 左良

引用本文:
Citation:

Ni-X-In(X=Mn,Fe和Co)合金的缺陷稳定性和磁性能的第一性原理研究

白静, 王晓书, 俎启睿, 赵骧, 左良

Defect stabilities and magnetic properties of Ni-X-In (X= Mn, Fe and Co) alloys: a first-principle study

Bai Jing, Wang Xiao-Shu, Zu Qi-Rui, Zhao Xiang, Zuo Liang
PDF
导出引用
  • Ni-Mn-In是一种新型的磁控形状记忆合金, 它通过磁场诱导逆马氏体相变实现形状记忆效应. 实验中常围绕化学计量比Ni2MnIn合金进行成分调整, 以获得适宜的马氏体相变温度与居里温度, 在这个过程中必然会产生多种点缺陷. 本文使用量子力学计算软件包VASP, 在密度泛函理论的框架下通过第一原理计算, 系统地研究了非化学计量比Ni-X-In(X=Mn, Fe 和Co)合金的缺陷形成能和磁性能. 反位缺陷中, In和Ni在X亚晶格的反位缺陷(InX和NiX)的形成能最低, Ni和X反位于Y的亚晶格(NiY和XY)得到较高的形成能. 因此, In原子可以稳定立方母相的结构, 而X原子对母相结构稳定性的影响则相反; 空位缺陷中最高的形成能出现在In空位缺陷, 再次肯定了In原子对稳定母相结构的作用. 此外, 详细研究了点缺陷周围原子的磁性能以及电荷分布. 本文的计算结果在指导实验中的成分设计和开发新型磁控形状记忆合金方面具有重要意义.
    Ferromagnetic shape memory alloys (FSMAs) have received much attention as high performance sensor and actuator materials, since a large magnetic-field-induced strain by the rearrangement of twin variants in the martensitic phase was reported. Up to now, several FSMAs including Ni-Mn-Ga, Ni-Fe-Ga, Co-Ni-Ga, Ni-Mn-Al systems have been studied. Vast amount of knowledge accumulated at the properties of Ni-Mn-Ga Heusler alloys in the past decade can foresee the possibility of employing these alloys in device applications. However, the actuation output stress level of the Ni-Mn-Ga alloy is only less than 5 MPa, which represents a shortcoming of this alloy system. Recently, an unusual type of FSMAs Ni-Co-Mn-In Heusler alloy has been experimentally investigated. It shows magnetic-field-induced reverse martensitic transition (MFIRT), making it more attractive for practical application as magnetically driven actuator because it possesses a magnetostress level on the order of tens of MPa. An almost perfect shape memory effect associated with this phase transition is induced by a magnetic field and is called the metamagnetic shape memory effect. NiMnIn is the basic ternary alloy system of the NiMnInCo alloy, and possesses the same metamagnetic shape memory effect. Moreover, large magnetoresistance, large entropy change that generates giant reverse magnetocaloric effects (MCEs), giant Hall effect have been discovered in Ni-Mn-In alloys. Composition adjustment must be carried out around stoichiometric Ni2MnIn in order to obtain the appropriate martensitic transformation temperature and Curie temperature. Therefore, a variety of point defects would be generated in this process. In this paper, the defect formation energy and magnetic properties of the off-stoichiometric Ni-X-In (X= Mn, Fe and Co) alloys are systematically investigated by the first-principle calculations within the framework of the density functional theory through using the Vienna ab initio software package. The In and Ni antisites at the site of the X sublattice (InX and NiX) have the relatively low formation energies. For most cases of the site occupation, the excess atoms of the rich component directly occupy the site (s) of the deficient one (s), except for In-rich Ni-deficient composition. In the latter case, the defect pair (InX+XNi) is energetically more favorable. The formation energy of Ni vacancy is the lowest and that of In vacancy is the highest in the vacancy-type defects. It is confirmed that the In constituent is dominant for the stability of the parent phase. The value of the Ni magnetic moment sensitively depends on the distance between Ni and X atoms. The smaller the distance, the larger the Ni magnetic moment will be. For the anti-site type point defect, when the extra X atom occupies a Ni site, most of the free electrons gather around the extra X atom; while the extra X occupies an In position, the charges are regularly distributed between Ni and extra-X atoms. Moreover, with the increase of the X atomic number, the number of the valence electrons increases, and the bonding strength between the extra X and its neighboring Ni is also enhanced. The results are particularly useful in guiding composition design and developing new type of magnetic shape memory alloy.
      通信作者: 白静, baij@neuq.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51431005, 51301036)、国家高技术研究发展计划(批准号: 2015AA034101)、 中央高校基本科研业务费专项资金(批准号: N130523001)和河北省自然科学基金(批准号: E2013501089)资助的课题.
      Corresponding author: Bai Jing, baij@neuq.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51431005, 51301036), the National High Technology Research and Development Program of China (Grant No. 2015AA034101), the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No. N130523001) and the Natural Science Foundation of Hebei Province, China (Grant No. E2013501089).
    [1]

    Ullakko K, Huang J K, Kanter C, Kokorin V V, O'Handley R C 1996 Appl. Phys. Lett. 69 1966

    [2]

    Kainuma R, Imano Y, Ito W, Sutou Y, Morito H, Okamoto S, Kitakami O, Oikawa K, Fujita A, Kanomata T, Ishida K 2006 Nature 439 957

    [3]

    Zhang Y Z, Cao J M, Tan C L, Cao Y J, Cai W 2014 Chin. Phys. B 23 037504

    [4]

    Ma S C, Xuan H C, Zhang C L, Wang L Y, Cao Q Q, Wang D H, Du Y W 2010 Chin. Phys. B 19 117503

    [5]

    Jing C, Li Z, Chen J P, Lu Y M, Cao S X, Zhang J C 2008 Acta Phys. Sin. 57 3780 (in Chinese) [敬超, 李哲, 陈继萍, 鲁玉明, 曹世勋, 张金仓 2008 物理学报 57 3780]

    [6]

    Oikawa K, Ito W, Imano Y, Sutou Y, Kainuma R, Ishida K, Okamoto S, Kitakami O, Kanomata T 2006 Appl. Phys. Lett. 88 122507

    [7]

    Yu S Y, Liu Z H, Liu G D, Chen J L, Cao Z X, Wu G H 2006 Appl. Phys. Lett. 89 162503

    [8]

    Pathak A K, Dubenko I, Pueblo C, Stadler S, Ali N 2010 Appl. Phys. Lett. 96 172503

    [9]

    Umetsu R Y, Ito W, Ito K, Koyama K, Fujita A, Oikawa K, Kanomata T, Kainuma R, Ishida K 2009 Scripta Mater. 60 25

    [10]

    Han Z D, Wang D H, Zhang C L, Tang S L, Gu B X, Du Y W 2006 Appl. Phys. Lett. 89 182507

    [11]

    Li B, Ren W J, Zhang Q, L X K, Liu X G, Meng H, Li J, Li D, Zhang Z D 2009 Appl. Phys. Lett. 95 172506

    [12]

    Dubenko I, Pathak A K, Stadler S, Ali N, Kovarskii Y, Prudnikov V N, Perov N S, Granovsky A B 2009 Phys. Rev. B 80 092408

    [13]

    Krenke T, Acet M, Wassermann E F, Moya X, Maosa L, Planes A 2006 Phys. Rev. B 73 174413

    [14]

    Cai W, Feng Y, Sui J H, Gao Z Y, Dong G F 2008 Scripta Mater. 58 830

    [15]

    Godlevsky V V, Rabe K M 2001 Phys. Rev. B 63 134407

    [16]

    Zayak A T, Entel P, Rabe K M, Adeagbo W A, Acet M 2005 Phys. Rev. B 72 054113

    [17]

    Zayak A T, Adeagbo W A, Entel P, Rabe K M 2006 Appl. Phys. Lett. 88 111903

    [18]

    Entel P, Gruner M E, Adeagbo W A, Zayak A T 2008 Mat. Sci. Eng. A 481-482 258

    [19]

    Bai J, Xu N, Raulot J M, Zhang Y D, Esling C, Zhao X, Zuo L 2012 J. Appl. Phys. 112 114901

    [20]

    Hafner J 2000 Acta Mater. 48 71

    [21]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [22]

    Kresse G, Furthmller J 1996 Comput. Mater. Sci. 6 15

    [23]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [24]

    Kresse G, Hafner J 1996 J. Phys.: Condens. Matter 6 8245

    [25]

    Perdew J P, Wang Y 1991 Phys. Rev. B 45 13244

    [26]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [27]

    Raulot J M, Domain C 2005 Phys. Rev. B 71 035203

    [28]

    Bai J, Raulot J M, Zhang Y D, Esling C, Zhao X, Zuo L 2010 J. Appl. Phys. 108 064904

  • [1]

    Ullakko K, Huang J K, Kanter C, Kokorin V V, O'Handley R C 1996 Appl. Phys. Lett. 69 1966

    [2]

    Kainuma R, Imano Y, Ito W, Sutou Y, Morito H, Okamoto S, Kitakami O, Oikawa K, Fujita A, Kanomata T, Ishida K 2006 Nature 439 957

    [3]

    Zhang Y Z, Cao J M, Tan C L, Cao Y J, Cai W 2014 Chin. Phys. B 23 037504

    [4]

    Ma S C, Xuan H C, Zhang C L, Wang L Y, Cao Q Q, Wang D H, Du Y W 2010 Chin. Phys. B 19 117503

    [5]

    Jing C, Li Z, Chen J P, Lu Y M, Cao S X, Zhang J C 2008 Acta Phys. Sin. 57 3780 (in Chinese) [敬超, 李哲, 陈继萍, 鲁玉明, 曹世勋, 张金仓 2008 物理学报 57 3780]

    [6]

    Oikawa K, Ito W, Imano Y, Sutou Y, Kainuma R, Ishida K, Okamoto S, Kitakami O, Kanomata T 2006 Appl. Phys. Lett. 88 122507

    [7]

    Yu S Y, Liu Z H, Liu G D, Chen J L, Cao Z X, Wu G H 2006 Appl. Phys. Lett. 89 162503

    [8]

    Pathak A K, Dubenko I, Pueblo C, Stadler S, Ali N 2010 Appl. Phys. Lett. 96 172503

    [9]

    Umetsu R Y, Ito W, Ito K, Koyama K, Fujita A, Oikawa K, Kanomata T, Kainuma R, Ishida K 2009 Scripta Mater. 60 25

    [10]

    Han Z D, Wang D H, Zhang C L, Tang S L, Gu B X, Du Y W 2006 Appl. Phys. Lett. 89 182507

    [11]

    Li B, Ren W J, Zhang Q, L X K, Liu X G, Meng H, Li J, Li D, Zhang Z D 2009 Appl. Phys. Lett. 95 172506

    [12]

    Dubenko I, Pathak A K, Stadler S, Ali N, Kovarskii Y, Prudnikov V N, Perov N S, Granovsky A B 2009 Phys. Rev. B 80 092408

    [13]

    Krenke T, Acet M, Wassermann E F, Moya X, Maosa L, Planes A 2006 Phys. Rev. B 73 174413

    [14]

    Cai W, Feng Y, Sui J H, Gao Z Y, Dong G F 2008 Scripta Mater. 58 830

    [15]

    Godlevsky V V, Rabe K M 2001 Phys. Rev. B 63 134407

    [16]

    Zayak A T, Entel P, Rabe K M, Adeagbo W A, Acet M 2005 Phys. Rev. B 72 054113

    [17]

    Zayak A T, Adeagbo W A, Entel P, Rabe K M 2006 Appl. Phys. Lett. 88 111903

    [18]

    Entel P, Gruner M E, Adeagbo W A, Zayak A T 2008 Mat. Sci. Eng. A 481-482 258

    [19]

    Bai J, Xu N, Raulot J M, Zhang Y D, Esling C, Zhao X, Zuo L 2012 J. Appl. Phys. 112 114901

    [20]

    Hafner J 2000 Acta Mater. 48 71

    [21]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [22]

    Kresse G, Furthmller J 1996 Comput. Mater. Sci. 6 15

    [23]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [24]

    Kresse G, Hafner J 1996 J. Phys.: Condens. Matter 6 8245

    [25]

    Perdew J P, Wang Y 1991 Phys. Rev. B 45 13244

    [26]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [27]

    Raulot J M, Domain C 2005 Phys. Rev. B 71 035203

    [28]

    Bai J, Raulot J M, Zhang Y D, Esling C, Zhao X, Zuo L 2010 J. Appl. Phys. 108 064904

  • [1] 王艳, 陈南迪, 杨陈, 曾召益, 胡翠娥, 陈向荣. 二维材料XTe2 (X = Pd, Pt)热电性能的第一性原理计算. 物理学报, 2021, 70(11): 116301. doi: 10.7498/aps.70.20201939
    [2] 栾丽君, 何易, 王涛, LiuZong-Wen. CdS/CdMnTe太阳能电池异质结界面与光电性能的第一性原理计算. 物理学报, 2021, 70(16): 166302. doi: 10.7498/aps.70.20210268
    [3] 王艳, 曹仟慧, 胡翠娥, 曾召益. Ce-La-Th合金高压相变的第一性原理计算. 物理学报, 2019, 68(8): 086401. doi: 10.7498/aps.68.20182128
    [4] 张志东. 磁性材料的磁结构、磁畴结构和拓扑磁结构. 物理学报, 2015, 64(6): 067503. doi: 10.7498/aps.64.067503
    [5] 陈家华, 刘恩克, 李勇, 祁欣, 刘国栋, 罗鸿志, 王文洪, 吴光恒. Ga2基Heusler合金Ga2XCr(X = Mn, Fe, Co, Ni, Cu)的四方畸变、电子结构、磁性及声子谱的第一性原理计算. 物理学报, 2015, 64(7): 077104. doi: 10.7498/aps.64.077104
    [6] 刘雪梅, 刘国权, 李定朋, 王海滨, 宋晓艳. 粗晶和纳米晶Sm3Co合金的制备及其性能研究. 物理学报, 2014, 63(9): 098102. doi: 10.7498/aps.63.098102
    [7] 李万俊, 方亮, 秦国平, 阮海波, 孔春阳, 郑继, 卞萍, 徐庆, 吴芳. Ag-N共掺p型ZnO的第一性原理研究. 物理学报, 2013, 62(16): 167701. doi: 10.7498/aps.62.167701
    [8] 黄有林, 侯育花, 赵宇军, 刘仲武, 曾德长, 马胜灿. 应变对钴铁氧体电子结构和磁性能影响的第一性原理研究. 物理学报, 2013, 62(16): 167502. doi: 10.7498/aps.62.167502
    [9] 彭丽萍, 夏正才, 杨昌权. 金属和非金属共掺杂锐钛矿相TiO2的第一性原理计算. 物理学报, 2012, 61(12): 127104. doi: 10.7498/aps.61.127104
    [10] 魏杰, 陈彦均, 徐卓. 多铁性BiFeO3纳米颗粒的尺寸依赖磁性能研究. 物理学报, 2012, 61(5): 057502. doi: 10.7498/aps.61.057502
    [11] 彭丽萍, 夏正才, 尹建武. 金红石相和锐钛矿相TiO2本征缺陷的第一性原理计算. 物理学报, 2012, 61(3): 037103. doi: 10.7498/aps.61.037103
    [12] 李姝丽, 张建民. Ni原子链填充碳纳米管的能量、电子结构和磁性的第一性原理计算. 物理学报, 2011, 60(7): 078801. doi: 10.7498/aps.60.078801
    [13] 易勇, 丁志杰, 李恺, 唐永建, 罗江山. Ni4NdB电子结构和磁性能第一性原理研究. 物理学报, 2011, 60(9): 097503. doi: 10.7498/aps.60.097503
    [14] 胡玉平, 平凯斌, 闫志杰, 杨雯, 宫长伟. Finemet合金析出相-Fe(Si)结构与磁性的第一性原理计算. 物理学报, 2011, 60(10): 107504. doi: 10.7498/aps.60.107504
    [15] 向军, 宋福展, 沈湘黔, 褚艳秋. 一维Ni0.5Zn0.5Fe2O4/SiO2复合纳米结构的制备及其磁性能. 物理学报, 2010, 59(7): 4794-4801. doi: 10.7498/aps.59.4794
    [16] 刘涛, 郭朝晖, 李岫梅, 李卫. 微观组织结构对铂钴永磁合金磁性能的影响. 物理学报, 2009, 58(3): 2030-2034. doi: 10.7498/aps.58.2030
    [17] 刘涛, 李卫. 时效工艺对PtCo合金磁性能的影响. 物理学报, 2009, 58(8): 5773-5777. doi: 10.7498/aps.58.5773
    [18] 侯清玉, 张 跃, 陈 粤, 尚家香, 谷景华. 锐钛矿(TiO2)半导体的氧空位浓度对导电性能影响的第一性原理计算. 物理学报, 2008, 57(1): 438-442. doi: 10.7498/aps.57.438
    [19] 李岫梅, 刘 涛, 郭朝晖, 朱明刚, 李 卫. 稀土含量对速凝工艺制备(Nd,Dy)-(Fe,Al)-B合金结构和磁性能的影响. 物理学报, 2008, 57(6): 3823-3827. doi: 10.7498/aps.57.3823
    [20] 宫长伟, 王轶农, 杨大智. NiTi形状记忆合金马氏体相变的第一性原理研究. 物理学报, 2006, 55(6): 2877-2881. doi: 10.7498/aps.55.2877
计量
  • 文章访问数:  2831
  • PDF下载量:  292
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-19
  • 修回日期:  2016-02-16
  • 刊出日期:  2016-05-05

Ni-X-In(X=Mn,Fe和Co)合金的缺陷稳定性和磁性能的第一性原理研究

  • 1. 东北大学, 材料各向异性与织构教育部重点实验室, 沈阳 100819;
  • 2. 东北大学秦皇岛分校资源与材料学院, 秦皇岛 066004;
  • 3. 河北省电介质与电解质功能材料实验室, 秦皇岛 066004
  • 通信作者: 白静, baij@neuq.edu.cn
    基金项目: 国家自然科学基金(批准号: 51431005, 51301036)、国家高技术研究发展计划(批准号: 2015AA034101)、 中央高校基本科研业务费专项资金(批准号: N130523001)和河北省自然科学基金(批准号: E2013501089)资助的课题.

摘要: Ni-Mn-In是一种新型的磁控形状记忆合金, 它通过磁场诱导逆马氏体相变实现形状记忆效应. 实验中常围绕化学计量比Ni2MnIn合金进行成分调整, 以获得适宜的马氏体相变温度与居里温度, 在这个过程中必然会产生多种点缺陷. 本文使用量子力学计算软件包VASP, 在密度泛函理论的框架下通过第一原理计算, 系统地研究了非化学计量比Ni-X-In(X=Mn, Fe 和Co)合金的缺陷形成能和磁性能. 反位缺陷中, In和Ni在X亚晶格的反位缺陷(InX和NiX)的形成能最低, Ni和X反位于Y的亚晶格(NiY和XY)得到较高的形成能. 因此, In原子可以稳定立方母相的结构, 而X原子对母相结构稳定性的影响则相反; 空位缺陷中最高的形成能出现在In空位缺陷, 再次肯定了In原子对稳定母相结构的作用. 此外, 详细研究了点缺陷周围原子的磁性能以及电荷分布. 本文的计算结果在指导实验中的成分设计和开发新型磁控形状记忆合金方面具有重要意义.

English Abstract

参考文献 (28)

目录

    /

    返回文章
    返回