搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

连续梯度的功能层对燃料电池在初始还原过程中曲率及残余应力的影响

陆勇俊 杨溢 王峰会 楼康 赵翔

引用本文:
Citation:

连续梯度的功能层对燃料电池在初始还原过程中曲率及残余应力的影响

陆勇俊, 杨溢, 王峰会, 楼康, 赵翔

Effect of continuously graded functional layer on curvature and residual stress of solid oxide fuel cell in initial reduction process

Lu Yong-Jun, Yang Yi, Wang Feng-Hui, Lou Kang, Zhao Xiang
PDF
导出引用
  • 连续梯度的电极由于其相对于多层梯度电极能更加有效地缓解电极和电解质的热失配及改善界面黏接而受到特别的关注. 本文通过建立含连续梯度的阳极功能层的阳极支撑固体氧化物燃料电池的力学模型, 研究了连续梯度的阳极功能层对阳极支撑固体氧化物燃料电池半电池在初始还原过程中曲率及残余应力的影响. 结果表明电池的曲率在初始还原过程中随还原程度的增大而逐渐增大. 连续梯度的阳极功能层的引入不能同时改善电池的曲率和残余应力, 即连续梯度的阳极功能层在缓解应力的同时会导致曲率的增大, 反之亦然. 含有连续梯度的阳极功能层的电池在部分还原状态下, 梯度层/阳极支撑界面处具有最大的拉应力容易导致电池受损, 实际中应保证电池被完全还原.
    Solid oxide fuel cell (SOFC) is considered to be a highly efficient device to convert chemical fuels directly into electrical power. Because of multilayer composite arrangement of cells, mismatch of the thermal expansion coefficients, chemical/thermal gradient, or phase change of the materials will result in residual stresses, which are reflected in the pronounced bending of unconstrained cells and cause a reliable problem. Considerable efforts have been devoted to the analysis of residual stresses in an elastic multilayer system, and one of the efforts that are to improve not only electrochemical performance for high energy conversion efficiency but also long term stability, is to process a continuously gradient anode functional layer (CG-AFL) between dense electrolyte and porous anode. Hence to understand the stress distribution and deformation of the multilayer with a CG-AFL is needed for the cell design. As the chemical reduction takes place at the interface between NiO-YSZ and the previously reduced porous Ni-YSZ, a reduced layer, together with the unreduced layer and the electrolyte will cause the residual stresses to be re-distributed. In this paper, taking the CG-AFL into account, the curvature and residual stresses of half-cell during reduction are analyzed. The results show that the curvature of half-cell with a CG-AFL increases as the reduction process. And the curvature would also increase as the thickness of the CG-AFL increases, and decrease with the increase of the index of power function that expresses young's modulus and thermal expansion coefficient of gradient layer. The residual stresses among the layers are correspondingly influenced by the thickness of the gradient layer, the index of power function and reduction extent. When taking power function as a linear function, the gradient layer obviously reduces the residual stress in the electrolyte. However, the increase of the index in power function will cause the increase of electrolyte residual stress. These mentioned analyses reveal that the CG-AFL cannot offer a solution that simultaneously improves the residual stress and curvature in a half-cell in terms of thickness and profile exponent of CG-AFL, i.e., the mitigation of residual stress will give rise to the increase of curvature, and vice versa. On the other hand, for part-reduced half-cell, the maximum tensile stress is found at anode/gradient layer interface in anode layer, which may facilitate structural failure since tensile residual stress is so high that it reaches the fracture strength of anode material. Consequently, it is important to ensure that the anode is fully reduced in practice. In conclusion, the existing gradient layer is helpful for enhancing the cell reliability via suitable design.
      通信作者: 王峰会, fhwang@nwpu.edu.cn
    • 基金项目: 西北工业大学研究生创意创新种子基金(批准号: Z2015087)、国家自然科学基金(批准号: 11372251, 11572253)和中央高校基本科研业务费专项资金(批准号: 3102014JCQ01040)资助的课题.
      Corresponding author: Wang Feng-Hui, fhwang@nwpu.edu.cn
    • Funds: Project supported by the Seed Foundation of Innovation and Creation for Graduate Students in Northwestern Polytechnical University, China (Grant No. Z2015087), the National Natural Science Foundation of China (Grant Nos. 11372251, 11572253) and the Fundamental Research Funds for the Central Universities, China (Grant No. 3102014JCQ01040).
    [1]

    Radovic M, Lara-Curzio E 2004 Acta Mater. 52 5747

    [2]

    Atkinson A, Sun B 2007 Mater. Sci. Tech. -Lond. 23 1135

    [3]

    Malzbender J 2010 J. Eur. Ceram. Soc. 30 3407

    [4]

    Mller A C, Herbstritt D, Ivers-Tiffe E 2002 Solid State Ionics 152 537

    [5]

    Kong J, Sun K, Zhou D, Zhang N, Mu J, Qiao J 2007 J. Power Sources 166 337

    [6]

    Yang Y Z, Zhang H O, Wang G L, Xia W S 2007 J. Therm. Spray Techn. 16 768

    [7]

    Wang Z, Zhang N, Qiao J, Sun K, Xu P 2009 Electrochem. Commun. 11 1120

    [8]

    Mccoppin J, Barney I, Mukhopadhyay S, Miller R, Reitz T, Young D 2012 J. Power Sources 215 160

    [9]

    Sun C Q, Fu Y Q, Yan B B, Hsieh J H, Lau S P, Sun X W, Tay B K 2002 J. Appl. Phys. 91 2051

    [10]

    Zhang X, Hao F, Chen H, Fang D 2015 Mech. Mater. 91 351

    [11]

    Zhong Z, Wu L Z, Chen W Q 2010 Adv. Mech. 40 528 (in Chinese) [仲政, 吴林志, 陈伟球 2010 力学进展 40 528]

    [12]

    Su B, Yan H G, Chen J H, Chen G, Du J Q 2013 Chin. J. Nonferrous. Met. 23 201 (in Chinese) [苏斌, 严红革, 陈吉华, 陈刚, 杜嘉庆 2013 中国有色金属学报 23 201]

    [13]

    Zhang K, Lu Y J, Wang F H 2015 Acta Phys. Sin. 64 064703 (in Chinese) [张凯, 陆勇俊, 王峰会 2015 物理学报 64 064703]

    [14]

    Duan B X, Li C L, Ma J C, Yuan S, Yang Y T 2015 Acta Phys. Sin. 64 067304 (in Chinese) [段宝兴, 李春来, 马剑冲, 袁嵩, 杨银堂 2015 物理学报 64 067304]

    [15]

    Hsueh C H, Lee S 2003 Compos. Part B: Eng. 34 747

    [16]

    Hsueh C 2003 J. Cryst. Growth 258 302

    [17]

    Malzbender J, Wakui T, Steinbrech R W 2006 Fuel Cells 6 123

    [18]

    Zhang T, Zhu Q, Huang W L, Xie Z, Xin X 2008 J. Power Sources 182 540

    [19]

    Xiang Z, Haibo S, Fenghui W, Kang L, Jianye H 2014 Fuel Cells 14 1057

    [20]

    Zhang N, Xing J 2006 J. Appl. Phys. 100 103519

    [21]

    Zhang N 2007 Thin Solid Films 515 8402

    [22]

    Zhang N, Chen J 2010 Compos. Part B: Eng. 41 375

    [23]

    Williamson R L, Rabin B H, Drake J T 1993 J. Appl. Phys. 74 1310

    [24]

    Sun B, Rudkin R A, Atkinson A 2009 Fuel Cells 9 805

    [25]

    Wang X, Wang F H, Jian Z Y, Gu Z P, Zhang K 2014 Rare Metal Mat. Eng. 43 346 (in Chinese) [王霞, 王峰会, 坚增运, 顾致平, 张凯 2014 稀有金属材料与工程 43 346]

    [26]

    Atkinson A, Seluk A 1999 Acta Mater. 47 867

    [27]

    Sarantaridis D, Atkinson A 2007 Fuel Cells 7 246

    [28]

    Malzbender J, Fischer W, Steinbrech R W 2008 J. Power Sources 182 594

    [29]

    Seluk A, Atkinson A 2000 J. Am. Ceram. Soc. 83 2029

    [30]

    Sarantaridis D, Chater R J, Atkinson A 2008 J. Electrochem. Soc. 155 B467

    [31]

    Tietz F 1999 Ionics 5 129

    [32]

    Minh N Q 1993 J. Am. Ceram. Soc. 76 563

    [33]

    Ettler M, Timmermann H, Malzbender J, Weber A, Menzler N H 2010 J. Power Sources 195 5452

    [34]

    Faes A, Hessler-Wyser A, Zryd A 2012 Membranes 2 585

    [35]

    Fouquet D, Muller A C, Weber A, Ivers-Tiffee E 2003 Ionics 9 103

  • [1]

    Radovic M, Lara-Curzio E 2004 Acta Mater. 52 5747

    [2]

    Atkinson A, Sun B 2007 Mater. Sci. Tech. -Lond. 23 1135

    [3]

    Malzbender J 2010 J. Eur. Ceram. Soc. 30 3407

    [4]

    Mller A C, Herbstritt D, Ivers-Tiffe E 2002 Solid State Ionics 152 537

    [5]

    Kong J, Sun K, Zhou D, Zhang N, Mu J, Qiao J 2007 J. Power Sources 166 337

    [6]

    Yang Y Z, Zhang H O, Wang G L, Xia W S 2007 J. Therm. Spray Techn. 16 768

    [7]

    Wang Z, Zhang N, Qiao J, Sun K, Xu P 2009 Electrochem. Commun. 11 1120

    [8]

    Mccoppin J, Barney I, Mukhopadhyay S, Miller R, Reitz T, Young D 2012 J. Power Sources 215 160

    [9]

    Sun C Q, Fu Y Q, Yan B B, Hsieh J H, Lau S P, Sun X W, Tay B K 2002 J. Appl. Phys. 91 2051

    [10]

    Zhang X, Hao F, Chen H, Fang D 2015 Mech. Mater. 91 351

    [11]

    Zhong Z, Wu L Z, Chen W Q 2010 Adv. Mech. 40 528 (in Chinese) [仲政, 吴林志, 陈伟球 2010 力学进展 40 528]

    [12]

    Su B, Yan H G, Chen J H, Chen G, Du J Q 2013 Chin. J. Nonferrous. Met. 23 201 (in Chinese) [苏斌, 严红革, 陈吉华, 陈刚, 杜嘉庆 2013 中国有色金属学报 23 201]

    [13]

    Zhang K, Lu Y J, Wang F H 2015 Acta Phys. Sin. 64 064703 (in Chinese) [张凯, 陆勇俊, 王峰会 2015 物理学报 64 064703]

    [14]

    Duan B X, Li C L, Ma J C, Yuan S, Yang Y T 2015 Acta Phys. Sin. 64 067304 (in Chinese) [段宝兴, 李春来, 马剑冲, 袁嵩, 杨银堂 2015 物理学报 64 067304]

    [15]

    Hsueh C H, Lee S 2003 Compos. Part B: Eng. 34 747

    [16]

    Hsueh C 2003 J. Cryst. Growth 258 302

    [17]

    Malzbender J, Wakui T, Steinbrech R W 2006 Fuel Cells 6 123

    [18]

    Zhang T, Zhu Q, Huang W L, Xie Z, Xin X 2008 J. Power Sources 182 540

    [19]

    Xiang Z, Haibo S, Fenghui W, Kang L, Jianye H 2014 Fuel Cells 14 1057

    [20]

    Zhang N, Xing J 2006 J. Appl. Phys. 100 103519

    [21]

    Zhang N 2007 Thin Solid Films 515 8402

    [22]

    Zhang N, Chen J 2010 Compos. Part B: Eng. 41 375

    [23]

    Williamson R L, Rabin B H, Drake J T 1993 J. Appl. Phys. 74 1310

    [24]

    Sun B, Rudkin R A, Atkinson A 2009 Fuel Cells 9 805

    [25]

    Wang X, Wang F H, Jian Z Y, Gu Z P, Zhang K 2014 Rare Metal Mat. Eng. 43 346 (in Chinese) [王霞, 王峰会, 坚增运, 顾致平, 张凯 2014 稀有金属材料与工程 43 346]

    [26]

    Atkinson A, Seluk A 1999 Acta Mater. 47 867

    [27]

    Sarantaridis D, Atkinson A 2007 Fuel Cells 7 246

    [28]

    Malzbender J, Fischer W, Steinbrech R W 2008 J. Power Sources 182 594

    [29]

    Seluk A, Atkinson A 2000 J. Am. Ceram. Soc. 83 2029

    [30]

    Sarantaridis D, Chater R J, Atkinson A 2008 J. Electrochem. Soc. 155 B467

    [31]

    Tietz F 1999 Ionics 5 129

    [32]

    Minh N Q 1993 J. Am. Ceram. Soc. 76 563

    [33]

    Ettler M, Timmermann H, Malzbender J, Weber A, Menzler N H 2010 J. Power Sources 195 5452

    [34]

    Faes A, Hessler-Wyser A, Zryd A 2012 Membranes 2 585

    [35]

    Fouquet D, Muller A C, Weber A, Ivers-Tiffee E 2003 Ionics 9 103

  • [1] 郭灿, 赵玉平, 邓英远, 张忠明, 徐春杰. 运动晶界与调幅分解相互作用过程的相场法研究. 物理学报, 2022, 71(7): 078101. doi: 10.7498/aps.71.20211973
    [2] 申双林, 张小坤, 万兴文, 郑克晴, 凌意瀚, 王绍荣. 固体氧化物燃料电池温升模拟中入口异常高温度梯度研究. 物理学报, 2022, 71(16): 164401. doi: 10.7498/aps.71.20220031
    [3] 徐晗, 张璐. 空间电荷层效应对固体氧化物燃料电池三相界面附近氧空位传输的影响. 物理学报, 2021, 70(12): 128801. doi: 10.7498/aps.70.20210012
    [4] 徐晗, 张璐, 党政. 固体氧化物燃料电池模式阳极内传输与电化学反应耦合机理. 物理学报, 2020, 69(9): 098801. doi: 10.7498/aps.69.20191697
    [5] 沈露予, 陆昌根. 前缘曲率变化对平板边界层感受性问题的影响. 物理学报, 2018, 67(18): 184703. doi: 10.7498/aps.67.20180593
    [6] 陈美娜, 张蕾, 高慧颖, 宣言, 任俊峰, 林子敬. Sm3+,Sr2+共掺杂对CeO2基电解质性能影响的密度泛函理论+U计算. 物理学报, 2018, 67(8): 088202. doi: 10.7498/aps.67.20172748
    [7] 刘华艳, 范悦, 康振锋, 许彦彬, 薄青瑞, 丁铁柱. (Ce0.8Sm0.2O2-/Y2O3:ZrO2)N超晶格电解质薄膜的制备及表征. 物理学报, 2015, 64(23): 236801. doi: 10.7498/aps.64.236801
    [8] 王宏, 云峰, 刘硕, 黄亚平, 王越, 张维涵, 魏政鸿, 丁文, 李虞锋, 张烨, 郭茂峰. 晶圆键合和激光剥离工艺对GaN基垂直结构发光二极管芯片残余应力的影响. 物理学报, 2015, 64(2): 028501. doi: 10.7498/aps.64.028501
    [9] 周先春, 汪美玲, 石兰芳, 周林锋, 吴琴. 基于梯度与曲率相结合的图像平滑模型的研究. 物理学报, 2015, 64(4): 044201. doi: 10.7498/aps.64.044201
    [10] 江微微, 范林勇, 赵瑞峰, 卫延, 裴丽, 简水生. 基于双芯光纤耦合器的梳状滤波器及其CO2激光调节. 物理学报, 2011, 60(4): 044214. doi: 10.7498/aps.60.044214
    [11] 蒙志君, 王立峰, 吕明云, 武哲. 曲率对有限曲面狭缝阵列传输特性的影响. 物理学报, 2011, 60(1): 017301. doi: 10.7498/aps.60.017301
    [12] 岑忞, 章岳光, 陈卫兰, 顾培夫. 沉积速率和氧分压对HfO2薄膜残余应力的影响. 物理学报, 2009, 58(10): 7025-7029. doi: 10.7498/aps.58.7025
    [13] 江洋, 罗毅, 席光义, 汪莱, 李洪涛, 赵维, 韩彦军. AlGaN插入层对6H-SiC上金属有机物气相外延生长的GaN薄膜残余应力及表面形貌的影响. 物理学报, 2009, 58(10): 7282-7287. doi: 10.7498/aps.58.7282
    [14] 孙浩亮, 宋忠孝, 徐可为. 基体对应力诱导的纳米晶W膜开裂行为的影响. 物理学报, 2008, 57(8): 5226-5231. doi: 10.7498/aps.57.5226
    [15] 周晓华, 张劭光, 杨继庆, 屈学民, 刘渊声, 王斯刚. 基于自发曲率模型对几种极限形状膜泡及典型相变和分裂过程的研究. 物理学报, 2007, 56(10): 6137-6142. doi: 10.7498/aps.56.6137
    [16] 孔德军, 张永康, 陈志刚, 鲁金忠, 冯爱新, 任旭东, 葛 涛. 基于XRD的镀锌钝化膜残余应力试验研究. 物理学报, 2007, 56(7): 4056-4061. doi: 10.7498/aps.56.4056
    [17] 张永康, 孔德军, 冯爱新, 鲁金忠, 葛 涛. 涂层界面结合强度检测研究(Ⅱ):涂层结合界面应力检测系统. 物理学报, 2006, 55(11): 6008-6012. doi: 10.7498/aps.55.6008
    [18] 邸玉贤, 计欣华, 胡 明, 秦玉文, 陈金龙. 基片曲率法在多孔硅薄膜残余应力检测中的应用. 物理学报, 2006, 55(10): 5451-5454. doi: 10.7498/aps.55.5451
    [19] 秦 琦, 于乃森, 郭丽伟, 汪 洋, 朱学亮, 陈 弘, 周均铭. 使用SiNx原位淀积方法生长的GaN外延膜中的应力研究. 物理学报, 2005, 54(11): 5450-5454. doi: 10.7498/aps.54.5450
    [20] 邵淑英, 范正修, 邵建达. ZrO2/SiO2多层膜中膜厚组合周期数及基底材料对残余应力的影响. 物理学报, 2005, 54(7): 3312-3316. doi: 10.7498/aps.54.3312
计量
  • 文章访问数:  3615
  • PDF下载量:  210
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-16
  • 修回日期:  2016-01-22
  • 刊出日期:  2016-05-05

连续梯度的功能层对燃料电池在初始还原过程中曲率及残余应力的影响

  • 1. 西北工业大学工程力学系, 西安 710129
  • 通信作者: 王峰会, fhwang@nwpu.edu.cn
    基金项目: 西北工业大学研究生创意创新种子基金(批准号: Z2015087)、国家自然科学基金(批准号: 11372251, 11572253)和中央高校基本科研业务费专项资金(批准号: 3102014JCQ01040)资助的课题.

摘要: 连续梯度的电极由于其相对于多层梯度电极能更加有效地缓解电极和电解质的热失配及改善界面黏接而受到特别的关注. 本文通过建立含连续梯度的阳极功能层的阳极支撑固体氧化物燃料电池的力学模型, 研究了连续梯度的阳极功能层对阳极支撑固体氧化物燃料电池半电池在初始还原过程中曲率及残余应力的影响. 结果表明电池的曲率在初始还原过程中随还原程度的增大而逐渐增大. 连续梯度的阳极功能层的引入不能同时改善电池的曲率和残余应力, 即连续梯度的阳极功能层在缓解应力的同时会导致曲率的增大, 反之亦然. 含有连续梯度的阳极功能层的电池在部分还原状态下, 梯度层/阳极支撑界面处具有最大的拉应力容易导致电池受损, 实际中应保证电池被完全还原.

English Abstract

参考文献 (35)

目录

    /

    返回文章
    返回