搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

极化状态与方向对单轴压缩下Pb(Zr0.95Ti0.05)O3铁电陶瓷畴变与相变行为的影响

蒋招绣 王永刚 聂恒昌 刘雨生

引用本文:
Citation:

极化状态与方向对单轴压缩下Pb(Zr0.95Ti0.05)O3铁电陶瓷畴变与相变行为的影响

蒋招绣, 王永刚, 聂恒昌, 刘雨生

Effects of poling state and direction on domain switching and phase transformation of Pb(Zr0.95Ti0.05)O3 ferroelectric ceramics under uniaxial compression

Jiang Zhao-Xiu, Wang Yong-Gang, Nie Heng-Chang, Liu Yu-Sheng
PDF
导出引用
  • 利用数字图像相关性分析方法发展了全场应变光学测量技术,并原位实时测量了准静态单轴压缩下铁电PZT95/5陶瓷试件的轴向应变和横向应变.基于轴向应变、横向应变随着轴向应力的变化关系,讨论了极化状态和极化方向对PZT95/5铁电陶瓷的畴变与相变行为的影响.实验结果显示:单轴压缩下,未极化和Z轴极化PZT95/5铁电陶瓷都会发生畴变,而Y轴极化PZT95/5铁电陶瓷则不发生畴变;畴变促使Z轴极化PZT95/5铁电陶瓷的轴向应变和横向应变同时快速地增长,而对未极化PZT95/5铁电陶瓷的应变增长的影响非常微弱,这种差异性归因于电畴极轴不同的取向分布特征;通过应变分解分析,验证了畴变与相变过程是解耦的,并界定了畴变应变和相变应变的影响范围;与Z轴极化PZT95/5铁电陶瓷相比,未极化PZT95/5铁电陶瓷的相变开始临界应力和相变结束应力减小,而Y轴极化PZT95/5铁电陶瓷则明显增大,由此推论畴变对相变有一定促进作用.基于放电特性的实测结果,还讨论了极化方向对极化PZT95/5铁电陶瓷去极化机理的影响.实验结果显示:Z轴极化PZT95/5铁电陶瓷去极化机理是畴变和相变的共同作用,其中畴变占主导地位,而Y轴极化PZT95/5铁电陶瓷的去极化机理仅是相变.
    The digital image correlation technique is used for full field measurements of axial strain and transverse strain of PZT95/5 ferroelectric ceramics under uniaxial compression. Based on the variations of the axial strain and transverse strain with axial stress, the effects of poling state and poling direction of PZT95/5 ferroelectric ceramics on the domain switching and phase transformation behaviors are explored. Domain switching occurs in unpoled and Z-axis poled PZT95/5 ferroelectric ceramics separately, while domain switching in the Y-axis poled PZT95/5 ferroelectric ceramic is not observed. Domain switching strain in the Z-axis poled PZT95/5 ferroelectric ceramic has obvious influences on the developments of axial strain and transverse strain, but the influence of domain switching strain in the unpoled PZT95/5 ferroelectric ceramic is very weak, which can be attributed to the different random distribution characteristics of domain orientation. By the strain decomposition analysis, it is proved that the domain switching and the phase transition process can be decoupled, and domain switching strain and phase transformation strain can be distinguished successfully. Compared with the Z-axis poled PZT95/5 ferroelectric ceramic, the unpoled PZT95/5 ferroelectric ceramic has a small critical stress of phase transformation, while the critical stress of the Y-axis poled PZT95/5 ferroelectric ceramics is big, which may be concluded that the domain switching behavior favors the phase transformation process. The polarization released behavior of PZT95/5 ferroelectric ceramic also depends on the poling direction. The depolarization mechanism of Z-axis poled PZT95/5 ferroelectric ceramic is caused by both domain switching and phase transformation, and the Y-axis poled PZT95/5 ferroelectric ceramic is caused by only phase transformation.
      通信作者: 王永刚, wangyonggang@nbu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11272164,11472142)、宁波大学王宽诚幸福基金和王宽诚教育基金资助的课题.
      Corresponding author: Wang Yong-Gang, wangyonggang@nbu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11272164, 11472142), the K. C. Wong Magna Foundation, and K. C. Wong Education Foundation of Ningbo University, China.
    [1]

    Haertling G H 1999 J. Am. Ceram. Soc. 82 797

    [2]

    Wang Y L 2003 Properties and Application of Functional Ceramics (Beijing:Science Press) p54(in Chinese)[王永龄 2003功能陶瓷性能与应用(北京:科学出版社)第54页]

    [3]

    Okayasu M, Sato K, Mizuno M 2011 J. Eur. Ceram. Soc. 31 141

    [4]

    Li Y J, Rogan R C, stndag E, Bhattacharya K 2005 Nat. Mater. 4 776

    [5]

    Jones J L, Hoffman M, Vogel S C 2007 Mech. Mater. 39 283

    [6]

    Okayasu M, Sugiyama E, Mizuno M 2010 J. Eur. Ceram. Soc. 30 1445

    [7]

    Tuttle B A, Yang P, Gieske J H, Voigt J A, Scofield T W, Zeuch D H, Olson W R 2001 J. Am. Ceram. Soc. 84 1260

    [8]

    Setchell R E 2003 J. Appl. Phys. 94 573

    [9]

    Zhang F P, He H L, Liu G M, Yu Y, Wang Y G 2013 J. Appl. Phys. 113 183501

    [10]

    Feng N B, Gu Y, Liu Y S, Nie H C, Chen X F, Wang G S, He H L, Dong X L 2010 Acta Phys. Sin. 59 8897 (in Chinese)[冯宁博, 谷岩, 刘雨生, 聂恒昌, 陈学锋, 王根水, 贺红亮, 董显林2010物理学报59 8897]

    [11]

    Setchell R E 2007 J. Appl. Phys. 101 053525

    [12]

    Jiang Z X, Xing M Z, Sheng H T, Wang Y G, Nie H C, Liu Y S 2015 Acta Phys. Sin. 64 134601 (in Chinese)[蒋招绣, 辛铭之, 申海艇, 王永刚, 聂恒昌, 刘雨生2015物理学报64 134601]

    [13]

    Sutton M A, Orteu J J, Schreier H W 2009 Image Correlation for Shape, Motion, and Deformation Measurements (New York:Springer) p81

    [14]

    Yang W 2000 Mechatronic Reliability p87(Beijing:Press of University of Tsinghua) (in Chinese)[杨卫2000力电失效学(北京:清华大学出版社)第87页]

    [15]

    Okayasu M, Sato K, Kusaba Y 2011 J. Eur. Ceram. Soc. 31 129

  • [1]

    Haertling G H 1999 J. Am. Ceram. Soc. 82 797

    [2]

    Wang Y L 2003 Properties and Application of Functional Ceramics (Beijing:Science Press) p54(in Chinese)[王永龄 2003功能陶瓷性能与应用(北京:科学出版社)第54页]

    [3]

    Okayasu M, Sato K, Mizuno M 2011 J. Eur. Ceram. Soc. 31 141

    [4]

    Li Y J, Rogan R C, stndag E, Bhattacharya K 2005 Nat. Mater. 4 776

    [5]

    Jones J L, Hoffman M, Vogel S C 2007 Mech. Mater. 39 283

    [6]

    Okayasu M, Sugiyama E, Mizuno M 2010 J. Eur. Ceram. Soc. 30 1445

    [7]

    Tuttle B A, Yang P, Gieske J H, Voigt J A, Scofield T W, Zeuch D H, Olson W R 2001 J. Am. Ceram. Soc. 84 1260

    [8]

    Setchell R E 2003 J. Appl. Phys. 94 573

    [9]

    Zhang F P, He H L, Liu G M, Yu Y, Wang Y G 2013 J. Appl. Phys. 113 183501

    [10]

    Feng N B, Gu Y, Liu Y S, Nie H C, Chen X F, Wang G S, He H L, Dong X L 2010 Acta Phys. Sin. 59 8897 (in Chinese)[冯宁博, 谷岩, 刘雨生, 聂恒昌, 陈学锋, 王根水, 贺红亮, 董显林2010物理学报59 8897]

    [11]

    Setchell R E 2007 J. Appl. Phys. 101 053525

    [12]

    Jiang Z X, Xing M Z, Sheng H T, Wang Y G, Nie H C, Liu Y S 2015 Acta Phys. Sin. 64 134601 (in Chinese)[蒋招绣, 辛铭之, 申海艇, 王永刚, 聂恒昌, 刘雨生2015物理学报64 134601]

    [13]

    Sutton M A, Orteu J J, Schreier H W 2009 Image Correlation for Shape, Motion, and Deformation Measurements (New York:Springer) p81

    [14]

    Yang W 2000 Mechatronic Reliability p87(Beijing:Press of University of Tsinghua) (in Chinese)[杨卫2000力电失效学(北京:清华大学出版社)第87页]

    [15]

    Okayasu M, Sato K, Kusaba Y 2011 J. Eur. Ceram. Soc. 31 129

  • [1] 宋睿睿, 邓钦玲, 周绍林. 基于相变与悬链线连续相位调控的超构光子开关. 物理学报, 2022, 71(2): 029101. doi: 10.7498/aps.71.20211538
    [2] 王伟, 揭泉林. 基于机器学习J1-J2反铁磁海森伯自旋链相变点的识别方法. 物理学报, 2021, 70(23): 230701. doi: 10.7498/aps.70.20210711
    [3] 李俊, 吴强, 于继东, 谭叶, 姚松林, 薛桃, 金柯. 铁冲击相变的晶向效应. 物理学报, 2017, 66(14): 146201. doi: 10.7498/aps.66.146201
    [4] 孙景阳, 王东明, 吕业刚, 王苗, 汪伊曼, 沈祥, 王国祥, 戴世勋. 应用于相变存储器的Cu-Ge3Sb2Te5薄膜的结构及相变特性研究. 物理学报, 2015, 64(1): 016103. doi: 10.7498/aps.64.016103
    [5] 宋萍, 蔡灵仓, 李欣竹, 陶天炯, 赵信文, 王学军, 方茂林. 低孔隙度疏松锡的高压声速与相变. 物理学报, 2015, 64(10): 106401. doi: 10.7498/aps.64.106401
    [6] 蒋招绣, 辛铭之, 申海艇, 王永刚, 聂恒昌, 刘雨生. 多孔未极化Pb(Zr0.95Ti0.05)O3铁电陶瓷单轴压缩力学响应与相变. 物理学报, 2015, 64(13): 134601. doi: 10.7498/aps.64.134601
    [7] 陈连平, 陈贻斌, 曹俊. Ca0.64WO4:Eu0.24陶瓷的高温相变机理及其对发光性能的影响. 物理学报, 2014, 63(21): 218102. doi: 10.7498/aps.63.218102
    [8] 邢雪, 王小飞, 张庆礼, 孙贵花, 刘文鹏, 孙敦陆, 殷绍唐. LuTaO4相变及结构. 物理学报, 2014, 63(24): 248107. doi: 10.7498/aps.63.248107
    [9] 周平, 王新强, 周木, 夏川茴, 史玲娜, 胡成华. 第一性原理研究硫化镉高压相变及其电子结构与弹性性质. 物理学报, 2013, 62(8): 087104. doi: 10.7498/aps.62.087104
    [10] 明星, 王小兰, 杜菲, 陈岗, 王春忠, 尹建武. 菱铁矿FeCO3高压相变与性质的第一性原理研究. 物理学报, 2012, 61(9): 097102. doi: 10.7498/aps.61.097102
    [11] 蒋冬冬, 谷岩, 冯玉军, 杜金梅. 静水压下锆锡钛酸铅铁电陶瓷相变和介电性能研究. 物理学报, 2011, 60(10): 107703. doi: 10.7498/aps.60.107703
    [12] 汪志刚, 吴亮, 张杨, 文玉华. 面心立方铁纳米粒子的相变与并合行为的分子动力学研究. 物理学报, 2011, 60(9): 096105. doi: 10.7498/aps.60.096105
    [13] 吕业刚, 梁晓琳, 龚跃球, 郑学军, 刘志壮. 外加电场对铁电薄膜相变的影响. 物理学报, 2010, 59(11): 8167-8171. doi: 10.7498/aps.59.8167
    [14] 卢志鹏, 祝文军, 刘绍军, 卢铁城, 陈向荣. 非静水压条件下铁从α到ε结构相变的第一性原理计算. 物理学报, 2009, 58(3): 2083-2089. doi: 10.7498/aps.58.2083
    [15] 明保全, 王矜奉, 臧国忠, 王春明, 盖志刚, 杜 鹃, 郑立梅. 铌酸钾钠基无铅压电陶瓷的X射线衍射与相变分析. 物理学报, 2008, 57(9): 5962-5967. doi: 10.7498/aps.57.5962
    [16] 邵建立, 王 裴, 秦承森, 周洪强. 铁冲击相变的分子动力学研究. 物理学报, 2007, 56(9): 5389-5393. doi: 10.7498/aps.56.5389
    [17] 王 晖, 刘金芳, 何 燕, 陈 伟, 王 莺, L. Gerward, 蒋建中. 高压下纳米锗的状态方程与相变. 物理学报, 2007, 56(11): 6521-6525. doi: 10.7498/aps.56.6521
    [18] 崔新林, 祝文军, 邓小良, 李英骏, 贺红亮. 冲击波压缩下含纳米孔洞单晶铁的结构相变研究. 物理学报, 2006, 55(10): 5545-5550. doi: 10.7498/aps.55.5545
    [19] 汪金芝, 方庆清. 纳米Zn0.6CoxFe2.4-xO4晶粒的结构相变与磁性研究. 物理学报, 2004, 53(9): 3186-3190. doi: 10.7498/aps.53.3186
    [20] 刘 鹏, 杨同青, 张良莹, 姚 熹. Pb(Zr,Sn,Ti)O3反铁电陶瓷的低温相变扩散与极化弛豫. 物理学报, 2000, 49(11): 2300-2303. doi: 10.7498/aps.49.2300
计量
  • 文章访问数:  4577
  • PDF下载量:  193
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-20
  • 修回日期:  2016-10-27
  • 刊出日期:  2017-01-20

/

返回文章
返回