搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米粗糙度对胶体液滴蒸发图案的影响机制

张永建 叶芳霞 戴君 何斌锋 臧渡洋

引用本文:
Citation:

纳米粗糙度对胶体液滴蒸发图案的影响机制

张永建, 叶芳霞, 戴君, 何斌锋, 臧渡洋

Influence of nano-scaled roughness on evaporation patterns of colloidal droplets

Zhang Yong-Jian, Ye Fang-Xia, Dai Jun, He Bin-Feng, Zang Du-Yang
PDF
导出引用
  • 对比研究了SiO2胶体液滴在光滑基底与纳米粗糙度基底上的蒸发及其图案形成.实验发现,在光滑基底上,液滴的蒸发伴有显著的咖啡环效应,沉积图案呈现碗状.而在粗糙基底上蒸发后得到厚度分布较为均匀的蒸发图案,且裂纹密度明显增大.分析显示,纳米粗糙度可抑制液滴内沿基底的回流,极大地削弱了毛细流的补偿作用,导致颗粒在气-液界面富集并形成颗粒膜,从而克服了咖啡环效应,最终形成厚度分部均匀的蒸发图案.
    Evaporation of colloidal droplets often leads to various deposited patterns which are not only interesting but also provide a very simple and useful method to fabricate functional materials. The patterns induced by the evaporation can be tuned via several factors, among which the roughness of the substrate is an important one. However, the effect of nano-scaled roughness is scarcely studied and far from being fully understood. In this work, the evaporation and pattern formation of SiO2 colloid droplets are studied on smooth substrate and nano-rough substrate, respectively. The aim of this work is to clarify how the evaporation dynamics and patterns are influenced by nano-scaled roughness. The roughness of the substrate is analyzed by using a scanning electron microscope and an atomic force microscope, the evaporation process and pattern formation are monitored via an in-situ microscope observation. The obtained deposited patterns are analyzed by using stylus profiling. It is found that the evaporation of droplets is accompanied by an obvious coffee ring effect on smooth substrate and the deposition patterns are bowl-shaped. However, uniform thickness evaporation patterns are obtained through evaporation on rough substrate, moreover, the crack density increases obviously. The analysis shows that nano-roughness is able to inhibit the circumfluence of droplets along the substrate, which greatly weakens the compensation for capillary flow, leading to particles gathering at air-droplet interface and formulating a particle layer. This prevents the coffee ring effect, and eventually results in the formation of evaporation patterns with uniform thickness.
      通信作者: 张永建, zhangyongjian@mail.nwpu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51301139)、陕西省自然科学基础研究计划(批准号:2016JM1003)和陕西省教育厅基金(批准号:16JK2201)资助的课题.
      Corresponding author: Zhang Yong-Jian, zhangyongjian@mail.nwpu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51301139), the Natural Science Basic Research Plan in Shaanxi Province, China (Grant No. 2016JM1003), and the Foundation of Shaanxi Provincial Education Department, China (Grant No. 16JK2201).
    [1]

    Sefiane K 2014 Adv. Colloid Interface Sci. 206 372

    [2]

    Chen R, Zhang L, Zang D, Shen W 2016 Adv. Colloid Interface Sci. 23 1

    [3]

    Keseroglu K, Culha M 2011 J. Colloid Interface Sci. 360 8

    [4]

    Yoo H, Kim C 2015 Colloids Surf. A 468 234

    [5]

    Deegan R D, Bakajin O, Dupont T F, Huber G, Nagel S R, Witten T A 1997 Nature 389 827

    [6]

    Li Y S, L C J, Li Z H, Qur D, Zheng Q S 2015 Soft Matter 11 4669

    [7]

    Larson R G 2012 Angewandte Chemie 51 2546

    [8]

    Cui L, Zhang J, Zhang X, Li Y, Wang Z, Gao H, Wang T, Zhu S, Yu H, Yang B 2012 Soft Matter 8 10448

    [9]

    Yunker P J, Still T, Lohr M A, Yodh A G 2011 Nature 476 308

    [10]

    Zhang Y, Liu Z, Zang D, Qian Y, Lin K 2013 Sci. China: Phys. Mech. Astron. 56 1712

    [11]

    Chiu R C, Garino T J, Cima M J 1993 J. Am. Ceram. Soc. 76 2257

    [12]

    Sendova M, Willis K 2003 Appl. Phys. A 76 957

    [13]

    Goehring L, Clegg W J, Routh A F 2011 Soft Matter 7 7984

    [14]

    Jing G, Ma J 2012 J. Phys. Chem. B 116 6225

    [15]

    Zhang Y, Qian Y, Liu Z, Li Z, Zang D 2014 Eur. Phys. J. E 37 38

    [16]

    Boulogne F, Pauchard L, Giorgiutti-Dauphin F 2012 Soft Matter 8 8505

    [17]

    Liu T, Luo H, Ma J, Xie W, Wang Y, Jing G 2016 Eur. Phys. J. E 39 24

    [18]

    Zhang Y, Liu Z, Feng L, Zang D 2012 Appl. Surf. Sci. 258 5354

    [19]

    Zhang Y, Liu Z, Zang D, Feng L 2014 Vacuum 99 160

    [20]

    Daubersies L, Salmon J B 2011 Phys. Rev. E 84 031406

    [21]

    Chiu R C, Cima M J 1993 J. Am. Ceram. Soc. 76 2769

    [22]

    Berteloot G, Hoang A, Daerr A, Kavehpour H P, Lequeux F, Limat L 2012 J. Colloid Interface Sci. 370 155

    [23]

    Chen L, Evans J R 2010 J. Colloid Interface Sci. 351 283

    [24]

    Bocquet L, Charlaix E 2010 Chem. Soc. Rev. 39 1073

    [25]

    Lee C, Kim C J 2011 Langmuir 27 4243

  • [1]

    Sefiane K 2014 Adv. Colloid Interface Sci. 206 372

    [2]

    Chen R, Zhang L, Zang D, Shen W 2016 Adv. Colloid Interface Sci. 23 1

    [3]

    Keseroglu K, Culha M 2011 J. Colloid Interface Sci. 360 8

    [4]

    Yoo H, Kim C 2015 Colloids Surf. A 468 234

    [5]

    Deegan R D, Bakajin O, Dupont T F, Huber G, Nagel S R, Witten T A 1997 Nature 389 827

    [6]

    Li Y S, L C J, Li Z H, Qur D, Zheng Q S 2015 Soft Matter 11 4669

    [7]

    Larson R G 2012 Angewandte Chemie 51 2546

    [8]

    Cui L, Zhang J, Zhang X, Li Y, Wang Z, Gao H, Wang T, Zhu S, Yu H, Yang B 2012 Soft Matter 8 10448

    [9]

    Yunker P J, Still T, Lohr M A, Yodh A G 2011 Nature 476 308

    [10]

    Zhang Y, Liu Z, Zang D, Qian Y, Lin K 2013 Sci. China: Phys. Mech. Astron. 56 1712

    [11]

    Chiu R C, Garino T J, Cima M J 1993 J. Am. Ceram. Soc. 76 2257

    [12]

    Sendova M, Willis K 2003 Appl. Phys. A 76 957

    [13]

    Goehring L, Clegg W J, Routh A F 2011 Soft Matter 7 7984

    [14]

    Jing G, Ma J 2012 J. Phys. Chem. B 116 6225

    [15]

    Zhang Y, Qian Y, Liu Z, Li Z, Zang D 2014 Eur. Phys. J. E 37 38

    [16]

    Boulogne F, Pauchard L, Giorgiutti-Dauphin F 2012 Soft Matter 8 8505

    [17]

    Liu T, Luo H, Ma J, Xie W, Wang Y, Jing G 2016 Eur. Phys. J. E 39 24

    [18]

    Zhang Y, Liu Z, Feng L, Zang D 2012 Appl. Surf. Sci. 258 5354

    [19]

    Zhang Y, Liu Z, Zang D, Feng L 2014 Vacuum 99 160

    [20]

    Daubersies L, Salmon J B 2011 Phys. Rev. E 84 031406

    [21]

    Chiu R C, Cima M J 1993 J. Am. Ceram. Soc. 76 2769

    [22]

    Berteloot G, Hoang A, Daerr A, Kavehpour H P, Lequeux F, Limat L 2012 J. Colloid Interface Sci. 370 155

    [23]

    Chen L, Evans J R 2010 J. Colloid Interface Sci. 351 283

    [24]

    Bocquet L, Charlaix E 2010 Chem. Soc. Rev. 39 1073

    [25]

    Lee C, Kim C J 2011 Langmuir 27 4243

  • [1] 李瑞涛, 唐刚, 夏辉, 寻之朋, 李嘉翔, 朱磊. 二维随机蜂巢网格熔断动力学过程和熔断面标度性质的数值模拟. 物理学报, 2019, 68(5): 050301. doi: 10.7498/aps.68.20181774
    [2] 刘晨昊, 刘天宇, 黄仁忠, 高天附, 舒咬根. 粗糙势中耦合布朗粒子的定向输运性能. 物理学报, 2019, 68(24): 240501. doi: 10.7498/aps.68.20191203
    [3] 梅涛, 陈占秀, 杨历, 王坤, 苗瑞灿. 纳米通道粗糙内壁对流体流动行为的影响. 物理学报, 2019, 68(9): 094701. doi: 10.7498/aps.68.20181956
    [4] 宋永锋, 李雄兵, 史亦韦, 倪培君. 表面粗糙度对固体内部超声背散射的影响. 物理学报, 2016, 65(21): 214301. doi: 10.7498/aps.65.214301
    [5] 陈苏婷, 胡海锋, 张闯. 基于激光散斑成像的零件表面粗糙度建模. 物理学报, 2015, 64(23): 234203. doi: 10.7498/aps.64.234203
    [6] 吴赛, 李伟斌, 石峰, 蒋世春, 蓝鼎, 王育人. 受限胶体液滴蒸发过程中胶体颗粒沉积过程观察. 物理学报, 2015, 64(9): 096101. doi: 10.7498/aps.64.096101
    [7] 江月松, 聂梦瑶, 张崇辉, 辛灿伟, 华厚强. 粗糙表面涂覆目标的太赫兹波散射特性研究. 物理学报, 2015, 64(2): 024101. doi: 10.7498/aps.64.024101
    [8] 张程宾, 许兆林, 陈永平. 粗糙纳通道内流体流动与传热的分子动力学模拟研究. 物理学报, 2014, 63(21): 214706. doi: 10.7498/aps.63.214706
    [9] 曹洪, 黄勇, 陈素芬, 张占文, 韦建军. 脉冲敲击技术对PI微球表面粗糙度的影响. 物理学报, 2013, 62(19): 196801. doi: 10.7498/aps.62.196801
    [10] 宋保维, 郭云鹤, 罗荘竹, 徐向辉, 王鹰. 疏水表面减阻环带实验研究. 物理学报, 2013, 62(15): 154701. doi: 10.7498/aps.62.154701
    [11] 张宝玲, 何智兵, 吴卫东, 刘兴华, 杨向东. 占空比对微球a-C:H薄膜制备的影响. 物理学报, 2009, 58(9): 6436-6440. doi: 10.7498/aps.58.6436
    [12] 薛伟, 解国新, 王权, 张淼, 郑蓓蓉. 几种微构件材料的表面能及纳观黏附行为研究. 物理学报, 2009, 58(4): 2518-2522. doi: 10.7498/aps.58.2518
    [13] 张程宾, 陈永平, 施明恒, 付盼盼, 吴嘉峰. 表面粗糙度的分形特征及其对微通道内层流流动的影响. 物理学报, 2009, 58(10): 7050-7056. doi: 10.7498/aps.58.7050
    [14] 李志华, 王文新, 刘林生, 蒋中伟, 高汉超, 周均铭. As保护下的生长中断时间对AlSb/InAs超晶格界面粗糙度的影响. 物理学报, 2007, 56(3): 1785-1789. doi: 10.7498/aps.56.1785
    [15] 郝鹏飞, 姚朝晖, 何 枫. 粗糙微管道内液体流动特性的实验研究. 物理学报, 2007, 56(8): 4728-4732. doi: 10.7498/aps.56.4728
    [16] 侯海虹, 孙喜莲, 申雁鸣, 邵建达, 范正修, 易 葵. 电子束蒸发氧化锆薄膜的粗糙度和光散射特性. 物理学报, 2006, 55(6): 3124-3127. doi: 10.7498/aps.55.3124
    [17] 张翠玲, 郑瑞伦, 滕 蛟. NiFeNb种子层对坡莫合金磁滞回线的影响. 物理学报, 2005, 54(11): 5389-5394. doi: 10.7498/aps.54.5389
    [18] 孙霞, 吴自勤. 规则表面形貌的分形和多重分形描述. 物理学报, 2001, 50(11): 2126-2131. doi: 10.7498/aps.50.2126
    [19] 程路, 萧季驹. 非相干光源用于“核-环比”法测量表面粗糙度. 物理学报, 1990, 39(1): 10-17. doi: 10.7498/aps.39.10
    [20] 黄炳忠, 余玉贞, 洪国光. Si-SiO2界面的粗糙度. 物理学报, 1987, 36(7): 829-837. doi: 10.7498/aps.36.829
计量
  • 文章访问数:  3072
  • PDF下载量:  231
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-20
  • 修回日期:  2016-12-20
  • 刊出日期:  2017-03-05

纳米粗糙度对胶体液滴蒸发图案的影响机制

  • 1. 西安文理学院机械与材料工程学院, 陕西省表面工程与再制造重点实验室, 西安 710065;
  • 2. 西北工业大学理学院, 空间应用物理与化学教育部重点实验室, 西安 710129
  • 通信作者: 张永建, zhangyongjian@mail.nwpu.edu.cn
    基金项目: 国家自然科学基金(批准号:51301139)、陕西省自然科学基础研究计划(批准号:2016JM1003)和陕西省教育厅基金(批准号:16JK2201)资助的课题.

摘要: 对比研究了SiO2胶体液滴在光滑基底与纳米粗糙度基底上的蒸发及其图案形成.实验发现,在光滑基底上,液滴的蒸发伴有显著的咖啡环效应,沉积图案呈现碗状.而在粗糙基底上蒸发后得到厚度分布较为均匀的蒸发图案,且裂纹密度明显增大.分析显示,纳米粗糙度可抑制液滴内沿基底的回流,极大地削弱了毛细流的补偿作用,导致颗粒在气-液界面富集并形成颗粒膜,从而克服了咖啡环效应,最终形成厚度分部均匀的蒸发图案.

English Abstract

参考文献 (25)

目录

    /

    返回文章
    返回