搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

太赫兹互补金属氧化物半导体场效应管探测器理论模型中扩散效应研究

张镜水 孔令琴 董立泉 刘明 左剑 张存林 赵跃进

引用本文:
Citation:

太赫兹互补金属氧化物半导体场效应管探测器理论模型中扩散效应研究

张镜水, 孔令琴, 董立泉, 刘明, 左剑, 张存林, 赵跃进

Diffusion part in terahertz complementary metal oxide semiconductor transistor detector model

Zhang Jing-Shui, Kong Ling-Qin, Dong Li-Quan, Liu Ming, Zuo Jian, Zhang Cun-Lin, Zhao Yue-Jin
PDF
导出引用
  • 针对基于经典动力学理论传统模型中忽略扩散效应的问题,通过对基于玻尔兹曼理论的场效应管传输线模型的理论分析,建立了包含扩散效应的太赫兹互补金属氧化物半导体(CMOS)场效应管探测器理论模型,研究扩散效应对场效应管电导及响应度的影响.同时,将此模型与忽略了扩散效应的传统模型进行了对比仿真模拟,给出了两种模型下的电流响应度随温度及频率变化的差别.依据仿真结果,并结合3原则明确了场效应管传输线模型中扩散部分省略的依据和条件.研究结果表明:扩散部分引起的响应度差异大小主要由场效应管的工作温度及工作频率决定.其中工作频率起主要作用,温度变化对差异大小影响较为微弱;而对于工作频率而言,当场效应管工作频率小于1 THz时,模型中的扩散部分可以忽略不计;而当工作频率大于1 THz时,扩散部分不可省略,此时场效应管模型需同时包含漂移、散射及扩散三个物理过程.本文的研究结果为太赫兹CMOS场效应管理论模型的精确建立及模拟提供了理论支持.
    In this paper, we discuss the diffusion motion of carriers in the transistor channel in a terahertz frequency range, and propose an resistance-capacitance-inductance (RCL) model based on Boltzmann transport theory, and then put forward the rules to determine whether the diffusion part in the RCL model can be neglected for terahertz field-effect-transistor (FET) detectors. The traditional RCL model for FET detectors is based on classic kinetic theory. In this model only the drift and the scattering motion of the carrier density in transistor channel are considered, and the diffusion part is neglected without giving any explanation. To solve this problem, in this paper we adopt three steps: first, instead of classic kinetic theory, the equations of RCL transistor model including diffusion part are derived from Boltzmann transport equation, and by comparing the two models, the specific expression for the diffusion part is given. Second, the differences between the two models are calculated and simulated, including the conductivity in quasi-static mode and the current response in high frequency mode, with different gate voltages, temperatures and working frequencies. Third, combined with the 3 rules, the conditions to neglect the diffusion motion in the model are put forward. The results show that the diffusion motion of the carriers is caused by the inhomogeneity of the carrier density, affected by the gate voltage, the temperature and the changing speed of the carriers with respect to the local voltage. In quasi-static mode, the role of diffusion part will change with the gate voltage, and when the gate voltage equals threshold voltage (which is the best working point for transistor detector), the diffusion part cannot be neglected, for which the reason is that a larger gate voltage will lead to a smaller inhomogeneity of channel carrier density and then a weaker diffusion effect, thus the effect of diffusion conductance on the whole transistor conductance becomes smaller. For the terahertz-frequency working mode, the diffusion part will depend on temperature and frequency. With temperature increasing, the current responsivity difference caused by the diffusion part in the model slightly decreases; when the working frequency increases but below 1 THz, the diffusion part can be neglected; however, when the working frequency is above 1 THz, the transistor model should contain drift, scattering and diffusion part at the same time, for which the explanation is that when the temperature increases, the random thermal motion of the carrier becomes larger, thus the diffusion effect will be stronger; and if the frequency increases, the number of the carriers in one terminal of the channel will change faster, but due to the channel damping, the number of the carriers in another terminal will always be zero, thus the changing speed of the carrier density between the two terminals will be faster, then a larger inhomogeneity of carrier density and a stronger diffusion effect will appear. In conclusion, normally the transisitor works at the threshold gate voltage, and at this point, the diffusion effect in the channel will increase with working temperature and frequency increasing, thus the diffusion part in the model cannot be neglected. The results in this paper make a significant contribution to a more accurate terahertz transistor detector model.
      通信作者: 赵跃进, yjzhao@bit.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61377109)资助的课题.
      Corresponding author: Zhao Yue-Jin, yjzhao@bit.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61377109).
    [1]

    Pfeiffer U R, Grzyb J, Sherry H, Cathelin A, Kaiser A 2013 38th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) Mainz, Germany, September 1-6, 2013 p1

    [2]

    Minoru F, Shuhei A 2015 IEICE Electron. Express 12 20152006

    [3]

    Lu J Q, Shur M S, Hesler J L 1998 Electron Dev. Lett. 19 373

    [4]

    Hadira R A, Sherry H, Grzyb J, Zhao Y 2012 IEEE J. Solid-State Circuit 47 2999

    [5]

    Ryu M W, Lee J S, Kim K S, Park K, Yang J R, Han S T, Kim K R 2016 IEEE Trans. Electron Dev. 63 1742

    [6]

    Grasser T, Tang T, Kosina H, Selberherr S 2003 Proc. IEEE 91 251

    [7]

    Preu S, Kim S, Verma R, Burke P G, Sherwin M S, Gossard A C 2012 J. Appl. Phys. 111 024502

    [8]

    Gutin A, Nahar S, Hella M, Shur M 2013 IEEE Trans. Terahertz Sci. Technol. 3 545

    [9]

    Ibrahim N Y, Rafat N H, Elnahwy S E A 2013 J. Infrared Millim. Terahertz Waves 34 606

    [10]

    Tan R B, Qin H, Sun J D, Zhang X Y, Zhang B S 2013 Appl. Phys. Lett. 103 173507

    [11]

    Zhao X H, Li C, Zhang P 2013 Acta Phys. Sin. 62 130506 (in Chinese) [赵晓辉, 蔡理, 张鹏 2013 物理学报 62 130506]

    [12]

    Gutin A, Ytterdal T, Muraviev A, Shur M 2015 Solid-State Electron. 104 75

    [13]

    Kim K S 2016 M. S. Thesis (Ulsan: Ulsan National Institute of Science and Technology)

    [14]

    Liu Y, He J, Chan M S, Du C X, Ye Y, Zhao W, Wu W, Deng W L, Wang W P 2014 Chin. Phys. B 23 097102

    [15]

    Dyakonov M I, Shur M S 1996 IEEE Trans. Electron Dev. 43 1640

    [16]

    Khmyrova I, Seijyou Y 2007 Appl. Phys. Lett. 91 143515

  • [1]

    Pfeiffer U R, Grzyb J, Sherry H, Cathelin A, Kaiser A 2013 38th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) Mainz, Germany, September 1-6, 2013 p1

    [2]

    Minoru F, Shuhei A 2015 IEICE Electron. Express 12 20152006

    [3]

    Lu J Q, Shur M S, Hesler J L 1998 Electron Dev. Lett. 19 373

    [4]

    Hadira R A, Sherry H, Grzyb J, Zhao Y 2012 IEEE J. Solid-State Circuit 47 2999

    [5]

    Ryu M W, Lee J S, Kim K S, Park K, Yang J R, Han S T, Kim K R 2016 IEEE Trans. Electron Dev. 63 1742

    [6]

    Grasser T, Tang T, Kosina H, Selberherr S 2003 Proc. IEEE 91 251

    [7]

    Preu S, Kim S, Verma R, Burke P G, Sherwin M S, Gossard A C 2012 J. Appl. Phys. 111 024502

    [8]

    Gutin A, Nahar S, Hella M, Shur M 2013 IEEE Trans. Terahertz Sci. Technol. 3 545

    [9]

    Ibrahim N Y, Rafat N H, Elnahwy S E A 2013 J. Infrared Millim. Terahertz Waves 34 606

    [10]

    Tan R B, Qin H, Sun J D, Zhang X Y, Zhang B S 2013 Appl. Phys. Lett. 103 173507

    [11]

    Zhao X H, Li C, Zhang P 2013 Acta Phys. Sin. 62 130506 (in Chinese) [赵晓辉, 蔡理, 张鹏 2013 物理学报 62 130506]

    [12]

    Gutin A, Ytterdal T, Muraviev A, Shur M 2015 Solid-State Electron. 104 75

    [13]

    Kim K S 2016 M. S. Thesis (Ulsan: Ulsan National Institute of Science and Technology)

    [14]

    Liu Y, He J, Chan M S, Du C X, Ye Y, Zhao W, Wu W, Deng W L, Wang W P 2014 Chin. Phys. B 23 097102

    [15]

    Dyakonov M I, Shur M S 1996 IEEE Trans. Electron Dev. 43 1640

    [16]

    Khmyrova I, Seijyou Y 2007 Appl. Phys. Lett. 91 143515

  • [1] 张向, 王玥, 张婉莹, 张晓菊, 罗帆, 宋博晨, 张狂, 施卫. 单壁碳纳米管太赫兹超表面窄带吸收及其传感特性. 物理学报, 2024, 73(2): 026102. doi: 10.7498/aps.73.20231357
    [2] 汪静丽, 董先超, 尹亮, 杨志雄, 万洪丹, 陈鹤鸣, 钟凯. 基于二氧化钒的太赫兹双频多功能编码超表面. 物理学报, 2023, 72(9): 098101. doi: 10.7498/aps.72.20222321
    [3] 葛宏义, 李丽, 蒋玉英, 李广明, 王飞, 吕明, 张元, 李智. 基于双开口金属环的太赫兹超材料吸波体传感器. 物理学报, 2022, 71(10): 108701. doi: 10.7498/aps.71.20212303
    [4] 朱智, 闫韶健, 段铜川, 赵妍, 孙庭钰, 李阳梅. 太赫兹电磁波调控甲烷水合物分解. 物理学报, 2021, 70(24): 248705. doi: 10.7498/aps.70.20211779
    [5] 周康, 黎华, 万文坚, 李子平, 曹俊诚. 太赫兹量子级联激光器频率梳的色散. 物理学报, 2019, 68(10): 109501. doi: 10.7498/aps.68.20190217
    [6] 张真真, 黎华, 曹俊诚. 高速太赫兹探测器. 物理学报, 2018, 67(9): 090702. doi: 10.7498/aps.67.20180226
    [7] 牟媛, 吴振森, 张耿, 高艳卿, 阳志强. 基于Kramers-Kronig关系建立金属太赫兹色散模型. 物理学报, 2017, 66(12): 120202. doi: 10.7498/aps.66.120202
    [8] 杨磊, 范飞, 陈猛, 张选洲, 常胜江. 多功能太赫兹超表面偏振控制器. 物理学报, 2016, 65(8): 080702. doi: 10.7498/aps.65.080702
    [9] 陈泽章. 太赫兹波段液晶分子极化率的理论研究. 物理学报, 2016, 65(14): 143101. doi: 10.7498/aps.65.143101
    [10] 史生才, 李婧, 张文, 缪巍. 超高灵敏度太赫兹超导探测器. 物理学报, 2015, 64(22): 228501. doi: 10.7498/aps.64.228501
    [11] 张会云, 刘蒙, 张玉萍, 申端龙, 吴志心, 尹贻恒, 李德华. 连续波抽运气体波导产生太赫兹激光的理论研究. 物理学报, 2014, 63(2): 020702. doi: 10.7498/aps.63.020702
    [12] 梁达川, 魏明贵, 谷建强, 尹治平, 欧阳春梅, 田震, 何明霞, 韩家广, 张伟力. 缩比模型的宽频时域太赫兹雷达散射截面(RCS)研究. 物理学报, 2014, 63(21): 214102. doi: 10.7498/aps.63.214102
    [13] 张会云, 刘蒙, 张玉萍, 何志红, 申端龙, 吴志心, 尹贻恒, 李德华. 基于振动弛豫理论提高光抽运太赫兹激光器输出功率的研究. 物理学报, 2014, 63(1): 010702. doi: 10.7498/aps.63.010702
    [14] 韩煜, 袁学松, 马春燕, 鄢扬. 波瓣波导谐振腔太赫兹回旋管的研究. 物理学报, 2012, 61(6): 064102. doi: 10.7498/aps.61.064102
    [15] 胡海峰, 蔡利康, 白文理, 张晶, 王立娜, 宋国峰. 基于表面等离子体的太赫兹光束方向调控的模拟研究. 物理学报, 2011, 60(1): 014220. doi: 10.7498/aps.60.014220
    [16] 王海艳, 赵国忠, 王新强. 不同抽运光强激发窄带隙半导体产生太赫兹辐射的研究. 物理学报, 2011, 60(4): 043202. doi: 10.7498/aps.60.043202
    [17] 张戎, 郭旭光, 曹俊诚. 太赫兹量子阱光电探测器光栅耦合的模拟与优化. 物理学报, 2011, 60(5): 050705. doi: 10.7498/aps.60.050705
    [18] 樊国丽, 江月松, 刘丽, 黎芳. 太赫兹GaAs肖特基混频二极管高频特性分析. 物理学报, 2010, 59(8): 5374-5381. doi: 10.7498/aps.59.5374
    [19] 李文平, 张雅鑫, 刘盛纲, 刘大刚. 特殊三反射镜太赫兹波段准光腔回旋管的动力学理论. 物理学报, 2008, 57(5): 2875-2881. doi: 10.7498/aps.57.2875
    [20] 马士华, 施宇蕾, 徐新龙, 严 伟, 杨玉平, 汪 力. 用太赫兹时域光谱技术探测天冬酰胺的低频集体吸收频谱. 物理学报, 2006, 55(8): 4091-4095. doi: 10.7498/aps.55.4091
计量
  • 文章访问数:  5101
  • PDF下载量:  120
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-01
  • 修回日期:  2017-04-05
  • 刊出日期:  2017-06-05

/

返回文章
返回