搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

衍射极限尺度下的亚波长电磁学

蒲明博 王长涛 王彦钦 罗先刚

引用本文:
Citation:

衍射极限尺度下的亚波长电磁学

蒲明博, 王长涛, 王彦钦, 罗先刚

Subwavelength electromagnetics below the diffraction limit

Pu Ming-Bo, Wang Chang-Tao, Wang Yan-Qin, Luo Xian-Gang
PDF
导出引用
  • 作为波的本性之一,衍射是现代物理学的重要研究内容.衍射导致自由空间中波的能量不能被无限小地聚集,从而为成像、光刻、光存储、光波导等技术设定了一个原理性的障碍衍射极限.对于电磁波和光波而言,尽管通过提高介质的折射率可以压缩衍射效应,但由于自然界中材料的折射率有限,该方法存在很大限制.近年来,随着表面等离子体光学的兴起,表面等离子体在超越传统衍射极限方面的能力和应用前景受到了学术界的关注.本文从亚波长电磁学的角度出发,介绍衍射极限研究的历史,综述了突破衍射极限的理论方法.首先,利用金属介质表面等离子体激元的短波长特性,可将等效波长压缩一个数量级以上,在纳米尺度实现光波的聚焦或定向传输;更进一步,通过人为设计超构材料和超构表面,利用结构化金属和介质中的局域谐振、耦合等特殊电磁响应,可实现亚波长局域相位调制、超宽带色散调控、近完美吸收、光子自旋轨道耦合等,从而突破传统理论的诸多局限,为下一代电磁学和光学功能器件奠定重要基础.
    As a fundamental property of waves, diffraction plays an important role in many physical problems. However, diffraction makes waves in free space unable to be focused into an arbitrarily small space, setting a fundamental limit (the so-called diffraction limit) to applications such as imaging, lithography, optical recording and waveguiding, etc. Although the diffraction effect can be suppressed by increasing the refractive index of the surrounding medium in which the electromagnetic and optical waves propagate, such a technology is restricted by the fact that natural medium has a limited refractive index. In the past decades, surface plasmon polaritons (SPPs) have received special attention, owing to its ability to break through the diffraction limit by shrinking the effective wavelength in the form of collective excitation of free electrons. By combining the short wavelength property of SPPs and subwavelength structure in the two-dimensional space, many exotic optical effects, such as extraordinary light transmission and optical spin Hall effect have been discovered and utilized to realize functionalities that control the electromagnetic characteristics (amplitudes, phases, and polarizations etc.) on demand. Based on SPPs and artificial subwavelength structures, a new discipline called subwavelength electromagnetics emerged in recent years, thus opening a door for the next-generation integrated and miniaturized electromagnetic and optical devices and systems. In this paper, we review the theories and methods used to break through the diffraction limit by briefly introducing the history from the viewpoint of electromagnetic optics. It is shown that by constructing plasmonic metamaterials and metasurfaces on a subwavelength scale, one can realize the localized phase modulation and broadband dispersion engineering, which could surpass many limits of traditional theory and lay the basis of high-performance electromagnetic and optical functional devices. For instance, by constructing gradient phase on the metasurfaces, the traditional laws of reflection and refraction can be rewritten, while the electromagnetic and geometric shapes could be decoupled, both of which are essential for realizing the planar and conformal lenses and other functional devices. At the end of this paper, we discuss the future development trends of subwavelength electromagnetics. Based on the fact that different concepts, such as plasmonics, metamaterials and photonic crystals, are closely related to each other on a subwavelength scale, we think, the future advancements and even revolutions in subwavelength electromagnetics may rise from the in-depth intersection of physical, chemical and even biological areas. Additionally, we envision that the material genome initiative can be borrowed to promote the information exchange between different engineering and scientific teams and to enable the fast designing and implementing of subwavelength structured materials.
      通信作者: 罗先刚, lxg@ioe.ac.cn
    • 基金项目: 国家重点基础研究发展计划(批准号:2013CBA01700)和国家自然科学基金(批准号:61622508,61575201)资助的课题.
      Corresponding author: Luo Xian-Gang, lxg@ioe.ac.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2013CBA01700) and the National Natural Science Foundation of China (Grant Nos. 61622508, 61575201).
    [1]

    Luo X 2015 Sci. China: Phys. Mech. Astron. 58 594201

    [2]

    Lauterbach M A 2012 Opt. Nanoscopy 1 1

    [3]

    Pendry J B 2000 Phys. Rev. Lett. 85 3966

    [4]

    Raguin D H, Morris G H 1993 Appl. Opt. 32 1154

    [5]

    Ribot C, Lalanne P, Lee M S L, Loiseaux B, Huignard J P 2007 J. Opt. Soc. Am. A 24 3819

    [6]

    Luo X 2016 Front. Optoelectron. 9 138

    [7]

    Luo X G 2017 Sub-wavelength Electromagnetics (Vol. 1) (Beijing: Science Press) pp4-5 (in Chinese) [罗先刚 2017 亚波长电磁学(上册)(北京: 科学出版社) 第4-5页]

    [8]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977

    [9]

    Xu T, Wang C, Du C, Luo X 2008 Opt. Express 16 4753

    [10]

    Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333

    [11]

    Li Y, Li X, Pu M, Zhao Z, Ma X, Wang Y, Luo X 2016 Sci. Rep. 6 19885

    [12]

    Feng Q, Pu M, Hu C, Luo X 2012 Opt. Lett. 37 2133

    [13]

    Pu M, Zhao Z, Wang Y, Li X, Ma X, Hu C, Wang C, Huang C, Luo X 2015 Sci. Rep. 5 9822

    [14]

    Ebbesen T W, Lezec H J, Ghaemi H F, Thio T, Wolff P A 1998 Nature 391 667

    [15]

    Martin Moreno L, Garcia Vidal F J, Lezec H J, Pellerin K M, Thio T, Pendry J B, Ebbesen T W 2001 Phys. Rev. Lett. 86 1114

    [16]

    Genet C, Ebbesen T W 2007 Nature 445 39

    [17]

    Liu H, Lalanne P 2008 Nature 452 728

    [18]

    Lezec H J, Degiron A, Devaux E, Linke R A, Martin Moreno L, Garcia Vidal F J, Ebbesen T W 2002 Science 297 820

    [19]

    Luo X, Pu M, Li X, Ma X 2017 Light Sci. Appl. 6 e16276

    [20]

    Dudley A, Lavery M P J, Padgett M J, Forbes A 2013 Opt. Photon. News 22 24

    [21]

    Pu M, Li X, Ma X, Wang Y, Zhao Z, Wang C, Hu C, Gao P, Huang C, Ren H, Li X, Qin F, Gu M, Hong M, Luo X 2015 Sci. Adv. 1 e1500396

    [22]

    Li X, Pu M, Zhao Z, Ma X, Jin J, Wang Y, Gao P, Luo X 2016 Sci. Rep. 6 20524

    [23]

    Li X, Pu M, Wang Y, Ma X, Li Y, Gao H, Zhao Z, Gao P, Wang C, Luo X 2016 Adv. Opt. Mater. 4 659

    [24]

    Wang Y, Pu M, Zhang Z, Li X, Ma X, Zhao Z, Luo X 2015 Sci. Rep. 5 17733

    [25]

    Ozbay E 2006 Science 311 189

    [26]

    Atwater H A 2007 Sci. Am. 296 56

    [27]

    Luo X, Ishihara T 2004 Opt. Express 12 3055

    [28]

    Gao H, Shi H, Wang C, Du C, Luo X, Deng Q, L Y, Lin X, Yao H 2005 Opt. Express 13 10795

    [29]

    Gramotnev D K, Bozhevolnyi S I 2010 Nat. Photon. 4 83

    [30]

    Yablonovitch E 1993 J. Opt. Soc. Am. B 10 283

    [31]

    Russell P 2003 Science 299 358

    [32]

    Aguirre C I, Reguera E, Stein A 2010 Adv. Funct. Mater. 20 2565

    [33]

    Li Z Y, Meng Z M 2014 J. Mater. Chem. C 2 783

    [34]

    Choi J H, No Y S, Hwang M S, Kwon S Y, Jeong K Y, Kwon S H, Yang J K, Park H G 2014 Appl. Phys. Lett. 104 91120

    [35]

    Chen W D, Dong X Y, Chen Y, Zhu Q G, Wang N 2014 Acta Phys. Sin. 63 154207 (in Chinese) [陈卫东, 董昕宇, 陈颖, 朱奇光, 王宁 2014 物理学报 63 154207]

    [36]

    Huang X, Lai Y, Hang Z H, Zheng H, Chan C T 2011 Nat. Mater. 10 582

    [37]

    Rechtsman M C, Zeuner J M, Plotnik Y, Lumer Y, Podolsky D, Dreisow F, Nolte S, Segev M, Szameit A 2013 Nature 496 196

    [38]

    Turner M D, Saba M, Zhang Q, Cumming B P, Schroder Turk G E, Gu M 2013 Nat. Photon. 7 801

    [39]

    Raman A P, Anoma M A, Zhu L, Rephaeli E, Fan S 2014 Nature 515 540

    [40]

    Rybin M V, Filonov D S, Samusev K B, Belov P A, Kivshar Y S, Limonov M F 2015 Nat. Commun. 6 10102

    [41]

    Smith D, Padilla W, Vier D, Nemat Nasser S, Schultz S 2000 Phys. Rev. Lett. 84 4184

    [42]

    Pendry J B, Schurig D, Smith D R 2006 Science 312 1780

    [43]

    Pendry J B, Aubry A, Smith D R, Maier S A 2012 Science 337 549

    [44]

    Meinzer N, Barnes W L, Hooper I R 2014 Nat. Photon. 8 889

    [45]

    Pu M, Ma X, Li X, Guo Y, Luo X 2017 J. Mater. Chem. C 5 4361

    [46]

    Kamali S M, Arbabi A, Arbabi E, Horie Y, Faraon A 2016 Nat. Commun. 7 11618

    [47]

    Luo X, Pu M, Ma X, Li X 2015 Int. J. Antennas Propag. 2015 204127

    [48]

    Wood R W 1902 Proc. R. Soc. Lond. 18 269

    [49]

    Hutley M C, Maystre D 1976 Opt. Commun. 19 431

    [50]

    Senior T 1981 IEEE Trans. Antennas Propag. 29 826

    [51]

    Li Y F, Qu S B, Xu Z 2014 Acta Phys. Sin. 63 084103 (in Chinese) [李勇峰, 屈绍波, 徐卓 2014 物理学报 63 084103]

    [52]

    Yu N, Capasso F 2014 Nat. Mater. 13 139

    [53]

    Minovich A E, Miroshnichenko A E, Bykov A Y, Murzina T V, Neshev D N, Kivshar Y S 2015 Laser Photon. Rev. 9 195

    [54]

    Sun H 2016 Sci. China: Phys. Mech. Astron. 59 614202

    [55]

    Xu T, Wu Y K, Luo X, Guo L J 2010 Nat. Commun. 1 59

    [56]

    Hong M 2016 Sci. Bull. 61 112

    [57]

    Luo X, Ishihara T 2004 Appl. Phys. Lett. 84 4780

    [58]

    Choi M, Lee S H, Kim Y, Kang S B, Shin J, Kwak M H, Kang K Y, Lee Y H, Park N, Min B 2011 Nature 470 369

    [59]

    Lalanne P, Astilean S, Chavel P, Cambril E, Launois H 1998 Opt. Lett. 23 1081

    [60]

    Smith D, Mock J, Starr A, Schurig D 2005 Phys. Rev. E 71 36609

    [61]

    Pu M, Chen P, Wang C, Wang Y, Zhao Z, Hu C, Luo X 2013 AIP Adv. 3 52136

    [62]

    Khorasaninejad M, Chen W T, Devlin R C, Oh J, Zhu A Y, Capasso F 2016 Science 352 1190

    [63]

    Arbabi A, Arbabi E, Kamali S M, Horie Y, Han S, Faraon A 2016 Nat. Commun. 7 13682

    [64]

    Luo X G, Xu T, Du C L, Wang C T 2008 China Patent ZL200710177752.5 [2008-4-9] (in Chinese) [罗先刚, 徐挺, 杜春雷, 王长涛 2008 中国专利 ZL200710177752.5 [2008-4-9]]

    [65]

    Zhao Z Y, Pu M B, Wang Y Q, Luo X G 2017 Opto-Elec. Eng. 44 129 (in Chinese) [赵泽宇, 蒲明博, 王彦钦, 罗先刚 2017 光电工程 44 129]

    [66]

    Pu M, Chen P, Wang Y, Zhao Z, Huang C, Wang C, Ma X, Luo X 2013 Appl. Phys. Lett. 102 131906

    [67]

    Grady N K, Heyes J E, Chowdhury D R, Zeng Y, Reiten M T, Azad A K, Taylor A J, Dalvit D A R, Chen H T 2013 Science 340 1304

    [68]

    Zheng G, Mhlenbernd H, Kenney M, Li G, Zhang S 2015 Nat. Nanotechnol. 10 308

    [69]

    Zhang L, Zhou P, Chen H, Lu H, Xie J, Deng L 2015 J. Opt. 17 105105

    [70]

    Zhang Z, Luo J, Song M, Yu H 2015 Appl. Phys. Lett. 107 241904

    [71]

    Guo Y H, Pu M B, Ma X L, Li X, Luo X G 2017 Opto-Elec. Eng. 44 3 (in Chinese) [郭迎辉,蒲明博,马晓亮,李雄,罗先刚 2017 光电工程 44 3]

    [72]

    Ye D, Wang Z, Xu K, Li H, Huangfu J, Wang Z, Ran L 2013 Phys. Rev. Lett. 111 187402

    [73]

    Guo Y, Wang Y, Pu M, Zhao Z, Wu X, Ma X, Wang C, Yan L, Luo X 2015 Sci. Rep. 5 8434

    [74]

    Pu M, Hu C, Wang M, Huang C, Zhao Z, Wang C, Feng Q, Luo X 2011 Opt. Express 19 17413

    [75]

    Rozanov K N 2000 IEEE Trans. Antennas Propag. 48 1230

    [76]

    Gustafsson M, Sjoberg D 2011 IEEE Trans. Antennas Propag. 59 2196

    [77]

    Lier E, Werner D H, Scarborough C P, Wu Q, Bossard J A 2011 Nat. Mater. 10 216

    [78]

    Chen P Y, Argyropoulos C, Al A 2013 Phys. Rev. Lett. 111 233001

    [79]

    Wang C, Gao P, Tao X, Zhao Z, Pu M, Chen P, Luo X 2013 Appl. Phys. Lett. 103 31911

    [80]

    Liu L, Gao P, Liu K, Kong W, Zhao Z, Pu M, Wang C, Luo X 2017 Mater. Horiz. 4 290

    [81]

    Fang N, Lee H, Sun C, Zhang X 2005 Science 308 534

    [82]

    Maier S A, Kik P G, Atwater H A, Meltzer S, Harel E, Koel B E, Requicha A A G 2003 Nat. Mater. 2 229

    [83]

    Zijlstra P, Chon J W M, Gu M 2009 Nature 459 410

    [84]

    Gao P, Yao N, Wang C, Zhao Z, Luo Y, Wang Y, Gao G, Liu K, Zhao C, Luo X 2015 Appl. Phys. Lett. 106 93110

    [85]

    Wang C T, Zhao Z Y, Gao P, Luo Y F, Luo X G 2016 Chin. Sci. Bull. 61 585 (in Chinese) [王长涛, 赵泽宇, 高平, 罗云飞, 罗先刚 2016 科学通报 61 585]

    [86]

    Zhao Z, Luo Y, Zhang W, Wang C, Gao P, Wang Y, Pu M, Yao N, Zhao C, Luo X 2015 Sci. Rep. 5 15320

    [87]

    Garcia Vidal F J, Martin Moreno L, Ebbesen T W, Kuipers L 2010 Rev. Mod. Phys. 82 729

    [88]

    Grzegorczyk T M, Nikku M, Chen X, Wu B I, Kong J A 2005 IEEE Trans. Microw. Theory Tech. 53 1443

    [89]

    Verslegers L, Catrysse P B, Yu Z, White J S, Barnard E S, Brongersma M L, Fan S 2009 Nano Lett. 9 235

    [90]

    Goh X M, Lin L, Roberts A 2010 Opt. Express 18 11683

    [91]

    Tang D, Wang C, Zhao Z, Wang Y, Pu M, Li X, Gao P, Luo X 2015 Laser Photon. Rev. 9 713

    [92]

    Ma X, Pu M, Li X, Huang C, Wang Y, Pan W, Zhao B, Cui J, Wang C, Zhao Z, Luo X 2015 Sci. Rep. 5 10365

    [93]

    Zhao Z, Pu M, Gao H, Jin J, Li X, Ma X, Wang Y, Gao P, Luo X 2015 Sci. Rep. 5 15781

    [94]

    Li X, Ren H, Chen X, Liu J, Li Q, Li C, Xue G, Jia J, Cao L, Sahu A, Hu B, Wang Y, Jin G, Gu M 2015 Nat. Commun. 6 6984

    [95]

    Li X, Chen L, Li Y, Zhang X, Pu M, Zhao Z, Ma X, Wang Y, Hong M, Luo X 2016 Sci. Adv. 2 e1601102

    [96]

    Jin J, Pu M, Wang Y, Li X, Ma X, Luo J, Zhao Z, Gao P, Luo X 2017 Adv. Mater. Technol. 2 1600201

    [97]

    Ni X, Wong Z J, Mrejen M, Wang Y, Zhang X 2015 Science 349 1310

    [98]

    Qu Y, Li Q, Gong H, Du K, Bai S, Zhao D, Ye H, Qiu M 2016 Adv. Opt. Mater. 4 480

    [99]

    Pu M, Hu C, Huang C, Wang C, Zhao Z, Wang Y, Luo X 2013 Opt. Express 21 992

    [100]

    Bossard J A, Lin L, Yun S, Liu L, Werner D H, Mayer T S 2014 ACS Nano 8 1517

    [101]

    Pu M, Feng Q, Wang M, Hu C, Huang C, Ma X, Zhao Z, Wang C, Luo X 2012 Opt. Express 20 2246

    [102]

    Li S, Duan Q, Li S, Yin Q, Lu W, Li L, Gu B, Hou B, Wen W 2015 Appl. Phys. Lett. 107 181112

    [103]

    Li W, Guler U, Kinsey N, Naik G V, Boltasseva A, Guan J, Shalaev V M, Kildishev A V 2014 Adv. Mater. 26 7959

    [104]

    Kohiyama A, Shimizu M, Yugami H 2016 Appl. Phys. Express 9 112302

    [105]

    Poddubny A, Iorsh I, Belov P, Kivshar Y 2013 Nat. Photon. 7 948

    [106]

    Hoffman A J, Alekseyev L, Howard S S, Franz K J, Wasserman D, Podolskiy V A, Narimanov E E, Sivco D L, Gmachl C 2007 Nat. Mater. 6 946

    [107]

    Naik G V, Shalaev V M, Boltasseva A 2013 Adv. Mater. 25 3264

    [108]

    Guler U, Boltasseva A, Shalaev V M 2014 Science 344 263

    [109]

    Wang D, Zhang L, Gu Y, Mehmood M Q, Gong Y, Srivastava A, Jian L, Venkatesan T, Qiu C W, Hong M 2015 Sci. Rep. 5 15020

  • [1]

    Luo X 2015 Sci. China: Phys. Mech. Astron. 58 594201

    [2]

    Lauterbach M A 2012 Opt. Nanoscopy 1 1

    [3]

    Pendry J B 2000 Phys. Rev. Lett. 85 3966

    [4]

    Raguin D H, Morris G H 1993 Appl. Opt. 32 1154

    [5]

    Ribot C, Lalanne P, Lee M S L, Loiseaux B, Huignard J P 2007 J. Opt. Soc. Am. A 24 3819

    [6]

    Luo X 2016 Front. Optoelectron. 9 138

    [7]

    Luo X G 2017 Sub-wavelength Electromagnetics (Vol. 1) (Beijing: Science Press) pp4-5 (in Chinese) [罗先刚 2017 亚波长电磁学(上册)(北京: 科学出版社) 第4-5页]

    [8]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977

    [9]

    Xu T, Wang C, Du C, Luo X 2008 Opt. Express 16 4753

    [10]

    Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333

    [11]

    Li Y, Li X, Pu M, Zhao Z, Ma X, Wang Y, Luo X 2016 Sci. Rep. 6 19885

    [12]

    Feng Q, Pu M, Hu C, Luo X 2012 Opt. Lett. 37 2133

    [13]

    Pu M, Zhao Z, Wang Y, Li X, Ma X, Hu C, Wang C, Huang C, Luo X 2015 Sci. Rep. 5 9822

    [14]

    Ebbesen T W, Lezec H J, Ghaemi H F, Thio T, Wolff P A 1998 Nature 391 667

    [15]

    Martin Moreno L, Garcia Vidal F J, Lezec H J, Pellerin K M, Thio T, Pendry J B, Ebbesen T W 2001 Phys. Rev. Lett. 86 1114

    [16]

    Genet C, Ebbesen T W 2007 Nature 445 39

    [17]

    Liu H, Lalanne P 2008 Nature 452 728

    [18]

    Lezec H J, Degiron A, Devaux E, Linke R A, Martin Moreno L, Garcia Vidal F J, Ebbesen T W 2002 Science 297 820

    [19]

    Luo X, Pu M, Li X, Ma X 2017 Light Sci. Appl. 6 e16276

    [20]

    Dudley A, Lavery M P J, Padgett M J, Forbes A 2013 Opt. Photon. News 22 24

    [21]

    Pu M, Li X, Ma X, Wang Y, Zhao Z, Wang C, Hu C, Gao P, Huang C, Ren H, Li X, Qin F, Gu M, Hong M, Luo X 2015 Sci. Adv. 1 e1500396

    [22]

    Li X, Pu M, Zhao Z, Ma X, Jin J, Wang Y, Gao P, Luo X 2016 Sci. Rep. 6 20524

    [23]

    Li X, Pu M, Wang Y, Ma X, Li Y, Gao H, Zhao Z, Gao P, Wang C, Luo X 2016 Adv. Opt. Mater. 4 659

    [24]

    Wang Y, Pu M, Zhang Z, Li X, Ma X, Zhao Z, Luo X 2015 Sci. Rep. 5 17733

    [25]

    Ozbay E 2006 Science 311 189

    [26]

    Atwater H A 2007 Sci. Am. 296 56

    [27]

    Luo X, Ishihara T 2004 Opt. Express 12 3055

    [28]

    Gao H, Shi H, Wang C, Du C, Luo X, Deng Q, L Y, Lin X, Yao H 2005 Opt. Express 13 10795

    [29]

    Gramotnev D K, Bozhevolnyi S I 2010 Nat. Photon. 4 83

    [30]

    Yablonovitch E 1993 J. Opt. Soc. Am. B 10 283

    [31]

    Russell P 2003 Science 299 358

    [32]

    Aguirre C I, Reguera E, Stein A 2010 Adv. Funct. Mater. 20 2565

    [33]

    Li Z Y, Meng Z M 2014 J. Mater. Chem. C 2 783

    [34]

    Choi J H, No Y S, Hwang M S, Kwon S Y, Jeong K Y, Kwon S H, Yang J K, Park H G 2014 Appl. Phys. Lett. 104 91120

    [35]

    Chen W D, Dong X Y, Chen Y, Zhu Q G, Wang N 2014 Acta Phys. Sin. 63 154207 (in Chinese) [陈卫东, 董昕宇, 陈颖, 朱奇光, 王宁 2014 物理学报 63 154207]

    [36]

    Huang X, Lai Y, Hang Z H, Zheng H, Chan C T 2011 Nat. Mater. 10 582

    [37]

    Rechtsman M C, Zeuner J M, Plotnik Y, Lumer Y, Podolsky D, Dreisow F, Nolte S, Segev M, Szameit A 2013 Nature 496 196

    [38]

    Turner M D, Saba M, Zhang Q, Cumming B P, Schroder Turk G E, Gu M 2013 Nat. Photon. 7 801

    [39]

    Raman A P, Anoma M A, Zhu L, Rephaeli E, Fan S 2014 Nature 515 540

    [40]

    Rybin M V, Filonov D S, Samusev K B, Belov P A, Kivshar Y S, Limonov M F 2015 Nat. Commun. 6 10102

    [41]

    Smith D, Padilla W, Vier D, Nemat Nasser S, Schultz S 2000 Phys. Rev. Lett. 84 4184

    [42]

    Pendry J B, Schurig D, Smith D R 2006 Science 312 1780

    [43]

    Pendry J B, Aubry A, Smith D R, Maier S A 2012 Science 337 549

    [44]

    Meinzer N, Barnes W L, Hooper I R 2014 Nat. Photon. 8 889

    [45]

    Pu M, Ma X, Li X, Guo Y, Luo X 2017 J. Mater. Chem. C 5 4361

    [46]

    Kamali S M, Arbabi A, Arbabi E, Horie Y, Faraon A 2016 Nat. Commun. 7 11618

    [47]

    Luo X, Pu M, Ma X, Li X 2015 Int. J. Antennas Propag. 2015 204127

    [48]

    Wood R W 1902 Proc. R. Soc. Lond. 18 269

    [49]

    Hutley M C, Maystre D 1976 Opt. Commun. 19 431

    [50]

    Senior T 1981 IEEE Trans. Antennas Propag. 29 826

    [51]

    Li Y F, Qu S B, Xu Z 2014 Acta Phys. Sin. 63 084103 (in Chinese) [李勇峰, 屈绍波, 徐卓 2014 物理学报 63 084103]

    [52]

    Yu N, Capasso F 2014 Nat. Mater. 13 139

    [53]

    Minovich A E, Miroshnichenko A E, Bykov A Y, Murzina T V, Neshev D N, Kivshar Y S 2015 Laser Photon. Rev. 9 195

    [54]

    Sun H 2016 Sci. China: Phys. Mech. Astron. 59 614202

    [55]

    Xu T, Wu Y K, Luo X, Guo L J 2010 Nat. Commun. 1 59

    [56]

    Hong M 2016 Sci. Bull. 61 112

    [57]

    Luo X, Ishihara T 2004 Appl. Phys. Lett. 84 4780

    [58]

    Choi M, Lee S H, Kim Y, Kang S B, Shin J, Kwak M H, Kang K Y, Lee Y H, Park N, Min B 2011 Nature 470 369

    [59]

    Lalanne P, Astilean S, Chavel P, Cambril E, Launois H 1998 Opt. Lett. 23 1081

    [60]

    Smith D, Mock J, Starr A, Schurig D 2005 Phys. Rev. E 71 36609

    [61]

    Pu M, Chen P, Wang C, Wang Y, Zhao Z, Hu C, Luo X 2013 AIP Adv. 3 52136

    [62]

    Khorasaninejad M, Chen W T, Devlin R C, Oh J, Zhu A Y, Capasso F 2016 Science 352 1190

    [63]

    Arbabi A, Arbabi E, Kamali S M, Horie Y, Han S, Faraon A 2016 Nat. Commun. 7 13682

    [64]

    Luo X G, Xu T, Du C L, Wang C T 2008 China Patent ZL200710177752.5 [2008-4-9] (in Chinese) [罗先刚, 徐挺, 杜春雷, 王长涛 2008 中国专利 ZL200710177752.5 [2008-4-9]]

    [65]

    Zhao Z Y, Pu M B, Wang Y Q, Luo X G 2017 Opto-Elec. Eng. 44 129 (in Chinese) [赵泽宇, 蒲明博, 王彦钦, 罗先刚 2017 光电工程 44 129]

    [66]

    Pu M, Chen P, Wang Y, Zhao Z, Huang C, Wang C, Ma X, Luo X 2013 Appl. Phys. Lett. 102 131906

    [67]

    Grady N K, Heyes J E, Chowdhury D R, Zeng Y, Reiten M T, Azad A K, Taylor A J, Dalvit D A R, Chen H T 2013 Science 340 1304

    [68]

    Zheng G, Mhlenbernd H, Kenney M, Li G, Zhang S 2015 Nat. Nanotechnol. 10 308

    [69]

    Zhang L, Zhou P, Chen H, Lu H, Xie J, Deng L 2015 J. Opt. 17 105105

    [70]

    Zhang Z, Luo J, Song M, Yu H 2015 Appl. Phys. Lett. 107 241904

    [71]

    Guo Y H, Pu M B, Ma X L, Li X, Luo X G 2017 Opto-Elec. Eng. 44 3 (in Chinese) [郭迎辉,蒲明博,马晓亮,李雄,罗先刚 2017 光电工程 44 3]

    [72]

    Ye D, Wang Z, Xu K, Li H, Huangfu J, Wang Z, Ran L 2013 Phys. Rev. Lett. 111 187402

    [73]

    Guo Y, Wang Y, Pu M, Zhao Z, Wu X, Ma X, Wang C, Yan L, Luo X 2015 Sci. Rep. 5 8434

    [74]

    Pu M, Hu C, Wang M, Huang C, Zhao Z, Wang C, Feng Q, Luo X 2011 Opt. Express 19 17413

    [75]

    Rozanov K N 2000 IEEE Trans. Antennas Propag. 48 1230

    [76]

    Gustafsson M, Sjoberg D 2011 IEEE Trans. Antennas Propag. 59 2196

    [77]

    Lier E, Werner D H, Scarborough C P, Wu Q, Bossard J A 2011 Nat. Mater. 10 216

    [78]

    Chen P Y, Argyropoulos C, Al A 2013 Phys. Rev. Lett. 111 233001

    [79]

    Wang C, Gao P, Tao X, Zhao Z, Pu M, Chen P, Luo X 2013 Appl. Phys. Lett. 103 31911

    [80]

    Liu L, Gao P, Liu K, Kong W, Zhao Z, Pu M, Wang C, Luo X 2017 Mater. Horiz. 4 290

    [81]

    Fang N, Lee H, Sun C, Zhang X 2005 Science 308 534

    [82]

    Maier S A, Kik P G, Atwater H A, Meltzer S, Harel E, Koel B E, Requicha A A G 2003 Nat. Mater. 2 229

    [83]

    Zijlstra P, Chon J W M, Gu M 2009 Nature 459 410

    [84]

    Gao P, Yao N, Wang C, Zhao Z, Luo Y, Wang Y, Gao G, Liu K, Zhao C, Luo X 2015 Appl. Phys. Lett. 106 93110

    [85]

    Wang C T, Zhao Z Y, Gao P, Luo Y F, Luo X G 2016 Chin. Sci. Bull. 61 585 (in Chinese) [王长涛, 赵泽宇, 高平, 罗云飞, 罗先刚 2016 科学通报 61 585]

    [86]

    Zhao Z, Luo Y, Zhang W, Wang C, Gao P, Wang Y, Pu M, Yao N, Zhao C, Luo X 2015 Sci. Rep. 5 15320

    [87]

    Garcia Vidal F J, Martin Moreno L, Ebbesen T W, Kuipers L 2010 Rev. Mod. Phys. 82 729

    [88]

    Grzegorczyk T M, Nikku M, Chen X, Wu B I, Kong J A 2005 IEEE Trans. Microw. Theory Tech. 53 1443

    [89]

    Verslegers L, Catrysse P B, Yu Z, White J S, Barnard E S, Brongersma M L, Fan S 2009 Nano Lett. 9 235

    [90]

    Goh X M, Lin L, Roberts A 2010 Opt. Express 18 11683

    [91]

    Tang D, Wang C, Zhao Z, Wang Y, Pu M, Li X, Gao P, Luo X 2015 Laser Photon. Rev. 9 713

    [92]

    Ma X, Pu M, Li X, Huang C, Wang Y, Pan W, Zhao B, Cui J, Wang C, Zhao Z, Luo X 2015 Sci. Rep. 5 10365

    [93]

    Zhao Z, Pu M, Gao H, Jin J, Li X, Ma X, Wang Y, Gao P, Luo X 2015 Sci. Rep. 5 15781

    [94]

    Li X, Ren H, Chen X, Liu J, Li Q, Li C, Xue G, Jia J, Cao L, Sahu A, Hu B, Wang Y, Jin G, Gu M 2015 Nat. Commun. 6 6984

    [95]

    Li X, Chen L, Li Y, Zhang X, Pu M, Zhao Z, Ma X, Wang Y, Hong M, Luo X 2016 Sci. Adv. 2 e1601102

    [96]

    Jin J, Pu M, Wang Y, Li X, Ma X, Luo J, Zhao Z, Gao P, Luo X 2017 Adv. Mater. Technol. 2 1600201

    [97]

    Ni X, Wong Z J, Mrejen M, Wang Y, Zhang X 2015 Science 349 1310

    [98]

    Qu Y, Li Q, Gong H, Du K, Bai S, Zhao D, Ye H, Qiu M 2016 Adv. Opt. Mater. 4 480

    [99]

    Pu M, Hu C, Huang C, Wang C, Zhao Z, Wang Y, Luo X 2013 Opt. Express 21 992

    [100]

    Bossard J A, Lin L, Yun S, Liu L, Werner D H, Mayer T S 2014 ACS Nano 8 1517

    [101]

    Pu M, Feng Q, Wang M, Hu C, Huang C, Ma X, Zhao Z, Wang C, Luo X 2012 Opt. Express 20 2246

    [102]

    Li S, Duan Q, Li S, Yin Q, Lu W, Li L, Gu B, Hou B, Wen W 2015 Appl. Phys. Lett. 107 181112

    [103]

    Li W, Guler U, Kinsey N, Naik G V, Boltasseva A, Guan J, Shalaev V M, Kildishev A V 2014 Adv. Mater. 26 7959

    [104]

    Kohiyama A, Shimizu M, Yugami H 2016 Appl. Phys. Express 9 112302

    [105]

    Poddubny A, Iorsh I, Belov P, Kivshar Y 2013 Nat. Photon. 7 948

    [106]

    Hoffman A J, Alekseyev L, Howard S S, Franz K J, Wasserman D, Podolskiy V A, Narimanov E E, Sivco D L, Gmachl C 2007 Nat. Mater. 6 946

    [107]

    Naik G V, Shalaev V M, Boltasseva A 2013 Adv. Mater. 25 3264

    [108]

    Guler U, Boltasseva A, Shalaev V M 2014 Science 344 263

    [109]

    Wang D, Zhang L, Gu Y, Mehmood M Q, Gong Y, Srivastava A, Jian L, Venkatesan T, Qiu C W, Hong M 2015 Sci. Rep. 5 15020

  • [1] 覃赵福, 陈浩, 胡涛政, 陈卓, 王振林. 基于导波驱动相变材料超构表面的基波及二次谐波聚焦. 物理学报, 2022, 71(3): 034208. doi: 10.7498/aps.71.20211596
    [2] 覃赵福, 陈浩, 胡涛政, 陈卓, 王振林. 基于导波驱动相变材料超构表面的基波及二次谐波聚焦. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211596
    [3] 王美欧, 肖倩, 金霞, 曹燕燕, 徐亚东. 基于亚波长金属超构光栅的中红外大角度高效率回射器. 物理学报, 2020, 69(1): 014211. doi: 10.7498/aps.69.20191144
    [4] 林月钗, 刘仿, 黄翊东. 基于超构材料的Cherenkov辐射. 物理学报, 2020, 69(15): 154103. doi: 10.7498/aps.69.20200260
    [5] 徐进, 李荣强, 蒋小平, 王身云, 韩天成. 基于方形开口环的超宽带线性极化转换器. 物理学报, 2019, 68(11): 117801. doi: 10.7498/aps.68.20190267
    [6] 杨玖龙, 元晴晨, 陈润丰, 方汉林, 肖发俊, 李俊韬, 姜碧强, 赵建林, 甘雪涛. 硅超构表面上强烈增强的三次谐波. 物理学报, 2019, 68(21): 214207. doi: 10.7498/aps.68.20190789
    [7] 林丹樱, 屈军乐. 超分辨成像及超分辨关联显微技术研究进展. 物理学报, 2017, 66(14): 148703. doi: 10.7498/aps.66.148703
    [8] 刘仿, 李云翔, 黄翊东. 基于双表面等离子激元吸收的纳米光刻. 物理学报, 2017, 66(14): 148101. doi: 10.7498/aps.66.148101
    [9] 龙洋, 任捷, 江海涛, 孙勇, 陈鸿. 超构材料中的光学量子自旋霍尔效应. 物理学报, 2017, 66(22): 227803. doi: 10.7498/aps.66.227803
    [10] 马晓亮, 李雄, 郭迎辉, 赵泽宇, 罗先刚. 超构天线:原理、器件与应用. 物理学报, 2017, 66(14): 147802. doi: 10.7498/aps.66.147802
    [11] 邓俊鸿, 李贵新. 非线性光学超构表面. 物理学报, 2017, 66(14): 147803. doi: 10.7498/aps.66.147803
    [12] 刘鸿吉, 刘双龙, 牛憨笨, 陈丹妮, 刘伟. 基于环形抽运光的红外超分辨显微成像方法. 物理学报, 2016, 65(23): 233601. doi: 10.7498/aps.65.233601
    [13] 刘亚青, 张玉萍, 张会云, 吕欢欢, 李彤彤, 任广军. 光抽运多层石墨烯太赫兹表面等离子体增益特性的研究. 物理学报, 2014, 63(7): 075201. doi: 10.7498/aps.63.075201
    [14] 张利伟, 赵玉环, 王勤, 方恺, 李卫彬, 乔文涛. 各向异性特异材料波导中表面等离子体的共振性质. 物理学报, 2012, 61(6): 068401. doi: 10.7498/aps.61.068401
    [15] 胡海峰, 蔡利康, 白文理, 张晶, 王立娜, 宋国峰. 基于表面等离子体的太赫兹光束方向调控的模拟研究. 物理学报, 2011, 60(1): 014220. doi: 10.7498/aps.60.014220
    [16] 陈华, 汪力. 金属导线偶合THz表面等离子体波. 物理学报, 2009, 58(7): 4605-4609. doi: 10.7498/aps.58.4605
    [17] 黄茜, 王京, 曹丽冉, 孙建, 张晓丹, 耿卫东, 熊绍珍, 赵颖. 纳米Ag材料表面等离子体激元引起的表面增强拉曼散射光谱研究. 物理学报, 2009, 58(3): 1980-1986. doi: 10.7498/aps.58.1980
    [18] 周仁龙, 陈效双, 曾 勇, 张建标, 陈洪波, 王少伟, 陆 卫, 李宏建, 夏 辉, 王玲玲. 金属光子晶体平板的超强透射及其表面等离子体共振. 物理学报, 2008, 57(6): 3506-3513. doi: 10.7498/aps.57.3506
    [19] 花 磊, 宋国峰, 郭宝山, 汪卫敏, 张 宇. 中红外下半导体掺杂调制的表面等离子体透射增强效应. 物理学报, 2008, 57(11): 7210-7215. doi: 10.7498/aps.57.7210
    [20] 高建霞, 宋国峰, 郭宝山, 甘巧强, 陈良惠. 表面等离子体调制的纳米孔径垂直腔面发射激光器. 物理学报, 2007, 56(10): 5827-5830. doi: 10.7498/aps.56.5827
计量
  • 文章访问数:  6078
  • PDF下载量:  981
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-21
  • 修回日期:  2017-05-19
  • 刊出日期:  2017-07-05

衍射极限尺度下的亚波长电磁学

  • 1. 中国科学院光电技术研究所, 微细加工光学技术国家重点实验室, 成都 610209
  • 通信作者: 罗先刚, lxg@ioe.ac.cn
    基金项目: 国家重点基础研究发展计划(批准号:2013CBA01700)和国家自然科学基金(批准号:61622508,61575201)资助的课题.

摘要: 作为波的本性之一,衍射是现代物理学的重要研究内容.衍射导致自由空间中波的能量不能被无限小地聚集,从而为成像、光刻、光存储、光波导等技术设定了一个原理性的障碍衍射极限.对于电磁波和光波而言,尽管通过提高介质的折射率可以压缩衍射效应,但由于自然界中材料的折射率有限,该方法存在很大限制.近年来,随着表面等离子体光学的兴起,表面等离子体在超越传统衍射极限方面的能力和应用前景受到了学术界的关注.本文从亚波长电磁学的角度出发,介绍衍射极限研究的历史,综述了突破衍射极限的理论方法.首先,利用金属介质表面等离子体激元的短波长特性,可将等效波长压缩一个数量级以上,在纳米尺度实现光波的聚焦或定向传输;更进一步,通过人为设计超构材料和超构表面,利用结构化金属和介质中的局域谐振、耦合等特殊电磁响应,可实现亚波长局域相位调制、超宽带色散调控、近完美吸收、光子自旋轨道耦合等,从而突破传统理论的诸多局限,为下一代电磁学和光学功能器件奠定重要基础.

English Abstract

参考文献 (109)

目录

    /

    返回文章
    返回