搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

掺钨VO2薄膜的电致相变特性

张娇 李毅 刘志敏 李政鹏 黄雅琴 裴江恒 方宝英 王晓华 肖寒

引用本文:
Citation:

掺钨VO2薄膜的电致相变特性

张娇, 李毅, 刘志敏, 李政鹏, 黄雅琴, 裴江恒, 方宝英, 王晓华, 肖寒

Characteristics of electrically-induced phase transition in tungsten-doped vanadium dioxide film

Zhang Jiao, Li Yi, Liu Zhi-Min, Li Zheng-Peng, Huang Ya-Qin, Pei Jiang-Heng, Fang Bao-Ying, Wang Xiao-Hua, Xiao Han
PDF
导出引用
  • 采用直流磁控溅射与后退火工艺相结合的方法,在掺氟SnO2(FTO)导电玻璃基底上制备了高质量的掺钨VO2薄膜,对薄膜的结构、表面形貌和光电特性进行测试,分析了钨掺杂对其相变性能的影响.结果表明,室温下掺钨VO2薄膜的阈值电压为4.2 V,观察到阈值电压下约有两个数量级的电流突变.随着温度升高,相变的阈值电压降低,且电流突变幅度减小.当施加8 V电压时,分别在不同温度下测试了掺钨VO2薄膜的透过率.温度为20和50℃时,掺钨VO2薄膜相变前后的红外透过率差量分别为23%和27%.与未掺杂的VO2薄膜相比,掺钨VO2薄膜具有相变温度低、阈值电压低和电阻率小的特点,在高速光电器件中有广阔的应用前景.
    The phase transition characteristics of tungsten-doped vanadium dioxide film driven by an applied voltage are studied in the paper.A high-quality film is successfully deposited on an FTO (F:SnO2) transparent conductive glass substrate by direct current magnetron sputtering and post-anneal processing.First of all,an FTO substrate is placed in the chamber of magnetron sputtering system after being cleaned and dried.Then W-doped vanadium film is fabricated on the substrate with V-W alloy target with 1.4% W by mass fraction.In the process of magnetron sputtering,the operating pressure is kept at 3.0×10-1 Pa,and the operating voltage and current are 400 V and 2 A,respectively.Finally,W-doped VO2 film with a thickness of about 310 nm is prepared by being annealed at 400℃ in air atmosphere for 2.5 h.In order to explore the crystal structure,element constituents,surface morphology,roughness and photoelectric properties of W-doped vanadium dioxide film,it is respectively characterized by X-ray photoelectron spectroscopy (XPS),X-ray diffraction (XRD),scanning electron microscope (SEM),atomic force microscope (AFM) and semiconductor parameter analyzer.The XPS analysis confirms that there are no other elements except vanadium,oxygen,carbon and tungsten on the surface of W-doped VO2 film.The XRD patterns illustrate that tungsten-doping exerts an influence on the crystal lattice of VO2,but the film still prefers the orientation (110).The SEM and AFM images display that the film with low roughness has a compact structure and irregular crystal particles.Tungsten-doping is found to be able to improve the surface morphology of VO2 thin film significantly.In addition,a remarkable change in electrical resistivity and a narrow thermal hysteresis loop are also obtained in the metal-semiconductor phase transition.Further,the influences of tungsten-doping on the phase transition properties of the film are analyzed.The experiment demonstrates that the threshold voltage at which the phase transition of W-doped VO2 film occurs is 4.2 V at room temperature when the film is driven by an applied voltage ranging from 0 V to 8 V.It can be observed clearly that the current changes abruptly by two orders of magnitude.As the ambient temperature rises,the threshold voltage of phase transition drops and the current varies slightly.The optical transmittance curves show the distinct differences under applied voltage at different temperatures.It is found that the infrared transmittance difference reaches up to a maximal value of 27% at 50℃ during phase transition,while it increases by only 23% at 20℃ in a wavelength range of 1100-1500 nm.All these outstanding features indicate that W-doped VO2 film has excellent properties of electrically-induced phase transition. Compared with undoped-VO2 film,the W-doped VO2 film is predicated to have a wide range of applications in the high-speed optoelectronic devices due to its advantages of lower phase transition temperature,resistivity and threshold voltage
      通信作者: 李毅, liyi@usst.edu.cn
    • 基金项目: 国家高技术研究发展计划(批准号:2006AA03Z348)、教育部科学技术研究重点项目(批准号:207033)、上海市科学技术委员会科技攻关计划(批准号:06DZ11415)、上海市教育委员会科技创新重点项目(批准号:10ZZ94)和上海领军人才培养计划(批准号:2011-026)资助的课题.
      Corresponding author: Li Yi, liyi@usst.edu.cn
    • Funds: Project supported by the National High Technology Research and Development Program of China (Grant No. 2006AA03Z348), the Foundation for Key Program of Ministry of Education, China (Grant No. 207033), the Science and Technology Research Project of Shanghai Science and Technology Commission, China (Grant No. 06DZ11415), the Key Science and Technology Research Project of Shanghai Education Committee, China (Grant No. 10ZZ94), and the Shanghai Talent Leading Plan, China (Grant No. 2011-026).
    [1]

    Morin F J 1959 Phys. Rev. Lett. 3 34

    [2]

    Tong G X, Li Y, Wang F, Huang Y Z, Fang B Y, Wang X H, Zhu H Q, Liang Q, Yan M, Qin Y, Ding J, Chen S J, Chen J K, Zheng H Z, Yuan W R 2013 Acta Phys. Sin. 62 208102 (in Chinese)[佟国香, 李毅, 王锋, 黄毅泽, 方宝英, 王晓华, 朱慧群, 梁倩, 严梦, 覃源, 丁杰, 陈少娟, 陈建坤, 郑鸿柱, 袁文瑞 2013 物理学报 62 208102]

    [3]

    Tazawa M, Jin P, Tanemura S 1998 Appl. Opt. 37 1858

    [4]

    Manning T D, Parkin I P, Pemble M E, Sheel D, Vernardou D 2004 Chem. Mater. 16 744

    [5]

    Lawton S A, Theby E A 1995 J. Am. Ceram. Soc. 78 238

    [6]

    Mao Z P, Wang W, Liu Y, Zhang L P, Xu H, Zhong Y 2014 Thin Solid Films 558 208

    [7]

    Wang X J, Liu Y Y, Li D H, Feng B H, He Z W, Qi Z 2013 Chin. Phys. B 22 066803

    [8]

    Paone A, Sanjines R, Jeanneret P, Whitlow H J, Guibert E, Guibert G, Bussy F, Scartezzini J, Scheler A 2015 J. Alloys. Compd. 621 206

    [9]

    Takami H, Kanki T, Ueda S, Kobayashi K, Tanaka H 2012 Phys. Rev. B 85 205111

    [10]

    Liu D, Cheng H, Xing X, Zhang C, Zheng W 2016 Infrared Phys. Technol. 77 339

    [11]

    Chen Z, Wen Q Y, Dong K, Sun D D, Qiu D H, Zhang H W 2013 Chin. Phys. Lett. 30 017102

    [12]

    Okuyama D, Shibuya K, Kumai R, Suzuki T, Yamasaki Y, Nakao H, Murakami Y, Kawasaki M, Taguchi Y, Tokura Y, Arima T 2015 Phys. Rev. B 91 064101

    [13]

    Xiao Y, Zhai Z H, Shi Q W, Zhu L G, Li J, Huang W X 2015 Appl. Phys. Lett. 107 031906

    [14]

    Hao R L, Li Y, Liu F, Sun Y, Tang J Y, Chen P Z, Jiang W, Wu Z Y, Xu T T, Fang B Y, Wang X H, Xiao H 2015 Acta Phys. Sin. 64 198101 (in Chinese)[郝如龙, 李毅, 刘飞, 孙瑶, 唐佳茵, 陈培祖, 蒋蔚, 伍征义, 徐婷婷, 方宝英, 王晓华, 肖寒 2015 物理学报 64 198101]

    [15]

    Xiong Y, Wen Q Y, Tian W, Chen Z, Yang Q H, Jing Y L 2015 Acta Phys. Sin. 64 017102 (in Chinese)[熊瑛, 文岐业, 田伟, 陈智, 杨青慧, 荆玉兰 2015 物理学报 64 017102]

    [16]

    Qiu D H, Wen Q Y, Yang Q H, Chen Z, Jing Y L, Zhang H W 2013 Acta Phys. Sin. 62 217201 (in Chinese)[邱东鸿, 文岐业, 杨青慧, 陈智, 荆玉兰, 张怀武 2013 物理学报 62 217201]

    [17]

    Zhou Y, Chen X N, Ko C H, Yang Z, Mouli C, Ramanathan S 2013 IEEE Electr. Dev. Lett. 34 220

    [18]

    Markov P, Appavoo K, Haglund R F, Weiss S M 2015 Opt. Express 23 6878

    [19]

    Soltani M, Chaker M, Haddad E, Kruzelecky R, Margot J, Laou P, Paradis S 2008 J. Vac. Sci. Technol. A 26 763

    [20]

    Soltani M, Chaker M, Haddad E, Kruzelecky R, Margot J 2007 J. Vac. Sci. Technol. A 25 971

    [21]

    Bhattacharyya S R, Majumder S 2012 Adv. Sci. Lett. 5 268

    [22]

    Acosta D R, Estrada W, Castanedo R, Maldonado A, Valenzuela M A 2000 Thin Solid Films 375 147

    [23]

    Rajeswaran B, Umarji A M 2016 AIP. Adv. 6 035215

    [24]

    Yan J Z, Zhang Y, Liu Y S, Zhang Y B, Huang W X, Tu M J (in Chinese)[颜家振, 张月, 刘阳思, 张玉波, 黄婉霞, 涂铭旌 2008 稀有金属材料与工程 37 1648]

    [25]

    Continenza A, Massidda S, Posternak M 1999 Phys. Rev. B 60 15699

  • [1]

    Morin F J 1959 Phys. Rev. Lett. 3 34

    [2]

    Tong G X, Li Y, Wang F, Huang Y Z, Fang B Y, Wang X H, Zhu H Q, Liang Q, Yan M, Qin Y, Ding J, Chen S J, Chen J K, Zheng H Z, Yuan W R 2013 Acta Phys. Sin. 62 208102 (in Chinese)[佟国香, 李毅, 王锋, 黄毅泽, 方宝英, 王晓华, 朱慧群, 梁倩, 严梦, 覃源, 丁杰, 陈少娟, 陈建坤, 郑鸿柱, 袁文瑞 2013 物理学报 62 208102]

    [3]

    Tazawa M, Jin P, Tanemura S 1998 Appl. Opt. 37 1858

    [4]

    Manning T D, Parkin I P, Pemble M E, Sheel D, Vernardou D 2004 Chem. Mater. 16 744

    [5]

    Lawton S A, Theby E A 1995 J. Am. Ceram. Soc. 78 238

    [6]

    Mao Z P, Wang W, Liu Y, Zhang L P, Xu H, Zhong Y 2014 Thin Solid Films 558 208

    [7]

    Wang X J, Liu Y Y, Li D H, Feng B H, He Z W, Qi Z 2013 Chin. Phys. B 22 066803

    [8]

    Paone A, Sanjines R, Jeanneret P, Whitlow H J, Guibert E, Guibert G, Bussy F, Scartezzini J, Scheler A 2015 J. Alloys. Compd. 621 206

    [9]

    Takami H, Kanki T, Ueda S, Kobayashi K, Tanaka H 2012 Phys. Rev. B 85 205111

    [10]

    Liu D, Cheng H, Xing X, Zhang C, Zheng W 2016 Infrared Phys. Technol. 77 339

    [11]

    Chen Z, Wen Q Y, Dong K, Sun D D, Qiu D H, Zhang H W 2013 Chin. Phys. Lett. 30 017102

    [12]

    Okuyama D, Shibuya K, Kumai R, Suzuki T, Yamasaki Y, Nakao H, Murakami Y, Kawasaki M, Taguchi Y, Tokura Y, Arima T 2015 Phys. Rev. B 91 064101

    [13]

    Xiao Y, Zhai Z H, Shi Q W, Zhu L G, Li J, Huang W X 2015 Appl. Phys. Lett. 107 031906

    [14]

    Hao R L, Li Y, Liu F, Sun Y, Tang J Y, Chen P Z, Jiang W, Wu Z Y, Xu T T, Fang B Y, Wang X H, Xiao H 2015 Acta Phys. Sin. 64 198101 (in Chinese)[郝如龙, 李毅, 刘飞, 孙瑶, 唐佳茵, 陈培祖, 蒋蔚, 伍征义, 徐婷婷, 方宝英, 王晓华, 肖寒 2015 物理学报 64 198101]

    [15]

    Xiong Y, Wen Q Y, Tian W, Chen Z, Yang Q H, Jing Y L 2015 Acta Phys. Sin. 64 017102 (in Chinese)[熊瑛, 文岐业, 田伟, 陈智, 杨青慧, 荆玉兰 2015 物理学报 64 017102]

    [16]

    Qiu D H, Wen Q Y, Yang Q H, Chen Z, Jing Y L, Zhang H W 2013 Acta Phys. Sin. 62 217201 (in Chinese)[邱东鸿, 文岐业, 杨青慧, 陈智, 荆玉兰, 张怀武 2013 物理学报 62 217201]

    [17]

    Zhou Y, Chen X N, Ko C H, Yang Z, Mouli C, Ramanathan S 2013 IEEE Electr. Dev. Lett. 34 220

    [18]

    Markov P, Appavoo K, Haglund R F, Weiss S M 2015 Opt. Express 23 6878

    [19]

    Soltani M, Chaker M, Haddad E, Kruzelecky R, Margot J, Laou P, Paradis S 2008 J. Vac. Sci. Technol. A 26 763

    [20]

    Soltani M, Chaker M, Haddad E, Kruzelecky R, Margot J 2007 J. Vac. Sci. Technol. A 25 971

    [21]

    Bhattacharyya S R, Majumder S 2012 Adv. Sci. Lett. 5 268

    [22]

    Acosta D R, Estrada W, Castanedo R, Maldonado A, Valenzuela M A 2000 Thin Solid Films 375 147

    [23]

    Rajeswaran B, Umarji A M 2016 AIP. Adv. 6 035215

    [24]

    Yan J Z, Zhang Y, Liu Y S, Zhang Y B, Huang W X, Tu M J (in Chinese)[颜家振, 张月, 刘阳思, 张玉波, 黄婉霞, 涂铭旌 2008 稀有金属材料与工程 37 1648]

    [25]

    Continenza A, Massidda S, Posternak M 1999 Phys. Rev. B 60 15699

  • [1] 孙肖宁, 曲兆明, 王庆国, 袁扬. VO2纳米粒子填充型聚合物薄膜电致相变特性. 物理学报, 2020, 69(24): 247201. doi: 10.7498/aps.69.20200834
    [2] 徐婷婷, 李毅, 陈培祖, 蒋蔚, 伍征义, 刘志敏, 张娇, 方宝英, 王晓华, 肖寒. 基于AZO/VO2/AZO结构的电压诱导相变红外光调制器. 物理学报, 2016, 65(24): 248102. doi: 10.7498/aps.65.248102
    [3] 熊瑛, 文岐业, 田伟, 毛淇, 陈智, 杨青慧, 荆玉兰. 硅基二氧化钒相变薄膜电学特性研究. 物理学报, 2015, 64(1): 017102. doi: 10.7498/aps.64.017102
    [4] 郝如龙, 李毅, 刘飞, 孙瑶, 唐佳茵, 陈培祖, 蒋蔚, 伍征义, 徐婷婷, 方宝英, 王晓华, 肖寒. 基于FTO/VO2/FTO结构的VO2薄膜电压诱导相变光调制特性. 物理学报, 2015, 64(19): 198101. doi: 10.7498/aps.64.198101
    [5] 刘翔宇, 胡辉勇, 张鹤鸣, 宣荣喜, 宋建军, 舒斌, 王斌, 王萌. 具有poly-Si1-xGex栅的应变SiGep型金属氧化物半导体场效应晶体管阈值电压漂移模型研究. 物理学报, 2014, 63(23): 237302. doi: 10.7498/aps.63.237302
    [6] 胡辉勇, 刘翔宇, 连永昌, 张鹤鸣, 宋建军, 宣荣喜, 舒斌. γ射线总剂量辐照效应对应变Sip型金属氧化物半导体场效应晶体管阈值电压与跨导的影响研究. 物理学报, 2014, 63(23): 236102. doi: 10.7498/aps.63.236102
    [7] 范敏敏, 徐静平, 刘璐, 白玉蓉, 黄勇. 高k栅介质GeOI金属氧化物半导体场效应管阈值电压和亚阈斜率模型及其器件结构设计. 物理学报, 2014, 63(8): 087301. doi: 10.7498/aps.63.087301
    [8] 辛艳辉, 刘红侠, 范小娇, 卓青青. 单Halo全耗尽应变Si 绝缘硅金属氧化物半导体场效应管的阈值电压解析模型. 物理学报, 2013, 62(10): 108501. doi: 10.7498/aps.62.108501
    [9] 周春宇, 张鹤鸣, 胡辉勇, 庄奕琪, 舒斌, 王斌, 王冠宇. 应变Si NMOSFET阈值电压集约物理模型. 物理学报, 2013, 62(7): 077103. doi: 10.7498/aps.62.077103
    [10] 邱东鸿, 文岐业, 杨青慧, 陈智, 荆玉兰, 张怀武. 金属Pt薄膜上二氧化钒的制备及其电致相变性能研究. 物理学报, 2013, 62(21): 217201. doi: 10.7498/aps.62.217201
    [11] 李立, 刘红侠, 杨兆年. 量子阱Si/SiGe/Sip型场效应管阈值电压和沟道空穴面密度模型. 物理学报, 2012, 61(16): 166101. doi: 10.7498/aps.61.166101
    [12] 李妤晨, 张鹤鸣, 张玉明, 胡辉勇, 徐小波, 秦珊珊, 王冠宇. 新型高速半导体器件IMOS阈值电压解析模型. 物理学报, 2012, 61(4): 047303. doi: 10.7498/aps.61.047303
    [13] 王冠宇, 张鹤鸣, 王晓艳, 吴铁峰, 王斌. 亚100 nm应变Si/SiGe nMOSFET阈值电压二维解析模型. 物理学报, 2011, 60(7): 077106. doi: 10.7498/aps.60.077106
    [14] 屈江涛, 张鹤鸣, 王冠宇, 王晓艳, 胡辉勇. 多晶SiGe栅量子阱pMOSFET阈值电压模型. 物理学报, 2011, 60(5): 058502. doi: 10.7498/aps.60.058502
    [15] 汤晓燕, 张义门, 张玉明. SiC肖特基源漏MOSFET的阈值电压. 物理学报, 2009, 58(1): 494-497. doi: 10.7498/aps.58.494
    [16] 张志锋, 张鹤鸣, 胡辉勇, 宣荣喜, 宋建军. 应变Si沟道nMOSFET阈值电压模型. 物理学报, 2009, 58(7): 4948-4952. doi: 10.7498/aps.58.4948
    [17] 张鹤鸣, 崔晓英, 胡辉勇, 戴显英, 宣荣喜. 应变SiGe SOI量子阱沟道PMOSFET阈值电压模型研究. 物理学报, 2007, 56(6): 3504-3508. doi: 10.7498/aps.56.3504
    [18] 李艳萍, 徐静平, 陈卫兵, 许胜国, 季 峰. 考虑量子效应的短沟道MOSFET二维阈值电压模型. 物理学报, 2006, 55(7): 3670-3676. doi: 10.7498/aps.55.3670
    [19] 代月花, 陈军宁, 柯导明, 孙家讹. 考虑量子化效应的MOSFET阈值电压解析模型. 物理学报, 2005, 54(2): 897-901. doi: 10.7498/aps.54.897
    [20] 邱东江, 石成儒, 吴惠桢. 石英衬底上生长的高光学质量的纳米金刚石薄膜. 物理学报, 2002, 51(8): 1870-1874. doi: 10.7498/aps.51.1870
计量
  • 文章访问数:  3645
  • PDF下载量:  249
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-29
  • 修回日期:  2017-08-14
  • 刊出日期:  2017-12-05

掺钨VO2薄膜的电致相变特性

  • 1. 上海理工大学光电信息与计算机工程学院, 上海 200093;
  • 2. 上海市现代光学系统重点实验室, 上海 200093;
  • 3. 上海电力学院电子与信息工程学院, 上海 200090;
  • 4. 上海健康医学院影像学院, 上海 201318
  • 通信作者: 李毅, liyi@usst.edu.cn
    基金项目: 国家高技术研究发展计划(批准号:2006AA03Z348)、教育部科学技术研究重点项目(批准号:207033)、上海市科学技术委员会科技攻关计划(批准号:06DZ11415)、上海市教育委员会科技创新重点项目(批准号:10ZZ94)和上海领军人才培养计划(批准号:2011-026)资助的课题.

摘要: 采用直流磁控溅射与后退火工艺相结合的方法,在掺氟SnO2(FTO)导电玻璃基底上制备了高质量的掺钨VO2薄膜,对薄膜的结构、表面形貌和光电特性进行测试,分析了钨掺杂对其相变性能的影响.结果表明,室温下掺钨VO2薄膜的阈值电压为4.2 V,观察到阈值电压下约有两个数量级的电流突变.随着温度升高,相变的阈值电压降低,且电流突变幅度减小.当施加8 V电压时,分别在不同温度下测试了掺钨VO2薄膜的透过率.温度为20和50℃时,掺钨VO2薄膜相变前后的红外透过率差量分别为23%和27%.与未掺杂的VO2薄膜相比,掺钨VO2薄膜具有相变温度低、阈值电压低和电阻率小的特点,在高速光电器件中有广阔的应用前景.

English Abstract

参考文献 (25)

目录

    /

    返回文章
    返回