搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于带电粒子活化法开展的SGⅡ-U皮秒激光质子加速实验研究

贺书凯 齐伟 矫金龙 董克攻 邓志刚 滕建 张博 张智猛 洪伟 张辉 沈百飞 谷渝秋

引用本文:
Citation:

基于带电粒子活化法开展的SGⅡ-U皮秒激光质子加速实验研究

贺书凯, 齐伟, 矫金龙, 董克攻, 邓志刚, 滕建, 张博, 张智猛, 洪伟, 张辉, 沈百飞, 谷渝秋

Picosecond laser-driven proton acceleration study of SGⅡ-U device based on charged particle activation method

He Shu-Kai, Qi Wei, Jiao Jin-Long, Dong Ke-Gong, Deng Zhi-Gang, Teng Jian, Zhang Bo, Zhang Zhi-Meng, Hong Wei, Zhang Hui, Shen Bai-Fei, Gu Yu-Qiu
PDF
导出引用
  • 基于带电粒子活化测谱方法在SGⅡ-U装置上开展了皮秒激光靶背鞘场机制质子加速实验研究,对靶参数进行了优化.利用带电粒子活化测谱方法测量了相同激光条件、不同Cu薄膜靶厚度情况下靶背鞘场加速质子的最高截止能量、角分布、总产额以及激光能量到质子的转化效率等关键参数.实验发现,SGⅡ-U皮秒激光靶背鞘场加速机制的最佳Cu薄膜靶厚度为10 μm,对应质子最高能量接近40 MeV,质子(>4 MeV)总产额约4×1012个,激光能量到质子的转化效率约2%.薄膜靶更厚或者更薄都会降低加速质子的最高截止能量;当靶厚减薄至1 μm时,皮秒激光的预脉冲开始对靶背鞘场产生显著影响,质子最高截止能量急剧下降,高能质子束斑呈现空心结构;而当靶厚增加至35 μm时,虽然质子束的能量有所降低,但是质子束斑的均匀性更好.
    The laser-driven proton acceleration experiment is carried out on the SGⅡ-U device based on charged particle activation method, and the target parameters are optimized. The charged particle method is used to measure the maximum cutoff energy of proton, angular profile, total yield and conversion efficiency of laser energy to proton energy for different copper film thickness under the same laser condition. It is found that the optimal copper film thickness for the SGⅡ-U picoseond laser-driven proton experiment is 10 μm, the highest proton energy obtained is about 40 MeV, and the total yield of protons (>4 MeV) is about 4×1012, the conversion efficiency of laser energy to proton energy is about 2%. Thicker or thinner copper film can reduce the maximum cut-off energy of accelerated proton; when the target thickness is reduced to 1 μm, the pre-pulse of the laser begins to have a significant effect on the target normal sheath acceleration (TNSA) proton, proton energy drops sharply, the proton beam porfile exhibits a hollow structure; when the target thickness is increased to 35 μm, although the energy of the proton is reduced, the proton beam spot is more uniform. According to our experimental results, when using SGⅡ-U picosecond laser to generate protons as a backlight diagnostics, a thicker Cu film can be selected which can supply more uniform proton beams. When the target is too thin, the TNSA proton itself has a modulation structure which will cause interference to yield the photographic results; when the protons generated by the SGⅡ-U picosecond are used to generate neutron source, the higher proton energy and yield are required, and 10 μm Cu film is suitable. The further enhancing the TNSA accelerated proton energy and quantity of the SGⅡ-U picosecond laser requires the further improving of the laser contrast.
      通信作者: 贺书凯, shukai.he@caep.cn
    • 基金项目: 国家重点研发计划(批准号:2016YFA0401100)、科学挑战计划(批准号:TZ2018005)和国家重大科学仪器设备开发专项(批准号:2012YQ03014206)资助的课题.
      Corresponding author: He Shu-Kai, shukai.he@caep.cn
    • Funds: Project supported by the National Key Programme for Science and Technology Research and Development, China (Grant No. 2016YFA0401100), the Science Challenge Project, China (Grant No. TZ2018005), and the National Grand Instrument Project, China (Grant No. 2012YQ03014206).
    [1]

    Tajima T, Dawson J M 1979 Phys. Rev. Lett. 43 267

    [2]

    Snavely R A, Key M H, Hatchett S P, Cowan T E, Roth M, Phillips T W, Stoyer M A, Henry E A, Sangster T C, Singh M S, Wilks S C, MacKinnon A, Offenberger A, Pennington D M, Yasuike K, Langdon A B, Lasinski B F, Johnson J, Perry M D, Campbell E M 2000 Phys. Rev. Lett. 85 2945

    [3]

    Daido H, Nishiuchi M, Pirozhkov A S 2012 Rep. Prog. Phys. 75 056401

    [4]

    Roth M, Cowan T E, Gauthier J C, Vehn J M, Allen M, Audebert P, Blazevic A, Fuchs J, Geissel M, Hegelich M, Karsch S, Pukhov A, Schlegel T 2002 Phys. Rev. ST Accel. Beams 5 061301

    [5]

    Roth M, Brambrink E, Audeert P, Basko M, Blazevic A, Clarke R, Cobble J, Cowan T E, Fernandez J, Fuchs J, Hegelich M, Ledingham K, Logan B G, Neely D, Ruhl H, Schollmeier M 2005 Plasma Phys. Control. Fusion 47 B841

    [6]

    Wilks S C, Langdon A B, Cowan T E, Roth M, Singh M, Hatchett S, Key M H, Pennington D, Mackinnon A, Snavely R A 2001 Phys. Plasmas 8 2

    [7]

    Ceccotti T, Levy A, Popescu H, Reau F, Oliveira P D, Monot P, Geindre J P, Lefebvre E, Martin P 2007 Phys. Rev. Lett. 99 185002

    [8]

    Robson L, Simpson P T, Clarke R J, Ledingham K W D, Lindau F, Lundh O, McCanny T, Mora P, Neely D, Wahlstrom C G, Zepf M, McKenna P 2007 Nature Phys. 3 58

    [9]

    Cowan T E, Fuchs J, Ruhl H, Kemp A, Audebert P, Roth M, Stephens R, Barton I, Blazevic A, Brambrink E, Cobble J, Fernandez J, Gauthier J C, Geissel M, Hegelich M, Kaae J, Karsch S, LeSage G P, Letzring S, Manclossi M, Meyroneinc S, Newkirk A, Pepin H, Renard-LeGalloudec N 2004 Phys. Rev. Lett. 92 204801

    [10]

    Patel P K, Mackinnon A J, Key M H, Cowan T E, Foord M E, Allen M, Price D F, Ruhl H, Springer P T, Stephens R 2003 Phys. Rev. Lett. 91 125004

    [11]

    Yin L, Albright B J, Bowers K J, Jung D, Fernandez J C, Hegelich B M 2011 Phys. Rev. Lett. 107 045003

    [12]

    Yin L, Albright B J, Jung D, Shah R C, Palaniyappan S, Bowers K J, Henig A, Fernandez J C, Hegelich B M 2011 Phys. Plasmas 18 063103

    [13]

    Yin L, Albright B J, Hegelich B M, Fernandez J C 2006 Laser and Particle Beams 24 291

    [14]

    Jung D, Yin L, Gautier D C, Wu H C, Letzring S 2013 Phys. Plasmas 20 083103

    [15]

    Yan X Q, Lin C, Sheng Z M, Guo Z Y, Liu B C, Lu Y R, Fang J X, Chen J E 2008 Phys. Rev. Lett. 100 175003

    [16]

    Esirkepov T Z, Borghesi M, Bulanov S V, Mourou G, Tajima T 2004 Phys. Rev. Lett. 92 175003

    [17]

    Klimo O, Psikal J, Limpouch J, Tikhonchuk V T 2008 Phys. Rev. ST Accel. Beams 11 031301

    [18]

    Jiao J L, He S K, Deng Z G, Lu F, Zhang Y, Yang L, Zhang F Q, Dong K G, Wang S Y, Zhang B, Teng J, Hong W, Gu Y Q 2017 Acta Phys. Sin. 66 085201 (in Chinese) [矫金龙, 贺书凯, 邓志刚, 卢峰, 张镱, 杨雷, 张发强, 董克攻, 王少义, 张博, 滕建, 洪伟, 谷渝秋 2017 物理学报 66 085201]

    [19]

    Zhang H, Shen B F, Wang W P, Xu Y, Liu Y Q, Liang X Y, Leng Y X, Li R X, Yan X Q, Chen J E, Xu Z Z 2015 Phys. Plasmas 22 013113

    [20]

    Wagner F, Deppert O, Brabetz C, Fiala P, Kleinschmidt A, Poth P, Schanz V A, Tebartz A, Zielbauer B, Roth M, Stohlker T, Bagnoud V 2016 Phys. Rev. Lett. 116 205002

    [21]

    Shan L Q, Cai H B, Zhang W S, Tang Q, Zhang F, Song Z F, Bi B, Ge F J, Chen J B, Liu D X, Wang W W, Yang Z H, Qi W, Tian C, Yuan Z Q, Zhang B, Yang L, Jiao J L, Cui B, Zhou W M, Cao L F, Zhou C T, Gu Y Q, Zhang B H, Zhu S P, He X T 2018 Phys. Rev. Lett. 120 195001

    [22]

    He S K, Liu D X, Jiao J L, Deng Z G, Teng J, Zhang B, Zhang Z M, Hong W, Gu Y Q 2017 Acta Phys. Sin. 66 205201 (in Chinese) [贺书凯, 刘东晓, 矫金龙, 邓志刚, 滕建, 张博, 张智猛, 洪伟, 谷渝秋 2017 物理学报 66 205201]

    [23]

    Meadows J W 1953 Phys. Rev. 91 885

  • [1]

    Tajima T, Dawson J M 1979 Phys. Rev. Lett. 43 267

    [2]

    Snavely R A, Key M H, Hatchett S P, Cowan T E, Roth M, Phillips T W, Stoyer M A, Henry E A, Sangster T C, Singh M S, Wilks S C, MacKinnon A, Offenberger A, Pennington D M, Yasuike K, Langdon A B, Lasinski B F, Johnson J, Perry M D, Campbell E M 2000 Phys. Rev. Lett. 85 2945

    [3]

    Daido H, Nishiuchi M, Pirozhkov A S 2012 Rep. Prog. Phys. 75 056401

    [4]

    Roth M, Cowan T E, Gauthier J C, Vehn J M, Allen M, Audebert P, Blazevic A, Fuchs J, Geissel M, Hegelich M, Karsch S, Pukhov A, Schlegel T 2002 Phys. Rev. ST Accel. Beams 5 061301

    [5]

    Roth M, Brambrink E, Audeert P, Basko M, Blazevic A, Clarke R, Cobble J, Cowan T E, Fernandez J, Fuchs J, Hegelich M, Ledingham K, Logan B G, Neely D, Ruhl H, Schollmeier M 2005 Plasma Phys. Control. Fusion 47 B841

    [6]

    Wilks S C, Langdon A B, Cowan T E, Roth M, Singh M, Hatchett S, Key M H, Pennington D, Mackinnon A, Snavely R A 2001 Phys. Plasmas 8 2

    [7]

    Ceccotti T, Levy A, Popescu H, Reau F, Oliveira P D, Monot P, Geindre J P, Lefebvre E, Martin P 2007 Phys. Rev. Lett. 99 185002

    [8]

    Robson L, Simpson P T, Clarke R J, Ledingham K W D, Lindau F, Lundh O, McCanny T, Mora P, Neely D, Wahlstrom C G, Zepf M, McKenna P 2007 Nature Phys. 3 58

    [9]

    Cowan T E, Fuchs J, Ruhl H, Kemp A, Audebert P, Roth M, Stephens R, Barton I, Blazevic A, Brambrink E, Cobble J, Fernandez J, Gauthier J C, Geissel M, Hegelich M, Kaae J, Karsch S, LeSage G P, Letzring S, Manclossi M, Meyroneinc S, Newkirk A, Pepin H, Renard-LeGalloudec N 2004 Phys. Rev. Lett. 92 204801

    [10]

    Patel P K, Mackinnon A J, Key M H, Cowan T E, Foord M E, Allen M, Price D F, Ruhl H, Springer P T, Stephens R 2003 Phys. Rev. Lett. 91 125004

    [11]

    Yin L, Albright B J, Bowers K J, Jung D, Fernandez J C, Hegelich B M 2011 Phys. Rev. Lett. 107 045003

    [12]

    Yin L, Albright B J, Jung D, Shah R C, Palaniyappan S, Bowers K J, Henig A, Fernandez J C, Hegelich B M 2011 Phys. Plasmas 18 063103

    [13]

    Yin L, Albright B J, Hegelich B M, Fernandez J C 2006 Laser and Particle Beams 24 291

    [14]

    Jung D, Yin L, Gautier D C, Wu H C, Letzring S 2013 Phys. Plasmas 20 083103

    [15]

    Yan X Q, Lin C, Sheng Z M, Guo Z Y, Liu B C, Lu Y R, Fang J X, Chen J E 2008 Phys. Rev. Lett. 100 175003

    [16]

    Esirkepov T Z, Borghesi M, Bulanov S V, Mourou G, Tajima T 2004 Phys. Rev. Lett. 92 175003

    [17]

    Klimo O, Psikal J, Limpouch J, Tikhonchuk V T 2008 Phys. Rev. ST Accel. Beams 11 031301

    [18]

    Jiao J L, He S K, Deng Z G, Lu F, Zhang Y, Yang L, Zhang F Q, Dong K G, Wang S Y, Zhang B, Teng J, Hong W, Gu Y Q 2017 Acta Phys. Sin. 66 085201 (in Chinese) [矫金龙, 贺书凯, 邓志刚, 卢峰, 张镱, 杨雷, 张发强, 董克攻, 王少义, 张博, 滕建, 洪伟, 谷渝秋 2017 物理学报 66 085201]

    [19]

    Zhang H, Shen B F, Wang W P, Xu Y, Liu Y Q, Liang X Y, Leng Y X, Li R X, Yan X Q, Chen J E, Xu Z Z 2015 Phys. Plasmas 22 013113

    [20]

    Wagner F, Deppert O, Brabetz C, Fiala P, Kleinschmidt A, Poth P, Schanz V A, Tebartz A, Zielbauer B, Roth M, Stohlker T, Bagnoud V 2016 Phys. Rev. Lett. 116 205002

    [21]

    Shan L Q, Cai H B, Zhang W S, Tang Q, Zhang F, Song Z F, Bi B, Ge F J, Chen J B, Liu D X, Wang W W, Yang Z H, Qi W, Tian C, Yuan Z Q, Zhang B, Yang L, Jiao J L, Cui B, Zhou W M, Cao L F, Zhou C T, Gu Y Q, Zhang B H, Zhu S P, He X T 2018 Phys. Rev. Lett. 120 195001

    [22]

    He S K, Liu D X, Jiao J L, Deng Z G, Teng J, Zhang B, Zhang Z M, Hong W, Gu Y Q 2017 Acta Phys. Sin. 66 205201 (in Chinese) [贺书凯, 刘东晓, 矫金龙, 邓志刚, 滕建, 张博, 张智猛, 洪伟, 谷渝秋 2017 物理学报 66 205201]

    [23]

    Meadows J W 1953 Phys. Rev. 91 885

  • [1] 曹佳慧, 刘艳艳, 艾保全, 黄仁忠, 高天附. 空间非均匀摩擦棘轮的输运性能. 物理学报, 2021, 70(23): 230201. doi: 10.7498/aps.70.20210802
    [2] 延明月, 张旭, 刘晨昊, 黄仁忠, 高天附, 郑志刚. 反馈脉冲棘轮的能量转化效率研究. 物理学报, 2018, 67(19): 190501. doi: 10.7498/aps.67.20181066
    [3] 刘丽娟, 孔晓波, 刘永刚, 宣丽. 基于液晶/聚合物光栅的高转化效率有机半导体激光器. 物理学报, 2017, 66(24): 244204. doi: 10.7498/aps.66.244204
    [4] 杨思谦, 周维民, 王思明, 矫金龙, 张智猛, 曹磊峰, 谷渝秋, 张保汉. 通道靶对超强激光加速质子束的聚焦效应. 物理学报, 2017, 66(18): 184101. doi: 10.7498/aps.66.184101
    [5] 范黎明, 吕明涛, 黄仁忠, 高天附, 郑志刚. 反馈控制棘轮的定向输运效率研究. 物理学报, 2017, 66(1): 010501. doi: 10.7498/aps.66.010501
    [6] 贺书凯, 刘东晓, 矫金龙, 邓志刚, 滕建, 张博, 张智猛, 洪伟, 谷渝秋. 用于激光加速质子参数表征的带电粒子活化测谱技术. 物理学报, 2017, 66(20): 205201. doi: 10.7498/aps.66.205201
    [7] 王倩, 赵江山, 罗时文, 左都罗, 周翊. ArF准分子激光系统的能量效率特性. 物理学报, 2016, 65(21): 214205. doi: 10.7498/aps.65.214205
    [8] 丁光涛. 磁场中带电粒子阻尼运动的分析力学表示. 物理学报, 2012, 61(2): 020204. doi: 10.7498/aps.61.020204
    [9] 余金清, 周维民, 金晓林, 李斌, 赵宗清, 曹磊峰, 董克攻, 刘东晓, 范伟, 魏来, 闫永宏, 钱凤, 杨祖华, 洪伟, 谷渝秋. 鞘场加速机理中质子束的特性与其初始尺寸的关系. 物理学报, 2012, 61(17): 175202. doi: 10.7498/aps.61.175202
    [10] 张春丽, 祁月盈, 刘学深, 丁培柱. 双色场中高次谐波转化效率提高的数值研究. 物理学报, 2009, 58(5): 3078-3083. doi: 10.7498/aps.58.3078
    [11] 孙 健, 白敏冬, 毛程奇, 白希尧. 单极性带电粒子浓度测试方法的研究. 物理学报, 2007, 56(7): 3972-3976. doi: 10.7498/aps.56.3972
    [12] 张春丽, 祁月盈, 刘学深, 丁培柱. 双色激光场中高次谐波转化效率的提高. 物理学报, 2007, 56(2): 774-780. doi: 10.7498/aps.56.774
    [13] 邓成良, 邵明珠, 罗诗裕. 带电粒子同超晶格的相互作用与系统的混沌行为. 物理学报, 2006, 55(5): 2422-2426. doi: 10.7498/aps.55.2422
    [14] 吴奇学. 带电粒子在均匀磁场与三维各向同性谐振子场中运动的双波描述. 物理学报, 2000, 49(7): 1211-1214. doi: 10.7498/aps.49.1211
    [15] 黄湘友. 质谱仪中带电粒子运动的双波描述. 物理学报, 1996, 45(5): 729-737. doi: 10.7498/aps.45.729
    [16] 黄湘友, 刘全慧, 田旭, 裘忠平. 均匀磁场中带电粒子运动的双波描述. 物理学报, 1993, 42(2): 180-187. doi: 10.7498/aps.42.180
    [17] 田人和. 相对论性带电粒子束在轴对称电场和磁场中的温度和能量展宽. 物理学报, 1993, 42(5): 750-756. doi: 10.7498/aps.42.750
    [18] 杨金刚, 李卫江, 郭清江, 朱光华, 姜承烈. 带有磁分析器的半导体探测器带电粒子谱仪. 物理学报, 1974, 23(1): 52-62. doi: 10.7498/aps.23.52
    [19] 王珮. 高速带电粒子与核子的边缘电磁作用. 物理学报, 1965, 21(8): 1533-1543. doi: 10.7498/aps.21.1533
    [20] 王璈, 李鹤年, 简而智, 萧健. 高能带电粒子直接产生电子对. 物理学报, 1961, 17(6): 263-272. doi: 10.7498/aps.17.263
计量
  • 文章访问数:  2654
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-08
  • 修回日期:  2018-09-20
  • 刊出日期:  2019-11-20

基于带电粒子活化法开展的SGⅡ-U皮秒激光质子加速实验研究

  • 1. 中国工程物理研究院激光聚变研究中心, 等离子体物理重点实验室, 绵阳 621900;
  • 2. 中国科学院上海光学精密机械研究所强光光学实验室, 上海 201800;
  • 3. 上海交通大学, 聚变科学与应用协同创新中心, 上海 200240;
  • 4. 北京大学应用物理与技术中心, 北京 100871
  • 通信作者: 贺书凯, shukai.he@caep.cn
    基金项目: 国家重点研发计划(批准号:2016YFA0401100)、科学挑战计划(批准号:TZ2018005)和国家重大科学仪器设备开发专项(批准号:2012YQ03014206)资助的课题.

摘要: 基于带电粒子活化测谱方法在SGⅡ-U装置上开展了皮秒激光靶背鞘场机制质子加速实验研究,对靶参数进行了优化.利用带电粒子活化测谱方法测量了相同激光条件、不同Cu薄膜靶厚度情况下靶背鞘场加速质子的最高截止能量、角分布、总产额以及激光能量到质子的转化效率等关键参数.实验发现,SGⅡ-U皮秒激光靶背鞘场加速机制的最佳Cu薄膜靶厚度为10 μm,对应质子最高能量接近40 MeV,质子(>4 MeV)总产额约4×1012个,激光能量到质子的转化效率约2%.薄膜靶更厚或者更薄都会降低加速质子的最高截止能量;当靶厚减薄至1 μm时,皮秒激光的预脉冲开始对靶背鞘场产生显著影响,质子最高截止能量急剧下降,高能质子束斑呈现空心结构;而当靶厚增加至35 μm时,虽然质子束的能量有所降低,但是质子束斑的均匀性更好.

English Abstract

参考文献 (23)

目录

    /

    返回文章
    返回