搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

核壳结构磁性复合纳米材料的可控合成与性能

何学敏 钟伟 都有为

引用本文:
Citation:

核壳结构磁性复合纳米材料的可控合成与性能

何学敏, 钟伟, 都有为

Controllable synthesis and performance of magnetic nanocomposites with core/shell structure

He Xue-Min, Zhong Wei, Du You-Wei
PDF
导出引用
  • 具有核/壳结构的磁性复合纳米材料是十分重要的功能材料,其综合物性受材料微结构的影响,而这很大程度上又取决于复合体系的可控合成.本文综述了近二十年来有关核/壳磁性复合纳米材料的制备、表征及性能研究方面的进展,讨论的体系主要有:铁氧体基永磁/软磁(反铁磁)复合纳米材料、非磁性体包覆磁性核而成的复合纳米材料、用磁性颗粒催化合成的碳基复合纳米材料、基于交换偏置效应而设计的复合纳米材料、核-壳同轴结构的一维复合纳米材料和核/壳/壳三元结构的磁性复合纳米材料等.构建复合体系的组分包括M型永磁铁氧体、3d过渡金属(及其合金、氧化物、碳化物)、多铁化合物、非磁性体(比如绝缘体、半导体、有机分子)和碳材料等,着重分析了复合纳米材料的热稳定性、光致发光性能、光电催化能力、电化学特性、微波吸收性能、磁电阻效应、永磁体性能、高频软磁特性、交换偏置效应及其相关现象.最后,对核/壳结构磁性复合纳米材料的未来发展趋势进行了展望,并在基础研究和改性应用方面提出了一些建议.
    Magnetic nanocomposites with core/shell structure are an important class of functional materials, and their comprehensive properties are affected by the microstructures of materials: they are largely dependent on the controlled sysnthesis of the composite systems. In this paper, we review the research advances in the preparation, characterization and performance of core/shell-structured magnetic nanocomposites, focusing on the following systems: 1) ferrite-based permanent-magnet/soft-magnetic (or antiferromagnetic) composite nanomaterials; 2) nanocomposites comprised of the magnetic core particles and the nonmagnetic coating layers; 3) carbon-based nanocomposites obtained by the catalytic synthesis of magnetic particles; 4) nanocomposites with exchange bias effect; 5) one-dimensional nanocomposites with coaxial core/shell structure; 6) core/shell/shell structured magnetic ternary nanocomposites. The components of these composite systems include M-type permanent-magnet ferrites, 3d transition metals (and their alloys, oxides and carbides), multiferroics, nonmagnetic (such as insulator, semiconductor and organic molecule), and carbon materials. And the emphasis is placed on the analysis of thermal stability, photoluminescence performance, photoelectrocatalytic capacity, electrochemical characteristics, microwave absorption properties, magnetoresistance effect, permanent magnetic property, high-frequency soft-magnetic properties, exchange bias effect and related phenomenology for the core/shell-structured nanocomposites. Finally, the future developing trend of the magnetic nanocomposites with core/shell structure is presented, and some fundamental researches and modified applications are also proposed.
      通信作者: 钟伟, wzhong@nju.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11604160,11774156,11474151)、江苏省自然科学基金(批准号:BK20160876)、南京大学固体微结构物理国家重点实验室(批准号:M30007)和南京邮电大学基金(批准号:NY215063)资助的课题.
      Corresponding author: Zhong Wei, wzhong@nju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11604160, 11774156, 11474151), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20160876), the National Laboratory of Solid State Microstructures, Nanjing University, China (Grant No. M30007), and the Nanjing University of Posts and Telecommunications Foundation, China (Grant No. NY215063).
    [1]

    Beek W J E, Wienk M M, Jansen R A J 2004 Adv. Mater. 16 1009

    [2]

    Sajjad M, Morell G, Feng P 2013 ACS Appl. Mater. Interfaces 5 5051

    [3]

    Zhang H T, Wu G, Chen X H, Qiu X G 2006 Mater. Res. Bull. 41 495

    [4]

    He X M, Zhong W, Au C T, Du Y W 2013 Nanoscale Res. Lett. 8 446

    [5]

    Kodama R H, Makhlouf S A, Berkowitz A E 1997 Phys. Rev. Lett. 79 1393

    [6]

    Martínez-Boubeta C, Simeonidis K, Angelakeris M, Pazos-Pérez N, Giersig M, Delimitis A, Nalbandian L, Alexandrakis V, Niarchos D 2006 Phys. Rev. B 74 054430

    [7]

    Tracy J B, Bawendi M G 2006 Phys. Rev. B 74 184434

    [8]

    Johnston-Peck A C, Wang J W, Tracy J B 2009 ACS Nano 3 1077

    [9]

    Djerdj I, Arčon D, Jaglčić Z, Niederberger M 2007 J. Phys. Chem. C 111 3614

    [10]

    He X M, Zhong W, Yan S M, Au C T, L L Y, Du Y W 2014 J. Phys. D: Appl. Phys. 47 235002

    [11]

    Hou Y L, Xu Z C, Sun S H 2007 Angew. Chem. 119 6445

    [12]

    Zhang H T, Chen X H 2005 Nanotechnology 16 2288

    [13]

    Makhlouf S A, Al-Attar H, Kodama R H 2008 Solid State Commun. 145 1

    [14]

    Lu A H, Salabas E L, Schth F 2007 Angew. Chem. Int. Ed. 46 1222

    [15]

    Hao R, Xing R J, Xu Z C, Hou Y L, Gao S, Sun S H 2010 Adv. Mater. 22 2729

    [16]

    Nogués J, Schuller I K 1999 J. Magn. Magn. Mater. 192 203

    [17]

    Bianco L D, Fiorani D, Testa A M, Bonetti E, Signorini L 2004 Phys. Rev. B 70 052401

    [18]

    Grzelczak M, Correa-Duarte M A, Salgueiriño-Maceira V, Rodríguez-González B, Rivas J, Liz-Marzán L M 2007 Angew. Chem. Int. Ed. 46 7026

    [19]

    Tian Z M, Yuan S L, Yin S Y, Liu L, He J H 2008 Appl. Phys. Lett. 93 222505

    [20]

    Liu W, Zhong W, Du Y W 2008 J. Nanosci. Nanotechnol. 8 2781

    [21]

    Yang N, Yang H B, Qu Y Q, Fan Y Z, Chang L X, Zhu H Y, Li M H, Zou G T 2006 Mater. Res. Bull. 41 2154

    [22]

    Liu D F, Yang S H, Lee S T 2008 J. Phys. Chem. C 112 7110

    [23]

    Morjan I, Soare I, Alexandrescu R, Gavrila-Florescu L, Morjan R E, Prodan G, Fleaca C, Sandu I, Voicu I, Dumitrache F, Popovici E 2008 Infrared Phys. Tech. 51 186

    [24]

    Zhou H P, Xu S X, Zhang D K, Chen S J, Deng J K 2017 Nanoscale 9 3196

    [25]

    Yang W J, Liu J J, Liu M Q, Zhao Z C, Song Y P, Tang X F, Luo J Y, Zeng Q G, He X 2018 Appl. Surf. Sci. 440 841

    [26]

    Choi E B, Lee J H 2015 J. Alloys Compd. 643 S231

    [27]

    Takahashi M, Higashimine K, Mohan P, Mott D M, Maenosono S 2015 CrystEngComm 17 6923

    [28]

    Dezfoolinezhad E, Ghodrati K, Badri R 2016 New J. Chem. 40 4575

    [29]

    Lee J W, Cho Y S, Amarakoon V R W 1999 J. Appl. Phys. 85 5696

    [30]

    Sugimoto M 1999 J. Am. Ceram. Soc. 82 269

    [31]

    Fang Q Q, Zhong W, Du Y W 1999 Chin. Phys. Lett. 16 285

    [32]

    Fang Q Q, Zhong W, Du Y W 1999 Acta Phys. Sin. 48 1170 (in Chinese) [方庆清, 钟伟, 都有为 1999 物理学报 48 1170]

    [33]

    Liu X S, Zhong W, Gu B X, Du Y W 2002 J. Appl. Phys. 92 1028

    [34]

    Liu X S, Zhong W, Yang S, Jiang H Y, Gu B X, Du Y W 2002 Acta Phys. Sin. 51 1128 (in Chinese) [刘先松, 钟伟, 杨森, 姜洪英, 顾本喜, 都有为 2002 物理学报 51 1128]

    [35]

    Liu X S, Gu B X, Zhong W, Jiang H Y, Du Y W 2003 Appl. Phys. A 77 673

    [36]

    Zhong W, Liu W, Au C T, Du Y W 2006 Nanotechnology 17 250

    [37]

    Jiang H Y, Zhong W, Tang N J, Liu X S, Du Y W 2003 Chin. Phys. Lett. 20 1855

    [38]

    Tang N J, Jiang H Y, Zhong W, Wu X L, Zou W Q, Du Y W 2006 J. Alloys Compd. 419 145

    [39]

    Tang N J, Zhong W, Wu X L, Jiang H Y, Liu W, Du Y W 2005 Mater. Lett. 59 1723

    [40]

    Tang N J, Zhong W, Liu W, Jiang H Y, Wu X L, Du Y W 2004 Nanotechnology 15 1756

    [41]

    Jiang H Y, Zhong W, Wu X L, Tang N J, Liu W, Du Y W 2004 J. Alloys Compd. 384 264

    [42]

    Jiang H Y, Zhong W, Tang N J, Wu X L, Liu W, Du Y W 2005 Int. J. Mod. Phys. B 19 4371

    [43]

    Liu W, Zhong W, Jiang H Y, Tang N J, Wu X L, Du Y W 2006 Surf. Coat. Tech. 200 5170

    [44]

    Liu W, Zhong W, Jiang H Y, Tang N J, Wu X L, Du Y W 2005 Eur. Phys. J. B 46 471

    [45]

    Liu W, Zhong W, Qiu L J, L L Y, Du Y W 2006 Eur. Phys. J. B 51 501

    [46]

    Jiang H E, Liu Y, Luo W F, Wang Y J, Tang X L, Dou W, Cui Y M, Liu W S 2018 Anal. Chim. Acta 1014 91

    [47]

    Chae H S, Kim S D, Piao S H, Choi H J 2016 Colloid Polym. Sci. 294 647

    [48]

    Roto R, Yusran Y, Kuncaka A 2016 Appl. Surf. Sci. 377 30

    [49]

    Jin C Q, Zhong W, Qi X S, Song H A, Au C T, Tang S L, Du Y W 2008 J. Appl. Phys. 103 07D520

    [50]

    Yang Z X, Zhong W, Au C T, Du X, Song H A, Qi X S, Ye X J, Xu M H, Du Y W 2009 J. Phys. Chem. C 113 21269

    [51]

    Madhumitha A, Preethi V, Kanmani S 2018 Int. J. Hydrogen Energ. 43 3946

    [52]

    Neris A M, Schreiner W H, Salvador C, Silva U C, Chesman C, Longo E, Santos I M G 2018 Mat. Sci. Eng. B 229 218

    [53]

    Li L, Mak K Y, Leung C W, Chan K Y, Chan W K, Zhong W, Pong P W T 2013 Microelectron. Eng. 110 329

    [54]

    Wang S, Yue F J, Wu D, Zhang F M, Zhong W, Du Y W 2009 Appl. Phys. Lett. 94 012507

    [55]

    Li S D, Bi H, Fang J L, Zhong W, Du Y W 2004 Chin. Phys. Lett. 21 737

    [56]

    Xu M H, Qi X S, Zhong W, Ye X J, Deng Y, Au C T, Jin C Q, Yang Z X, Du Y W 2009 Chin. Phys. Lett. 26 116103

    [57]

    Qi X S, Xu J L, Zhong W, Au C T, Du Y W 2014 Diam. Relat. Mater. 45 12

    [58]

    Qi X S, Xu J L, Hu Q, Zhong W, Du Y W 2015 Mat. Sci. Eng. B 198 108

    [59]

    Qi X S, Zhong W, Deng C Y, Au C T, Du Y W 2013 Mater. Lett. 107 374

    [60]

    Qi X S, Xu J L, Zhong W, Du Y W 2015 Mater. Res. Bull. 67 162

    [61]

    Qi X S, Hu Q, Xu J L, Xie R, Bai Z C, Jiang Y, Qin S J, Zhong W, Du Y W 2016 Mat. Sci. Eng. B 211 53

    [62]

    Tang N J, Zhong W, Gedanken A, Du Y W 2006 J. Phys. Chem. B 110 11772

    [63]

    Qi X S, Hu Q, Xu J L, Xie R, Jiang Y, Zhong W, Du Y W 2016 RSC Adv. 6 11382

    [64]

    Qi X S, Hu Q, Cai H B, Xie R, Bai Z C, Jiang Y, Qin S J, Zhong W, Du Y W 2016 Sci. Rep. 6 37972

    [65]

    Qi X S, Xu M H, Zhong W, Ye X J, Deng Y, Au C T, Jin C Q, Du Y W 2009 J. Phys. Chem. C 113 2267

    [66]

    Tang N J, Wen J F, Zhang Y, Liu F X, Lin K, Du Y W 2010 ACS Nano 4 241

    [67]

    Tang N J, Kuo W, Jeng C, Wang L Y, Lin K, Du Y W 2010 ACS Nano 4 781

    [68]

    Xu M H, Zhong W, Wang Z H, Au C T, Du Y W 2013 Physica E 52 14

    [69]

    Xu M H, Zhong W, Qi X S, Au C T, Deng Y, Du Y W 2010 J. Alloys Compd. 495 200

    [70]

    Xu M H, Zhong W, Au C T, L L Y, Du Y W 2011 J. Mater. Res. 26 3058

    [71]

    Qi X S, Yang Y, Zhong W, Qin C, Deng Y, Au C T, Du Y W 2010 Carbon 48 3512

    [72]

    Qi X S, Zhong W, Deng Y, Au C T, Du Y W 2009 J. Phys. Chem. C 113 15934

    [73]

    Meiklejohn W H, Bean C P 1956 Phys. Rev. 102 1413

    [74]

    Nogués J, Sort J, Langlais V, Skumryev V, Suriñach S, Muñoz J S, Baró M D 2005 Phys. Rep. 422 65

    [75]

    Skumryev V, Stoyanov S, Zhang Y, Hadjipanayis G, Givord D, Nogués J 2003 Nature 423 850

    [76]

    Feygenson M, Yiu Y, Kou A, Kim K S, Aronson M C 2010 Phys. Rev. B 81 195445

    [77]

    Néel L 1961 Compt. Rend. 252 4075

    [78]

    Thota S, Kumar J 2007 J. Phys. Chem. Solids 68 1951

    [79]

    Winkler E, Zysler R D, Mansilla M V, Fiorani D 2005 Phys. Rev. B 72 132409

    [80]

    Shi H G, He X M 2012 J. Phys. Chem. Solids 73 646

    [81]

    He X M, Shi H G 2011 Mater. Res. Bull. 46 1692

    [82]

    He X M, Song X Y, Qiao W, Li Z W, Zhang X, Yan S M, Zhong W, Du Y W 2015 J. Phys. Chem. C 119 9550

    [83]

    He X M, Zhong W, Yan S M, Liu C, Shi H G, Au C T, Du Y W 2014 J. Phys. Chem. C 118 13898

    [84]

    He X M, Zhong W, Du Y W 2015 J. Appl. Phys. 117 043905

    [85]

    He X M, Li Z W, Zhang X, Qiao W, Song X Y, Yan S M, Zhong W, Du Y W 2015 RSC Adv. 5 69948

    [86]

    Inderhees S E, Borchers J A, Green K S, Kim M S, Sun K, Strycker G L, Aronson M C 2008 Phys. Rev. Lett. 101 117202

    [87]

    Chandra S, Khurshid H, Phan M H, Srikanth H 2012 Appl. Phys. Lett. 101 232405

    [88]

    Seto T, Akinaga H, Takano F, Koga K, Orii T, Hirasawa M 2005 J. Phys. Chem. B 109 13403

    [89]

    Panagiotopoulos I, Basina G, Alexandrakis V, Devlin E, Hadjipanayis G, Colak L, Niarchos D, Tzitzios V 2009 J. Phys. Chem. C 113 14609

    [90]

    Luo S R, Chai F, Wang T T, Li L, Zhang L Y, Wang C G, Su Z M 2013 RSC Adv. 3 12671

    [91]

    Lee I S, Lee N, Park J, Kim B H, Yi Y W, Kim T, Kim T K, Lee I H, Paik S R, Hyeon T 2006 J. Am. Chem. Soc. 128 10658

    [92]

    Querejeta-Fernández A, Parras M, Varela A, del Monte F, García-Hernández M, González-Calbet J M 2010 Chem. Mater. 22 6529

    [93]

    Tracy J B, Weiss D N, Dinega D P, Bawendi M G 2005 Phys. Rev. B 72 064404

    [94]

    Yao X J, He X M, Song X Y, Ding Q, Li Z W, Zhong W, Au C T, Du Y W 2014 Phys. Chem. Chem. Phys. 16 6925

    [95]

    Li Z W, He X M, Yan S M, Song X Y, Qiao W, Zhang X, Zhong W, Du Y W 2016 Acta Phys. Sin. 65 147101 (in Chinese) [李志文, 何学敏, 颜士明, 宋雪银, 乔文, 张星, 钟伟, 都有为 2016 物理学报 65 147101]

    [96]

    Kavich D W, Dickerson J H, Mahajan S V, Hasan S A, Park J H 2008 Phys. Rev. B 78 174414

    [97]

    Sun X L, Huls N F, Sigdel A, Sun S H 2012 Nano Lett. 12 246

    [98]

    Sharma S K, Vargas J M, Pirota K R, Kumar S, Lee C G, Knobel M 2011 J. Alloys Compd. 509 6414

    [99]

    Liu C, Cui J G, He X M, Shi H G 2014 J. Nnaopart. Res. 16 2320

    [100]

    Golosovsky I V, Salazar-Alvarez G, López-Ortega A, González M A, Sort J, Estrader M, Suriñach S, Baró M D, Nogués J 2009 Phys. Rev. Lett. 102 247201

    [101]

    López-Ortega A, Tobia D, Winkler E, Golosovsky I V, Salazar-Alvarez G, Estradé S, Estrader M, Sort J, González M A, Suriñach S, Arbiol J, Peiró F, Zysler R D, Baró M D, Nogués J 2010 J. Am. Chem. Soc. 132 9398

    [102]

    Berkowitz A E, Rodriguez G F, Hong J I, An K, Hyeon T, Agarwal N, Smith D J, Fullerton E E 2008 Phys. Rev. B 77 024403

    [103]

    Berkowitz A E, Rodriguez G F, Hong J I, An K, Hyeon T, Agarwal N, Smith D J, Fullerton E E 2008 J. Phys. D: Appl. Phys. 41 134007

    [104]

    Salazar-Alvarez G, Sort J, Suriñach S, Baró M D, Nogués J 2007 J. Am. Chem. Soc. 129 9102

    [105]

    Roth W L 1958 Phys. Rev. 110 1333

    [106]

    Rödl C, Fuchs F, Furthmller J, Bechastedt F 2009 Phys. Rev. B 79 235114

    [107]

    Dimitriadis V, Kechrakos D, Chubykalo-Fesenko O, Tsiantos V 2015 Phys. Rev. B 92 064420

    [108]

    Shcherbakov V P, Fabian K, McEnroe S A 2009 Phys. Rev. B 80 174419

    [109]

    Proenca M P, Ventura J, Sousa C T, Vazquez M, Araujo J P 2013 Phys. Rev. B 87 134404

    [110]

    Maurer T, Zighem F, Ott F, Chaboussant G, André G 2009 Phys. Rev. B 80 064427

    [111]

    Salazar-Alvarez G, Geshev J, Agramunt-Puig S, Navau C, Sanchez A, Sort J, Nogués J 2016 ACS Appl. Mater. Interfaces 8 22477

    [112]

    Lo C C, Huang C C, Liu C M, Chen C, Kuo C Y, Lin H J, Tseng Y C 2011 J. Magn. Magn. Mater. 323 1950

    [113]

    Hsu H C, Lo C C, Tseng Y C 2012 J. Appl. Phys. 111 063919

    [114]

    Salgueiriño-Maceira V, Correa-Duarte M A, Bañobre-López M, Grzelczak M, Farle M, Liz-Marzán L M, Rivas J 2008 Adv. Funct. Mater. 18 616

    [115]

    Irfan M, Wang C J, Khan U, Li W J, Zhang X M, Kong W J, Liu P, Wan C H, Liu Y W, Han X F 2017 Nanoscale 9 5694

    [116]

    Khan U, Li W J, Adeela N, Irfan M, Javed K, Wan C H, Riaz S, Han X F 2016 Nanoscale 8 6064

    [117]

    Lee J H, Wu J H, Lee J S, Jeon K S, Kim H R, Lee J H, Suh Y D, Kim Y K 2008 IEEE Trans. Magn. 44 3950

    [118]

    Chen Y J, Gao P, Zhu C L, Wang R X, Wang L J, Cao M S, Fang X Y 2009 J. Appl. Phys. 106 054303

    [119]

    Kazakova O, Daly B, Holmes J D 2006 Phys. Rev. B 74 184413

    [120]

    Daly B, Arnold D C, Kulkarni J S, Kazakova O, Shaw M T, Nikitenko S, Erts D, Morris M A, Holmes J D 2006 Small 2 1299

    [121]

    Chong Y T, Görlitz D, Martens S, Yau M Y E, Allende S, Bachmann J, Nielsch K 2010 Adv. Mater. 22 2435

    [122]

    Khan U, Irfan M, Li W J, Adeela N, Liu P, Zhang Q T, Han X F 2016 Nanoscale 8 14956

    [123]

    Ali S S, Li W J, Javed K, Shi D W, Riaz S, Zhai G J, Han X F 2016 Nanotechnology 27 045708

    [124]

    Shi D W, Javed K, Ali S S, Chen J Y, Li P S, Zhao Y G, Han X F 2014 Nanoscale 6 7215

    [125]

    Ali S S, Li W J, Javed K, Shi D W, Riaz S, Liu Y, Zhao Y G, Zhai G J, Han X F 2015 Nanoscale 7 13398

    [126]

    Fu B, Lu R E, Gao K, Yang Y D, Wang Y P 2015 EPL 112 27002

    [127]

    Park S H, Lee W J 2015 RSC Adv. 5 23548

    [128]

    Yuan C Z, Zhang L H, Zhu S Q, Cao H, Lin J D, Hou L R 2015 Nanotechnology 26 145401

    [129]

    Zhan L, Chen H B, Fang J Q, Wang S Q, Ding L X, Li Z, Ashman P J, Wang H H 2016 Electrochim. Acta 209 192

    [130]

    Zhang Q C, Xu W W, Sun J, Pan Z H, Zhao J X, Wang X N, Zhang J, Man P, Guo J B, Zhou Z Y, He B, Zhang Z X, Li Q W, Zhang Y G, Xu L, Yao Y G 2017 Nano Lett. 17 7552

    [131]

    Chiscan O, Dumitru I, Tura V, Chiriac H, Stancu A 2011 IEEE Trans. Magn. 47 4511

    [132]

    Ai Z H, Wang Y A, Xiao M, Zhang L Z, Qiu J R 2008 J. Phys. Chem. C 112 9847

    [133]

    Zhan S H, Zhu D D, Ren G Y, Shen Z Q, Qiu M Y, Yang S S, Yu H B, Li Y 2014 ACS Appl. Mater. Interfaces 6 16841

    [134]

    Tang N J, Chen W, Zhong W, Jiang H Y, Huang S L, Du Y W 2006 Carbon 44 423

    [135]

    Tang N J, Zhong W, Gedanken A, Du Y W 2007 Solid State Comm. 142 265

    [136]

    Tang N J, L L Y, Zhong W, Au C T, Du Y W 2009 Sci. China Ser. G 52 31

    [137]

    Wei T, Jin C Q, Zhong W, Liu J M 2007 Appl. Phys. Lett. 91 222907

    [138]

    Qi X S, Deng Y, Zhong W, Yang Y, Qin C, Au C T, Du Y W 2010 J. Phys. Chem. C 114 808

    [139]

    Yang E Q, Qi X S, Xie R, Bai Z C, Jiang Y, Qin S J, Zhong W, Du Y W 2018 Appl. Surf. Sci. 441 780

    [140]

    Qi X S, Yang E Q, Cai H B, Xie R, Bai Z C, Jiang Y, Qin S J, Zhong W, Du Y W 2017 Sci. Rep. 7 9851

    [141]

    Zhong M J, He Z M, Shen W X, Zhang Z M, Zhang J H, Ma H L 2005 J. Mater. Sci. Eng. 23 521 (in Chinese) [钟敏建, 何正明, 沈伟星, 张正明, 张建华, 马洪良 2005 材料科学与工程学报 23 521]

    [142]

    Yang C, Zhao H B, Hou Y L, Ma D 2012 J. Am. Chem. Soc. 134 15814

    [143]

    Yu J, Yang C, Li J D S, Ding Y C, Zhang L, Yousaf M Z, Lin J, Pang R, Wei L B, Xu L L, Sheng F G, Li C H, Li G J, Zhao L Y, Hou Y L 2014 Adv. Mater. 26 4114

    [144]

    Yang C, Zhao B, Gao R, Yao S Y, Zhai P, Li S W, Yu J, Hou Y L, Ma D 2017 ACS Catal. 7 5661

    [145]

    Hu E L, Yu X Y, Chen F, Wu Y D, Hu Y, Lou X W 2018 Adv. Energy Mater. 8 1702476

  • [1]

    Beek W J E, Wienk M M, Jansen R A J 2004 Adv. Mater. 16 1009

    [2]

    Sajjad M, Morell G, Feng P 2013 ACS Appl. Mater. Interfaces 5 5051

    [3]

    Zhang H T, Wu G, Chen X H, Qiu X G 2006 Mater. Res. Bull. 41 495

    [4]

    He X M, Zhong W, Au C T, Du Y W 2013 Nanoscale Res. Lett. 8 446

    [5]

    Kodama R H, Makhlouf S A, Berkowitz A E 1997 Phys. Rev. Lett. 79 1393

    [6]

    Martínez-Boubeta C, Simeonidis K, Angelakeris M, Pazos-Pérez N, Giersig M, Delimitis A, Nalbandian L, Alexandrakis V, Niarchos D 2006 Phys. Rev. B 74 054430

    [7]

    Tracy J B, Bawendi M G 2006 Phys. Rev. B 74 184434

    [8]

    Johnston-Peck A C, Wang J W, Tracy J B 2009 ACS Nano 3 1077

    [9]

    Djerdj I, Arčon D, Jaglčić Z, Niederberger M 2007 J. Phys. Chem. C 111 3614

    [10]

    He X M, Zhong W, Yan S M, Au C T, L L Y, Du Y W 2014 J. Phys. D: Appl. Phys. 47 235002

    [11]

    Hou Y L, Xu Z C, Sun S H 2007 Angew. Chem. 119 6445

    [12]

    Zhang H T, Chen X H 2005 Nanotechnology 16 2288

    [13]

    Makhlouf S A, Al-Attar H, Kodama R H 2008 Solid State Commun. 145 1

    [14]

    Lu A H, Salabas E L, Schth F 2007 Angew. Chem. Int. Ed. 46 1222

    [15]

    Hao R, Xing R J, Xu Z C, Hou Y L, Gao S, Sun S H 2010 Adv. Mater. 22 2729

    [16]

    Nogués J, Schuller I K 1999 J. Magn. Magn. Mater. 192 203

    [17]

    Bianco L D, Fiorani D, Testa A M, Bonetti E, Signorini L 2004 Phys. Rev. B 70 052401

    [18]

    Grzelczak M, Correa-Duarte M A, Salgueiriño-Maceira V, Rodríguez-González B, Rivas J, Liz-Marzán L M 2007 Angew. Chem. Int. Ed. 46 7026

    [19]

    Tian Z M, Yuan S L, Yin S Y, Liu L, He J H 2008 Appl. Phys. Lett. 93 222505

    [20]

    Liu W, Zhong W, Du Y W 2008 J. Nanosci. Nanotechnol. 8 2781

    [21]

    Yang N, Yang H B, Qu Y Q, Fan Y Z, Chang L X, Zhu H Y, Li M H, Zou G T 2006 Mater. Res. Bull. 41 2154

    [22]

    Liu D F, Yang S H, Lee S T 2008 J. Phys. Chem. C 112 7110

    [23]

    Morjan I, Soare I, Alexandrescu R, Gavrila-Florescu L, Morjan R E, Prodan G, Fleaca C, Sandu I, Voicu I, Dumitrache F, Popovici E 2008 Infrared Phys. Tech. 51 186

    [24]

    Zhou H P, Xu S X, Zhang D K, Chen S J, Deng J K 2017 Nanoscale 9 3196

    [25]

    Yang W J, Liu J J, Liu M Q, Zhao Z C, Song Y P, Tang X F, Luo J Y, Zeng Q G, He X 2018 Appl. Surf. Sci. 440 841

    [26]

    Choi E B, Lee J H 2015 J. Alloys Compd. 643 S231

    [27]

    Takahashi M, Higashimine K, Mohan P, Mott D M, Maenosono S 2015 CrystEngComm 17 6923

    [28]

    Dezfoolinezhad E, Ghodrati K, Badri R 2016 New J. Chem. 40 4575

    [29]

    Lee J W, Cho Y S, Amarakoon V R W 1999 J. Appl. Phys. 85 5696

    [30]

    Sugimoto M 1999 J. Am. Ceram. Soc. 82 269

    [31]

    Fang Q Q, Zhong W, Du Y W 1999 Chin. Phys. Lett. 16 285

    [32]

    Fang Q Q, Zhong W, Du Y W 1999 Acta Phys. Sin. 48 1170 (in Chinese) [方庆清, 钟伟, 都有为 1999 物理学报 48 1170]

    [33]

    Liu X S, Zhong W, Gu B X, Du Y W 2002 J. Appl. Phys. 92 1028

    [34]

    Liu X S, Zhong W, Yang S, Jiang H Y, Gu B X, Du Y W 2002 Acta Phys. Sin. 51 1128 (in Chinese) [刘先松, 钟伟, 杨森, 姜洪英, 顾本喜, 都有为 2002 物理学报 51 1128]

    [35]

    Liu X S, Gu B X, Zhong W, Jiang H Y, Du Y W 2003 Appl. Phys. A 77 673

    [36]

    Zhong W, Liu W, Au C T, Du Y W 2006 Nanotechnology 17 250

    [37]

    Jiang H Y, Zhong W, Tang N J, Liu X S, Du Y W 2003 Chin. Phys. Lett. 20 1855

    [38]

    Tang N J, Jiang H Y, Zhong W, Wu X L, Zou W Q, Du Y W 2006 J. Alloys Compd. 419 145

    [39]

    Tang N J, Zhong W, Wu X L, Jiang H Y, Liu W, Du Y W 2005 Mater. Lett. 59 1723

    [40]

    Tang N J, Zhong W, Liu W, Jiang H Y, Wu X L, Du Y W 2004 Nanotechnology 15 1756

    [41]

    Jiang H Y, Zhong W, Wu X L, Tang N J, Liu W, Du Y W 2004 J. Alloys Compd. 384 264

    [42]

    Jiang H Y, Zhong W, Tang N J, Wu X L, Liu W, Du Y W 2005 Int. J. Mod. Phys. B 19 4371

    [43]

    Liu W, Zhong W, Jiang H Y, Tang N J, Wu X L, Du Y W 2006 Surf. Coat. Tech. 200 5170

    [44]

    Liu W, Zhong W, Jiang H Y, Tang N J, Wu X L, Du Y W 2005 Eur. Phys. J. B 46 471

    [45]

    Liu W, Zhong W, Qiu L J, L L Y, Du Y W 2006 Eur. Phys. J. B 51 501

    [46]

    Jiang H E, Liu Y, Luo W F, Wang Y J, Tang X L, Dou W, Cui Y M, Liu W S 2018 Anal. Chim. Acta 1014 91

    [47]

    Chae H S, Kim S D, Piao S H, Choi H J 2016 Colloid Polym. Sci. 294 647

    [48]

    Roto R, Yusran Y, Kuncaka A 2016 Appl. Surf. Sci. 377 30

    [49]

    Jin C Q, Zhong W, Qi X S, Song H A, Au C T, Tang S L, Du Y W 2008 J. Appl. Phys. 103 07D520

    [50]

    Yang Z X, Zhong W, Au C T, Du X, Song H A, Qi X S, Ye X J, Xu M H, Du Y W 2009 J. Phys. Chem. C 113 21269

    [51]

    Madhumitha A, Preethi V, Kanmani S 2018 Int. J. Hydrogen Energ. 43 3946

    [52]

    Neris A M, Schreiner W H, Salvador C, Silva U C, Chesman C, Longo E, Santos I M G 2018 Mat. Sci. Eng. B 229 218

    [53]

    Li L, Mak K Y, Leung C W, Chan K Y, Chan W K, Zhong W, Pong P W T 2013 Microelectron. Eng. 110 329

    [54]

    Wang S, Yue F J, Wu D, Zhang F M, Zhong W, Du Y W 2009 Appl. Phys. Lett. 94 012507

    [55]

    Li S D, Bi H, Fang J L, Zhong W, Du Y W 2004 Chin. Phys. Lett. 21 737

    [56]

    Xu M H, Qi X S, Zhong W, Ye X J, Deng Y, Au C T, Jin C Q, Yang Z X, Du Y W 2009 Chin. Phys. Lett. 26 116103

    [57]

    Qi X S, Xu J L, Zhong W, Au C T, Du Y W 2014 Diam. Relat. Mater. 45 12

    [58]

    Qi X S, Xu J L, Hu Q, Zhong W, Du Y W 2015 Mat. Sci. Eng. B 198 108

    [59]

    Qi X S, Zhong W, Deng C Y, Au C T, Du Y W 2013 Mater. Lett. 107 374

    [60]

    Qi X S, Xu J L, Zhong W, Du Y W 2015 Mater. Res. Bull. 67 162

    [61]

    Qi X S, Hu Q, Xu J L, Xie R, Bai Z C, Jiang Y, Qin S J, Zhong W, Du Y W 2016 Mat. Sci. Eng. B 211 53

    [62]

    Tang N J, Zhong W, Gedanken A, Du Y W 2006 J. Phys. Chem. B 110 11772

    [63]

    Qi X S, Hu Q, Xu J L, Xie R, Jiang Y, Zhong W, Du Y W 2016 RSC Adv. 6 11382

    [64]

    Qi X S, Hu Q, Cai H B, Xie R, Bai Z C, Jiang Y, Qin S J, Zhong W, Du Y W 2016 Sci. Rep. 6 37972

    [65]

    Qi X S, Xu M H, Zhong W, Ye X J, Deng Y, Au C T, Jin C Q, Du Y W 2009 J. Phys. Chem. C 113 2267

    [66]

    Tang N J, Wen J F, Zhang Y, Liu F X, Lin K, Du Y W 2010 ACS Nano 4 241

    [67]

    Tang N J, Kuo W, Jeng C, Wang L Y, Lin K, Du Y W 2010 ACS Nano 4 781

    [68]

    Xu M H, Zhong W, Wang Z H, Au C T, Du Y W 2013 Physica E 52 14

    [69]

    Xu M H, Zhong W, Qi X S, Au C T, Deng Y, Du Y W 2010 J. Alloys Compd. 495 200

    [70]

    Xu M H, Zhong W, Au C T, L L Y, Du Y W 2011 J. Mater. Res. 26 3058

    [71]

    Qi X S, Yang Y, Zhong W, Qin C, Deng Y, Au C T, Du Y W 2010 Carbon 48 3512

    [72]

    Qi X S, Zhong W, Deng Y, Au C T, Du Y W 2009 J. Phys. Chem. C 113 15934

    [73]

    Meiklejohn W H, Bean C P 1956 Phys. Rev. 102 1413

    [74]

    Nogués J, Sort J, Langlais V, Skumryev V, Suriñach S, Muñoz J S, Baró M D 2005 Phys. Rep. 422 65

    [75]

    Skumryev V, Stoyanov S, Zhang Y, Hadjipanayis G, Givord D, Nogués J 2003 Nature 423 850

    [76]

    Feygenson M, Yiu Y, Kou A, Kim K S, Aronson M C 2010 Phys. Rev. B 81 195445

    [77]

    Néel L 1961 Compt. Rend. 252 4075

    [78]

    Thota S, Kumar J 2007 J. Phys. Chem. Solids 68 1951

    [79]

    Winkler E, Zysler R D, Mansilla M V, Fiorani D 2005 Phys. Rev. B 72 132409

    [80]

    Shi H G, He X M 2012 J. Phys. Chem. Solids 73 646

    [81]

    He X M, Shi H G 2011 Mater. Res. Bull. 46 1692

    [82]

    He X M, Song X Y, Qiao W, Li Z W, Zhang X, Yan S M, Zhong W, Du Y W 2015 J. Phys. Chem. C 119 9550

    [83]

    He X M, Zhong W, Yan S M, Liu C, Shi H G, Au C T, Du Y W 2014 J. Phys. Chem. C 118 13898

    [84]

    He X M, Zhong W, Du Y W 2015 J. Appl. Phys. 117 043905

    [85]

    He X M, Li Z W, Zhang X, Qiao W, Song X Y, Yan S M, Zhong W, Du Y W 2015 RSC Adv. 5 69948

    [86]

    Inderhees S E, Borchers J A, Green K S, Kim M S, Sun K, Strycker G L, Aronson M C 2008 Phys. Rev. Lett. 101 117202

    [87]

    Chandra S, Khurshid H, Phan M H, Srikanth H 2012 Appl. Phys. Lett. 101 232405

    [88]

    Seto T, Akinaga H, Takano F, Koga K, Orii T, Hirasawa M 2005 J. Phys. Chem. B 109 13403

    [89]

    Panagiotopoulos I, Basina G, Alexandrakis V, Devlin E, Hadjipanayis G, Colak L, Niarchos D, Tzitzios V 2009 J. Phys. Chem. C 113 14609

    [90]

    Luo S R, Chai F, Wang T T, Li L, Zhang L Y, Wang C G, Su Z M 2013 RSC Adv. 3 12671

    [91]

    Lee I S, Lee N, Park J, Kim B H, Yi Y W, Kim T, Kim T K, Lee I H, Paik S R, Hyeon T 2006 J. Am. Chem. Soc. 128 10658

    [92]

    Querejeta-Fernández A, Parras M, Varela A, del Monte F, García-Hernández M, González-Calbet J M 2010 Chem. Mater. 22 6529

    [93]

    Tracy J B, Weiss D N, Dinega D P, Bawendi M G 2005 Phys. Rev. B 72 064404

    [94]

    Yao X J, He X M, Song X Y, Ding Q, Li Z W, Zhong W, Au C T, Du Y W 2014 Phys. Chem. Chem. Phys. 16 6925

    [95]

    Li Z W, He X M, Yan S M, Song X Y, Qiao W, Zhang X, Zhong W, Du Y W 2016 Acta Phys. Sin. 65 147101 (in Chinese) [李志文, 何学敏, 颜士明, 宋雪银, 乔文, 张星, 钟伟, 都有为 2016 物理学报 65 147101]

    [96]

    Kavich D W, Dickerson J H, Mahajan S V, Hasan S A, Park J H 2008 Phys. Rev. B 78 174414

    [97]

    Sun X L, Huls N F, Sigdel A, Sun S H 2012 Nano Lett. 12 246

    [98]

    Sharma S K, Vargas J M, Pirota K R, Kumar S, Lee C G, Knobel M 2011 J. Alloys Compd. 509 6414

    [99]

    Liu C, Cui J G, He X M, Shi H G 2014 J. Nnaopart. Res. 16 2320

    [100]

    Golosovsky I V, Salazar-Alvarez G, López-Ortega A, González M A, Sort J, Estrader M, Suriñach S, Baró M D, Nogués J 2009 Phys. Rev. Lett. 102 247201

    [101]

    López-Ortega A, Tobia D, Winkler E, Golosovsky I V, Salazar-Alvarez G, Estradé S, Estrader M, Sort J, González M A, Suriñach S, Arbiol J, Peiró F, Zysler R D, Baró M D, Nogués J 2010 J. Am. Chem. Soc. 132 9398

    [102]

    Berkowitz A E, Rodriguez G F, Hong J I, An K, Hyeon T, Agarwal N, Smith D J, Fullerton E E 2008 Phys. Rev. B 77 024403

    [103]

    Berkowitz A E, Rodriguez G F, Hong J I, An K, Hyeon T, Agarwal N, Smith D J, Fullerton E E 2008 J. Phys. D: Appl. Phys. 41 134007

    [104]

    Salazar-Alvarez G, Sort J, Suriñach S, Baró M D, Nogués J 2007 J. Am. Chem. Soc. 129 9102

    [105]

    Roth W L 1958 Phys. Rev. 110 1333

    [106]

    Rödl C, Fuchs F, Furthmller J, Bechastedt F 2009 Phys. Rev. B 79 235114

    [107]

    Dimitriadis V, Kechrakos D, Chubykalo-Fesenko O, Tsiantos V 2015 Phys. Rev. B 92 064420

    [108]

    Shcherbakov V P, Fabian K, McEnroe S A 2009 Phys. Rev. B 80 174419

    [109]

    Proenca M P, Ventura J, Sousa C T, Vazquez M, Araujo J P 2013 Phys. Rev. B 87 134404

    [110]

    Maurer T, Zighem F, Ott F, Chaboussant G, André G 2009 Phys. Rev. B 80 064427

    [111]

    Salazar-Alvarez G, Geshev J, Agramunt-Puig S, Navau C, Sanchez A, Sort J, Nogués J 2016 ACS Appl. Mater. Interfaces 8 22477

    [112]

    Lo C C, Huang C C, Liu C M, Chen C, Kuo C Y, Lin H J, Tseng Y C 2011 J. Magn. Magn. Mater. 323 1950

    [113]

    Hsu H C, Lo C C, Tseng Y C 2012 J. Appl. Phys. 111 063919

    [114]

    Salgueiriño-Maceira V, Correa-Duarte M A, Bañobre-López M, Grzelczak M, Farle M, Liz-Marzán L M, Rivas J 2008 Adv. Funct. Mater. 18 616

    [115]

    Irfan M, Wang C J, Khan U, Li W J, Zhang X M, Kong W J, Liu P, Wan C H, Liu Y W, Han X F 2017 Nanoscale 9 5694

    [116]

    Khan U, Li W J, Adeela N, Irfan M, Javed K, Wan C H, Riaz S, Han X F 2016 Nanoscale 8 6064

    [117]

    Lee J H, Wu J H, Lee J S, Jeon K S, Kim H R, Lee J H, Suh Y D, Kim Y K 2008 IEEE Trans. Magn. 44 3950

    [118]

    Chen Y J, Gao P, Zhu C L, Wang R X, Wang L J, Cao M S, Fang X Y 2009 J. Appl. Phys. 106 054303

    [119]

    Kazakova O, Daly B, Holmes J D 2006 Phys. Rev. B 74 184413

    [120]

    Daly B, Arnold D C, Kulkarni J S, Kazakova O, Shaw M T, Nikitenko S, Erts D, Morris M A, Holmes J D 2006 Small 2 1299

    [121]

    Chong Y T, Görlitz D, Martens S, Yau M Y E, Allende S, Bachmann J, Nielsch K 2010 Adv. Mater. 22 2435

    [122]

    Khan U, Irfan M, Li W J, Adeela N, Liu P, Zhang Q T, Han X F 2016 Nanoscale 8 14956

    [123]

    Ali S S, Li W J, Javed K, Shi D W, Riaz S, Zhai G J, Han X F 2016 Nanotechnology 27 045708

    [124]

    Shi D W, Javed K, Ali S S, Chen J Y, Li P S, Zhao Y G, Han X F 2014 Nanoscale 6 7215

    [125]

    Ali S S, Li W J, Javed K, Shi D W, Riaz S, Liu Y, Zhao Y G, Zhai G J, Han X F 2015 Nanoscale 7 13398

    [126]

    Fu B, Lu R E, Gao K, Yang Y D, Wang Y P 2015 EPL 112 27002

    [127]

    Park S H, Lee W J 2015 RSC Adv. 5 23548

    [128]

    Yuan C Z, Zhang L H, Zhu S Q, Cao H, Lin J D, Hou L R 2015 Nanotechnology 26 145401

    [129]

    Zhan L, Chen H B, Fang J Q, Wang S Q, Ding L X, Li Z, Ashman P J, Wang H H 2016 Electrochim. Acta 209 192

    [130]

    Zhang Q C, Xu W W, Sun J, Pan Z H, Zhao J X, Wang X N, Zhang J, Man P, Guo J B, Zhou Z Y, He B, Zhang Z X, Li Q W, Zhang Y G, Xu L, Yao Y G 2017 Nano Lett. 17 7552

    [131]

    Chiscan O, Dumitru I, Tura V, Chiriac H, Stancu A 2011 IEEE Trans. Magn. 47 4511

    [132]

    Ai Z H, Wang Y A, Xiao M, Zhang L Z, Qiu J R 2008 J. Phys. Chem. C 112 9847

    [133]

    Zhan S H, Zhu D D, Ren G Y, Shen Z Q, Qiu M Y, Yang S S, Yu H B, Li Y 2014 ACS Appl. Mater. Interfaces 6 16841

    [134]

    Tang N J, Chen W, Zhong W, Jiang H Y, Huang S L, Du Y W 2006 Carbon 44 423

    [135]

    Tang N J, Zhong W, Gedanken A, Du Y W 2007 Solid State Comm. 142 265

    [136]

    Tang N J, L L Y, Zhong W, Au C T, Du Y W 2009 Sci. China Ser. G 52 31

    [137]

    Wei T, Jin C Q, Zhong W, Liu J M 2007 Appl. Phys. Lett. 91 222907

    [138]

    Qi X S, Deng Y, Zhong W, Yang Y, Qin C, Au C T, Du Y W 2010 J. Phys. Chem. C 114 808

    [139]

    Yang E Q, Qi X S, Xie R, Bai Z C, Jiang Y, Qin S J, Zhong W, Du Y W 2018 Appl. Surf. Sci. 441 780

    [140]

    Qi X S, Yang E Q, Cai H B, Xie R, Bai Z C, Jiang Y, Qin S J, Zhong W, Du Y W 2017 Sci. Rep. 7 9851

    [141]

    Zhong M J, He Z M, Shen W X, Zhang Z M, Zhang J H, Ma H L 2005 J. Mater. Sci. Eng. 23 521 (in Chinese) [钟敏建, 何正明, 沈伟星, 张正明, 张建华, 马洪良 2005 材料科学与工程学报 23 521]

    [142]

    Yang C, Zhao H B, Hou Y L, Ma D 2012 J. Am. Chem. Soc. 134 15814

    [143]

    Yu J, Yang C, Li J D S, Ding Y C, Zhang L, Yousaf M Z, Lin J, Pang R, Wei L B, Xu L L, Sheng F G, Li C H, Li G J, Zhao L Y, Hou Y L 2014 Adv. Mater. 26 4114

    [144]

    Yang C, Zhao B, Gao R, Yao S Y, Zhai P, Li S W, Yu J, Hou Y L, Ma D 2017 ACS Catal. 7 5661

    [145]

    Hu E L, Yu X Y, Chen F, Wu Y D, Hu Y, Lou X W 2018 Adv. Energy Mater. 8 1702476

  • [1] 魏浩铭, 张颖, 张宙, 吴仰晴, 曹丙强. 极性补偿对LaMnO3/LaNiO3超晶格交换偏置场强度的影响. 物理学报, 2022, 71(15): 156801. doi: 10.7498/aps.71.20220365
    [2] 朱照照, 冯正, 蔡建旺. 基于IrMn/Fe/Pt交换偏置结构的无场自旋太赫兹源. 物理学报, 2022, 71(4): 048703. doi: 10.7498/aps.71.20211831
    [3] 朱照照, 冯正, 蔡建旺. 基于IrMn/Fe/Pt交换偏置结构的无场自旋太赫兹源. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211831
    [4] 蒋梅燕, 朱政杰, 陈成克, 李晓, 胡晓君. 硫离子注入纳米金刚石薄膜的微结构和电化学性能. 物理学报, 2019, 68(14): 148101. doi: 10.7498/aps.68.20190394
    [5] 申建雷, 李萌萌, 赵瑞斌, 李国科, 马丽, 甄聪棉, 候登录. Ni-Mn杂化对Mn50Ni41-xSn9Cux合金中马氏体相变温度和马氏体相磁性的影响. 物理学报, 2016, 65(24): 247501. doi: 10.7498/aps.65.247501
    [6] 李志文, 何学敏, 颜士明, 宋雪银, 乔文, 张星, 钟伟, 都有为. -Fe2O3/NiO核-壳纳米花的合成、微结构与磁性. 物理学报, 2016, 65(14): 147101. doi: 10.7498/aps.65.147101
    [7] 刘奎立, 周思华, 陈松岭. 金属离子掺杂对CuO基纳米复合材料的交换偏置调控. 物理学报, 2015, 64(13): 137501. doi: 10.7498/aps.64.137501
    [8] 王锐, 胡晓君. 氧离子注入纳米金刚石薄膜的微结构和电化学性能研究. 物理学报, 2014, 63(14): 148102. doi: 10.7498/aps.63.148102
    [9] 王长远, 杨晓红, 马勇, 冯媛媛, 熊金龙, 王维. 水热合成ZnO:Cd纳米棒的微结构及光致发光特性. 物理学报, 2014, 63(15): 157701. doi: 10.7498/aps.63.157701
    [10] 张洪武, 周文平, 刘恩克, 王文洪, 吴光恒. Heusler合金NiCoMnSn中的磁场驱动马氏体相变、超自旋玻璃和交换偏置 . 物理学报, 2013, 62(14): 147501. doi: 10.7498/aps.62.147501
    [11] 顾珊珊, 胡晓君, 黄凯. 退火温度对硼掺杂纳米金刚石薄膜微结构和p型导电性能的影响. 物理学报, 2013, 62(11): 118101. doi: 10.7498/aps.62.118101
    [12] 杨铎, 钟宁, 尚海龙, 孙士阳, 李戈扬. 磁控溅射(Ti, N)/Al纳米复合薄膜的微结构和力学性能. 物理学报, 2013, 62(3): 036801. doi: 10.7498/aps.62.036801
    [13] 周广宏, 潘旋, 朱雨富. BiFeO3/Ni81Fe19磁性双层膜中的交换偏置及其热稳定性研究. 物理学报, 2013, 62(9): 097501. doi: 10.7498/aps.62.097501
    [14] 罗毅, 赵国平, 杨海涛, 宋宁宁, 任肖, 丁浩峰, 成昭华. 单一晶相氧化锰纳米颗粒的交换偏置效应. 物理学报, 2013, 62(17): 176102. doi: 10.7498/aps.62.176102
    [15] 胡衡, 胡晓君, 白博文, 陈小虎. 退火时间对硼掺杂纳米金刚石薄膜微结构和电化学性能的影响. 物理学报, 2012, 61(14): 148101. doi: 10.7498/aps.61.148101
    [16] 潘金平, 胡晓君, 陆利平, 印迟. 退火对B掺杂纳米金刚石薄膜微结构和电化学性能的影响. 物理学报, 2010, 59(10): 7410-7416. doi: 10.7498/aps.59.7410
    [17] 许小勇, 潘 靖, 胡经国. 交换偏置双层膜中的反铁磁自旋结构及其交换各向异性. 物理学报, 2007, 56(9): 5476-5482. doi: 10.7498/aps.56.5476
    [18] 潘 靖, 陶永春, 胡经国. 外应力场下铁磁/反铁磁双层膜系统中的交换偏置. 物理学报, 2006, 55(6): 3032-3037. doi: 10.7498/aps.55.3032
    [19] 滕蛟, 蔡建旺, 熊小涛, 赖武彦, 朱逢吾. NiFe/FeMn双层膜交换偏置的形成及热稳定性研究. 物理学报, 2004, 53(1): 272-275. doi: 10.7498/aps.53.272
    [20] 敬 超, 金晓峰, 董国胜, 龚小燕, 郁黎明, 郑卫民. 分子束外延生长Fe/Fe50Mn50双层膜的交换偏置. 物理学报, 2000, 49(10): 2022-2026. doi: 10.7498/aps.49.2022
计量
  • 文章访问数:  4671
  • PDF下载量:  314
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-28
  • 修回日期:  2018-08-27
  • 刊出日期:  2019-11-20

核壳结构磁性复合纳米材料的可控合成与性能

  • 1. 南京邮电大学理学院信息物理研究中心, 南京 210023;
  • 2. 南京大学, 固体微结构物理国家重点实验室, 南京 210093
  • 通信作者: 钟伟, wzhong@nju.edu.cn
    基金项目: 国家自然科学基金(批准号:11604160,11774156,11474151)、江苏省自然科学基金(批准号:BK20160876)、南京大学固体微结构物理国家重点实验室(批准号:M30007)和南京邮电大学基金(批准号:NY215063)资助的课题.

摘要: 具有核/壳结构的磁性复合纳米材料是十分重要的功能材料,其综合物性受材料微结构的影响,而这很大程度上又取决于复合体系的可控合成.本文综述了近二十年来有关核/壳磁性复合纳米材料的制备、表征及性能研究方面的进展,讨论的体系主要有:铁氧体基永磁/软磁(反铁磁)复合纳米材料、非磁性体包覆磁性核而成的复合纳米材料、用磁性颗粒催化合成的碳基复合纳米材料、基于交换偏置效应而设计的复合纳米材料、核-壳同轴结构的一维复合纳米材料和核/壳/壳三元结构的磁性复合纳米材料等.构建复合体系的组分包括M型永磁铁氧体、3d过渡金属(及其合金、氧化物、碳化物)、多铁化合物、非磁性体(比如绝缘体、半导体、有机分子)和碳材料等,着重分析了复合纳米材料的热稳定性、光致发光性能、光电催化能力、电化学特性、微波吸收性能、磁电阻效应、永磁体性能、高频软磁特性、交换偏置效应及其相关现象.最后,对核/壳结构磁性复合纳米材料的未来发展趋势进行了展望,并在基础研究和改性应用方面提出了一些建议.

English Abstract

参考文献 (145)

目录

    /

    返回文章
    返回