搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

官能化对五边形石墨烯力学性能的影响及机理研究

韩同伟 李仁 操淑敏 张小燕

引用本文:
Citation:

官能化对五边形石墨烯力学性能的影响及机理研究

韩同伟, 李仁, 操淑敏, 张小燕

Investigation of effects of functionalization on mechanical properties of penta-graphene

Han Tong-Wei, Li Ren, Cao Shu-Min, Zhang Xiao-Yan
PDF
HTML
导出引用
  • 五边形石墨烯是近年来提出的一种完全由碳五元环组成的新型二维纳米材料. 本文采用分子动力学方法研究了氢基、环氧基和羟基等官能团表面修饰及官能化率对五边形石墨烯力学性能和变形破坏机制的影响以及官能化对升温时五边形石墨烯结构转变的影响规律. 研究发现, 分别引入3种官能基团均可以有效地调控五边形石墨烯的力学性能和变形破坏机制. 五边形石墨烯的杨氏模量和弹性极限均随官能化率的增大先剧烈减小再缓慢增大, 而极限弹性应变单调递增. 低官能化率五边形石墨烯在拉伸载荷下仍然表现出类似于完美五边形石墨烯的塑性变形破坏特征, 不受约束升温时出现碳环结构转变, 临界转变温度高于五边形石墨烯, 而完全官能化可使五边形石墨烯由塑性向脆性变形破坏机制的转变, 升温时五边形石墨烯并未出现碳环结构的转变. 研究结果可为有效调控五边形石墨烯等二维纳米尺度材料的力学性能提供理论基础和结构设计依据.
    Penta-graphene is a new two-dimensional metastable carbon allotrope composed entirely of carbon pentagons with unique electronic and mechanical properties. In this work, molecular dynamics simulations are carried out to investigate the effects of functionalization by hydrogen, epoxide or hydroxyl groups on the mechanical properties and failure mechanism of penta-graphene, as well as the effects of different functionalization coverages. The effects of functionalization on the structural transformation of free-standing penta-graphene triggered by increasing temperature have also been studied. The results indicate that each of the three functional groups considered can effectively tune the mechanical properties and the failure mechanism of penta-graphene. Both the Young's modulus and elastic limit of penta-graphene first decrease sharply and then increase slowly with the increase of the functionalization coverage, while the ultimate elastic strain increases monotonically. Like the pristine penta-graphene, partially functionalized penta-graphene still exhibits a plastic deformation failure behaviour under tensile load, which is caused by the irreversible pentagon-to-polygon structural transformation occurring during tensile loading. Temperature can trigger structural reconstruction for free-standing partially functionalized penta-graphene, and the corresponding critical transition temperature is higher than that of pristine penta-graphene. However, complete functionalization can change the deformation mechanism of penta-graphene from plastic deformation to brittle fracture. For fully functionalized penta-graphene by each of the three functional groups, the structural transformation is not observed when tensile strain is applied or environmental temperature is increased. These findings are expected to provide important guidelines for effectively tuning the mechanical properties of two-dimensional nanomaterials including penta-graphene.
      通信作者: 韩同伟, twhan@ujs.edu.cn
    • 基金项目: 江苏省高等学校自然科学研究重大项目(批准号: 17KJA130001)和高端装备关键结构健康管理国际联合研究中心开放课题项目(批准号: KFJJ20-02N)资助的课题
      Corresponding author: Han Tong-Wei, twhan@ujs.edu.cn
    • Funds: Project supported by the Major Program of Natural Science Foundation of Jiangsu Higher Education Institutions of China (Grant No. 17KJA130001) and Opening Fund of National Center for International Research on Structural Health Management of Critical Components (Grant No. KFJJ20-02N).
    [1]

    Zhang S H, Zhou J, Wang Q, Chen X S, Kawazoe Y, Jena P 2015 Proc. Natl. Acad. Sci. U. S. A. 112 2372Google Scholar

    [2]

    Yu Z G, Zhang Y W 2015 J. Appl. Phys. 118 165706Google Scholar

    [3]

    Xu W, Zhang G, Li B W 2015 J. Chem. Phys. 143 154703Google Scholar

    [4]

    Carr L D, Lusk M T 2010 Nat. Nanotechnol. 5 316Google Scholar

    [5]

    Guo B D, Liu Q A, Chen E D, Zhu H W, Fang L A, Gong J R 2010 Nano Lett. 10 4975Google Scholar

    [6]

    Lahiri J, Lin Y, Bozkurt P, Oleynik I I, Batzill M 2010 Nat. Nanotechnol. 5 326Google Scholar

    [7]

    Han T W, Luo Y, Wang C Y 2015 Acta Mech. Solida Sin. 28 618Google Scholar

    [8]

    Berdiyorov G R, Dixit G, Madjet M E 2016 J. Phys.: Condens. Matter 28 475001Google Scholar

    [9]

    Li X Y, Zhang S H, Wang F Q, Guo Y G, Liu J, Wang Q 2016 Phys. Chem. Chem. Phys. 18 14191Google Scholar

    [10]

    Zhang Y Y, Pei Q X, Cheng Y, Zhang Y W, Zhang X L 2017 Comput. Mater. Sci. 137 195Google Scholar

    [11]

    Wu X F, Varshney V, Lee J, Zhang T, Wohlwend J L, Roy A K, Luo T F 2016 Nano Lett. 16 3925Google Scholar

    [12]

    Zhang Y Y, Pei Q X, Sha Z D, Zhang Y W, Gao H J 2017 Nano Res. 10 3865Google Scholar

    [13]

    Liu L Z, Zhang J F, Zhao J J, Liu F 2012 Nanoscale 4 5910Google Scholar

    [14]

    Suk J W, Piner R D, An J, Ruoff R S 2010 ACS Nano 4 6557Google Scholar

    [15]

    Pei Q X, Zhang Y W, Shenoy V B 2010 Carbon 48 898Google Scholar

    [16]

    Winczewski S, Shaheen M Y, Rybicki J 2018 Carbon 126 165Google Scholar

    [17]

    Erhart P, Albe K 2005 Phys. Rev. B 71 035211Google Scholar

    [18]

    Rahaman O, Mortazavi B, Dianat A, Cuniberti G, Rabczuk T 2017 FlatChem 1 65Google Scholar

    [19]

    Han T W, Cao S M, Wang X Y, Xuezi Y Y, Zhang X Y 2019 Mater. Res. Express 6 085612Google Scholar

    [20]

    Cranford S W 2016 Carbon 96 421Google Scholar

    [21]

    Han T W, Wang X Y, Zhang X Y, Scarpa F, Tang C 2021 Nanotechnology 32 275706Google Scholar

    [22]

    van Duin A C T, Dasgupta S, Lorant F, Goddard W A 2001 J. Phys. Chem. A 105 9396Google Scholar

    [23]

    Chenoweth K, van Duin A C T, Goddard W A 2008 J. Phys. Chem. A 112 1040Google Scholar

    [24]

    Le M Q 2017 Comput. Mater. Sci. 136 181Google Scholar

    [25]

    Chen M, Zhan H, Zhu Y, Wu H, Gu Y 2017 J. Phys. Chem. C 121 9642Google Scholar

    [26]

    Yoon K, Ostadhossein A, van Duin A C T 2016 Carbon 99 58Google Scholar

    [27]

    Hoover W G 1985 Phys. Rev. A 31 1695Google Scholar

    [28]

    Nose S 1984 Mol. Phys. 52 255Google Scholar

    [29]

    Swope W C, ersen H C, Berens P H, Wilson K R 1982 J. Chem. Phys. 76 637Google Scholar

    [30]

    Subramaniyan A K, Sun C T 2008 Int. J. Solids Struct. 45 4340Google Scholar

    [31]

    Zhao Y P 2014 Nano, Mesoscopic Mechanics (Beijing: Science Press) p 14

    [32]

    Yagmurcukardes M, Sahin H, Kang J, Torun E, Peeters F M, Senger R T 2015 J. Appl. Phys. 118 104303Google Scholar

    [33]

    Los J H, Zakharchenko K V, Katsnelson M I, Fasolino A 2015 Phys. Rev. B 91 045415Google Scholar

  • 图 1  五边形石墨烯及其官能化几何模型示意图 (a) 五边形石墨烯薄膜的拉伸模型; (b) 完美五边形石墨烯的2×2超晶胞; (c)完全氢化五边形石墨烯的2×2超晶胞; (d)完全环氧基化五边形石墨烯的2×2超晶胞; (e)完全羟基化五边形石墨烯的2×2超晶胞

    Fig. 1.  Schematics of simulation models and atomic structures for pristine and functionalized penta-graphene. Side view and top view of (a) tensile model of pristine penta-graphene sheet, 2×2 supercell of (b) pristine penta-graphene, (c) fully hydrogenated penta-graphene, (d) fully epoxylated penta-graphene, (f) fully hydroxylated graphene.

    图 2  部分和完全官能化五边形石墨烯的拉伸应力应变曲线

    Fig. 2.  Stress-strain curves of partially and fully functionalized penta-graphene.

    图 3  25%环氧基化五边形石墨烯在不同变形阶段的原子构型图 (a) ε = 0; (b) ε = 0.091; (c) ε = 0.331; (d) ε = 416

    Fig. 3.  Snapshots of the atom configurations of 25% epoxylated penta-graphene at different stain: (a) ε = 0; (b) ε = 0.091; (c) ε = 0.331; (d) ε = 416.

    图 4  完全环氧基化五边形石墨烯在不同变形阶段的原子构型图 (a) ε = 0; (b) ε = 0.043; (c) ε = 0.080; (d) ε = 0.083

    Fig. 4.  Snapshots of the atom configurations of fully epoxylated penta-graphene at different stain: (a) ε = 0; (b) ε = 0.043; (c) ε = 0.080; (d) ε = 0.083.

    图 5  官能化五边形石墨烯的杨氏模量, 弹性极限和极限弹性应变随官能化率的关系

    Fig. 5.  Young’s modulus, elastic stress and strain of penta-graphene functionalized with different functional groups as a function of functionalization percentage.

    图 6  完美的和官能化的五边形石墨烯的势能与温度的关系曲线

    Fig. 6.  Potential energy versus temperature for pristine and functionalized penta-graphene

  • [1]

    Zhang S H, Zhou J, Wang Q, Chen X S, Kawazoe Y, Jena P 2015 Proc. Natl. Acad. Sci. U. S. A. 112 2372Google Scholar

    [2]

    Yu Z G, Zhang Y W 2015 J. Appl. Phys. 118 165706Google Scholar

    [3]

    Xu W, Zhang G, Li B W 2015 J. Chem. Phys. 143 154703Google Scholar

    [4]

    Carr L D, Lusk M T 2010 Nat. Nanotechnol. 5 316Google Scholar

    [5]

    Guo B D, Liu Q A, Chen E D, Zhu H W, Fang L A, Gong J R 2010 Nano Lett. 10 4975Google Scholar

    [6]

    Lahiri J, Lin Y, Bozkurt P, Oleynik I I, Batzill M 2010 Nat. Nanotechnol. 5 326Google Scholar

    [7]

    Han T W, Luo Y, Wang C Y 2015 Acta Mech. Solida Sin. 28 618Google Scholar

    [8]

    Berdiyorov G R, Dixit G, Madjet M E 2016 J. Phys.: Condens. Matter 28 475001Google Scholar

    [9]

    Li X Y, Zhang S H, Wang F Q, Guo Y G, Liu J, Wang Q 2016 Phys. Chem. Chem. Phys. 18 14191Google Scholar

    [10]

    Zhang Y Y, Pei Q X, Cheng Y, Zhang Y W, Zhang X L 2017 Comput. Mater. Sci. 137 195Google Scholar

    [11]

    Wu X F, Varshney V, Lee J, Zhang T, Wohlwend J L, Roy A K, Luo T F 2016 Nano Lett. 16 3925Google Scholar

    [12]

    Zhang Y Y, Pei Q X, Sha Z D, Zhang Y W, Gao H J 2017 Nano Res. 10 3865Google Scholar

    [13]

    Liu L Z, Zhang J F, Zhao J J, Liu F 2012 Nanoscale 4 5910Google Scholar

    [14]

    Suk J W, Piner R D, An J, Ruoff R S 2010 ACS Nano 4 6557Google Scholar

    [15]

    Pei Q X, Zhang Y W, Shenoy V B 2010 Carbon 48 898Google Scholar

    [16]

    Winczewski S, Shaheen M Y, Rybicki J 2018 Carbon 126 165Google Scholar

    [17]

    Erhart P, Albe K 2005 Phys. Rev. B 71 035211Google Scholar

    [18]

    Rahaman O, Mortazavi B, Dianat A, Cuniberti G, Rabczuk T 2017 FlatChem 1 65Google Scholar

    [19]

    Han T W, Cao S M, Wang X Y, Xuezi Y Y, Zhang X Y 2019 Mater. Res. Express 6 085612Google Scholar

    [20]

    Cranford S W 2016 Carbon 96 421Google Scholar

    [21]

    Han T W, Wang X Y, Zhang X Y, Scarpa F, Tang C 2021 Nanotechnology 32 275706Google Scholar

    [22]

    van Duin A C T, Dasgupta S, Lorant F, Goddard W A 2001 J. Phys. Chem. A 105 9396Google Scholar

    [23]

    Chenoweth K, van Duin A C T, Goddard W A 2008 J. Phys. Chem. A 112 1040Google Scholar

    [24]

    Le M Q 2017 Comput. Mater. Sci. 136 181Google Scholar

    [25]

    Chen M, Zhan H, Zhu Y, Wu H, Gu Y 2017 J. Phys. Chem. C 121 9642Google Scholar

    [26]

    Yoon K, Ostadhossein A, van Duin A C T 2016 Carbon 99 58Google Scholar

    [27]

    Hoover W G 1985 Phys. Rev. A 31 1695Google Scholar

    [28]

    Nose S 1984 Mol. Phys. 52 255Google Scholar

    [29]

    Swope W C, ersen H C, Berens P H, Wilson K R 1982 J. Chem. Phys. 76 637Google Scholar

    [30]

    Subramaniyan A K, Sun C T 2008 Int. J. Solids Struct. 45 4340Google Scholar

    [31]

    Zhao Y P 2014 Nano, Mesoscopic Mechanics (Beijing: Science Press) p 14

    [32]

    Yagmurcukardes M, Sahin H, Kang J, Torun E, Peeters F M, Senger R T 2015 J. Appl. Phys. 118 104303Google Scholar

    [33]

    Los J H, Zakharchenko K V, Katsnelson M I, Fasolino A 2015 Phys. Rev. B 91 045415Google Scholar

  • [1] 陈晶晶, 赵洪坡, 王葵, 占慧敏, 罗泽宇. 碳化硅基底覆多层石墨烯力学强化性能分子动力学模拟. 物理学报, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20232031
    [2] 胡庭赫, 李直昊, 张千帆. 元素掺杂对储氢容器用高强钢性能影响的第一性原理和分子动力学模拟. 物理学报, 2024, 73(6): 067101. doi: 10.7498/aps.73.20231735
    [3] 明知非, 宋海洋, 安敏荣. 基于分子动力学模拟的石墨烯镁基复合材料力学行为. 物理学报, 2022, 71(8): 086201. doi: 10.7498/aps.71.20211753
    [4] 杨刚, 郑庭, 程启昊, 张会臣. 非牛顿流体剪切稀化特性的分子动力学模拟. 物理学报, 2021, 70(12): 124701. doi: 10.7498/aps.70.20202116
    [5] 辛勇, 包宏伟, 孙志鹏, 张吉斌, 刘仕超, 郭子萱, 王浩煜, 马飞, 李垣明. U1–xThxO2混合燃料力学性能的分子动力学模拟. 物理学报, 2021, 70(12): 122801. doi: 10.7498/aps.70.20202239
    [6] 白清顺, 窦昱昊, 何欣, 张爱民, 郭永博. 基于分子动力学模拟的铜晶面石墨烯沉积生长机理. 物理学报, 2020, 69(22): 226102. doi: 10.7498/aps.69.20200781
    [7] 李兴欣, 李四平. 退火温度调控多层折叠石墨烯力学性能的分子动力学模拟. 物理学报, 2020, 69(19): 196102. doi: 10.7498/aps.69.20200836
    [8] 邵宇飞, 孟凡顺, 李久会, 赵星. 分子动力学模拟研究孪晶界对单层二硫化钼拉伸行为的影响. 物理学报, 2019, 68(21): 216201. doi: 10.7498/aps.68.20182125
    [9] 张忠强, 李冲, 刘汉伦, 葛道晗, 程广贵, 丁建宁. 石墨烯碳纳米管复合结构渗透特性的分子动力学研究. 物理学报, 2018, 67(5): 056102. doi: 10.7498/aps.67.20172424
    [10] 李杰杰, 鲁斌斌, 线跃辉, 胡国明, 夏热. 纳米多孔银力学性能表征分子动力学模拟. 物理学报, 2018, 67(5): 056101. doi: 10.7498/aps.67.20172193
    [11] 李明林, 万亚玲, 胡建玥, 王卫东. 单层二硫化钼力学性能温度和手性效应的分子动力学模拟. 物理学报, 2016, 65(17): 176201. doi: 10.7498/aps.65.176201
    [12] 邱超, 张会臣. 正则系综条件下空化空泡形成的分子动力学模拟. 物理学报, 2015, 64(3): 033401. doi: 10.7498/aps.64.033401
    [13] 惠治鑫, 贺鹏飞, 戴瑛, 吴艾辉. 硅功能化石墨烯热导率的分子动力学模拟. 物理学报, 2014, 63(7): 074401. doi: 10.7498/aps.63.074401
    [14] 常旭. 多层石墨烯的表面起伏的分子动力学模拟. 物理学报, 2014, 63(8): 086102. doi: 10.7498/aps.63.086102
    [15] 马冰洋, 张安明, 尚海龙, 孙士阳, 李戈扬. 共溅射Al-Zr合金薄膜的非晶化及其力学性能. 物理学报, 2014, 63(13): 136801. doi: 10.7498/aps.63.136801
    [16] 苏锦芳, 宋海洋, 安敏荣. 金纳米管力学性能的分子动力学模拟. 物理学报, 2013, 62(6): 063103. doi: 10.7498/aps.62.063103
    [17] 喻利花, 马冰洋, 曹峻, 许俊华. (Zr,V)N复合膜的结构、力学性能及摩擦性能研究. 物理学报, 2013, 62(7): 076202. doi: 10.7498/aps.62.076202
    [18] 顾芳, 张加宏, 杨丽娟, 顾斌. 应变石墨烯纳米带谐振特性的分子动力学研究. 物理学报, 2011, 60(5): 056103. doi: 10.7498/aps.60.056103
    [19] 翟秋亚, 杨 扬, 徐锦锋, 郭学锋. 快速凝固Cu-Sn亚包晶合金的电阻率及力学性能. 物理学报, 2007, 56(10): 6118-6123. doi: 10.7498/aps.56.6118
    [20] 魏 仑, 梅芳华, 邵 楠, 董云杉, 李戈扬. TiN/TiB2异结构纳米多层膜的共格生长与力学性能. 物理学报, 2005, 54(10): 4846-4851. doi: 10.7498/aps.54.4846
计量
  • 文章访问数:  3508
  • PDF下载量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-21
  • 修回日期:  2021-07-10
  • 上网日期:  2021-08-16
  • 刊出日期:  2021-11-20

/

返回文章
返回