搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

HfO2基铁电薄膜的结构、性能调控及典型器件应用

袁国亮 王琛皓 唐文彬 张睿 陆旭兵

引用本文:
Citation:

HfO2基铁电薄膜的结构、性能调控及典型器件应用

袁国亮, 王琛皓, 唐文彬, 张睿, 陆旭兵

Structure, performance regulation and typical device applications of HfO2-based ferroelectric films

Yuan Guo-Liang, Wang Chen-Hao, Tang Wen-Bin, Zhang Rui, Lu Xu-Bing
PDF
HTML
导出引用
  • 大数据、物联网和人工智能的快速发展对存储芯片、逻辑芯片和其他电子元器件的性能提出了越来越高的要求. 本文介绍了HfO2基铁电薄膜的铁电性起源, 通过掺杂元素改变晶体结构的对称性或引入适量的氧空位来降低相转变的能垒可以增强HfO2基薄膜的铁电性, 在衬底和电极之间引入应力、减小薄膜厚度、构建纳米层结构和降低退火温度等方法也可以稳定铁电相. 与钙钛矿氧化物铁电薄膜相比, HfO2基铁电薄膜具有与现有半导体工艺兼容性更强和在纳米级厚度下铁电性强等优点. 铁电存储器件理论上可以达到闪存的存储密度, 读写次数超过1010次, 同时具有读写速度快、低操作电压和低功耗等优点. 此外, 还总结了HfO2基薄膜在负电容晶体管、铁电隧道结、神经形态计算和反铁电储能等方面的主要研究成果. 最后, 讨论了HfO2基铁电薄膜器件当前面临的挑战和未来的机遇.
    The rapid developments of big data, the internet of things, and artificial intelligence have put forward more and more requirements for memory chips, logic chips and other electronic components. This study introduces the ferroelectric origin of HfO2-based ferroelectric film and explains how element doping, defects, stresses, surfaces and interfaces, regulate and enhance the ferroelectric polarization of the film. It is widely accepted that the ferroelectricity of HfO2-based ferroelectric film originates from the metastable tetragonal phase. The ferroelectricity of the HfO2-based film can be enhanced by doping some elements such as Zr, Si, Al, Gd, La, and Ta, thereby affecting the crystal structure symmetry. The introduction of an appropriate number of oxygen vacancy defects can reduce the potential barrier of phase transition between the tetragonal phase and the monoclinic phase, making the monoclinic phase easy to transition to tetragonal ferroelectric phase. The stability of the ferroelectric phase can be improved by some methods, including forming the stress between the substrate and electrode, reducing the film thickness, constructing a nanolayered structure, and reducing the annealing temperature. Compared with perovskite oxide ferroelectric thin films, HfO2-based films have the advantages of good complementary-metal-oxide-semiconductor compatibility and strong ferroelectricity at nanometer thickness, so they are expected to be used in ferroelectric memory. The HfO2-based 1T1C memory has the advantages of fast reading and writing speed, more than reading and writing 1012 times, and high storage density, and it is the fast reading and writing speed that the only commercial ferroelectric memory possesses at present. The 1T ferroelectric field effect transistor memory has the advantages of non-destructive reading and high storage density. Theoretically, these memories can achieve the same storage density as flash memory, more than reading 1010 times, the fast reading/writing speed, low operating voltage, and low power consumption, simultaneously. Besides, ferroelectric negative capacitance transistor can obtain a subthreshold swing lower than 60 mV/dec, which greatly reduces the power consumption of integrated circuits and provides an excellent solution for further reducing the size of transistors. Ferroelectric tunnel junction has the advantages of small size and easy integration since the tunneling current can be largely adjusted through ferroelectric polarization switching. In addition, the HfO2-based field effect transistors can be used to simulate biological synapses for applications in neural morphology calculations. Moreover, the HfO2-based films also have broad application prospects in antiferroelectric energy storage, capacitor dielectric energy storage, memristor, piezoelectric, and pyroelectric devices, etc. Finally, the current challenges and future opportunities of the HfO2-based thin films and devices are analyzed.
      通信作者: 袁国亮, yuanguoliang@njust.edu.cn ; 陆旭兵, luxubing@m.scnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 92263105, 62174059)和中央高校基本科研业务费专项资金(批准号: 30921013108)资助的课题.
      Corresponding author: Yuan Guo-Liang, yuanguoliang@njust.edu.cn ; Lu Xu-Bing, luxubing@m.scnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 92263105, 62174059) and the Fundamental Research Funds for the Central Universities, China (Grant No. 30921013108).
    [1]

    McAdams H P, Acklin K, Blake T, Du X H, Eliason J, Fong J, Kraus W F, Liu D, Madan S, Moise T, Natarajan S, Qian N, Qiu Y C, Remack K A, Rodriguez J, Roscher J, Seshadri A, Summerfelt S R 2004 IEEE J. Solid-St. Circ. 39 667Google Scholar

    [2]

    Krupanidhi S B, Maffei N, Sayer M, ElAssal K 1983 J. Appl. Phys. 54 6601Google Scholar

    [3]

    Eaton S, Butler D, Parris M, Wilson D, McNeille H 1988 ISSCC Dig. Techn. Papers p130

    [4]

    Setter N, Damjanovic D, L Eng, Fox G, Gevorgian S, Hong S, Kingon A, Kohlstedt H, Park N Y, Stephenson G B, Stolitchnov I, Taganstev A K, Taylor D V, Yamada T, Streiffer S 2006 J. Appl. Phys. 100 051606Google Scholar

    [5]

    Choi S H, Ko H Y, Heo J E, Son Y H, Bae B J, Yoo D C, Im D H, Jung Y J, Byun K R, Hahm J H, Shin S H, Yoon B U, Hong C K, Cho H K, Moon J T 2006 Integr. Ferroelectr. 84 147Google Scholar

    [6]

    Park M H, Lee Y H, Kim H J, Kim Y J, Moon T, Kim K D, Muller J, Kersch A, Schroeder U, Mikolajick T, Hwang C S 2015 Adv. Mater. 27 1811Google Scholar

    [7]

    Müller J, Polakowski P, Mueller S, Mikolajick T, 2015 ECS J. Solid State Sci. Technol. 4 N30Google Scholar

    [8]

    Böscke T S, Müller J, Bräuhaus D, Schröder U, Böttger U 2011 Appl. Phys. Lett. 99 102903Google Scholar

    [9]

    Robertson J, Falabretti B 2006 J. Appl. Phys. 100 014111Google Scholar

    [10]

    Fischer D, Kersch A 2008 Appl. Phys. Lett. 92 012908Google Scholar

    [11]

    Robertson J 2004 Eur. Phys. J. Appl. Phys. 28 265Google Scholar

    [12]

    Kim S J, Mohan J, Kim H S, Hwang S M, Kim N, Jung Y C, Sahota A, Kim K, Yu H Y, Cha P R, Young C D, Choi R, Ahn J, Kim J 2020 Materials 13 2968Google Scholar

    [13]

    Min H P, Kim H J, Kim Y J, Moon T, Hwang C S 2014 Appl. Phys. Lett. 104 072901Google Scholar

    [14]

    Polakowski P, Müller J 2015 Appl. Phys. Lett. 106 232905Google Scholar

    [15]

    Starschich S, Griesche D, Schneller T, Waser R, Böttger U 2014 Appl. Phys. Lett. 104 202903Google Scholar

    [16]

    Shimizu T, Katayama K, Kiguchi T, Akama A, Konno T J, Funakubo H 2015 Appl. Phys. Lett. 107 032910Google Scholar

    [17]

    Shimizu T, Katayama K, Kiguchi T, Akama A, Konno T J, Sakata O, Funakubo H 2016 Sci. Rep. 6 32931Google Scholar

    [18]

    Schroeder U, Yurchuk E, Müller J, Martin D, Schenk T, Polakowski P, Adelmann C, Popovici M I, Kalinin S V, Mikolajick T 2014 Jpn. J. Appl. Phys. 53 08LE02Google Scholar

    [19]

    Müller J, Böscke T S, Schröder U, Mueller S, Bräuhaus D, Böttger U, Frey L, Mikolajick T 2012 Nano Lett. 12 4318Google Scholar

    [20]

    Mueller S, Mueller J, Singh A, Riedel S, Sundqvist J, Schroeder U, Mikolajick T 2012 Adv. Funct. Mater. 22 2412Google Scholar

    [21]

    Park M H, Kim H J, Kim Y J, Moon T, Kim K D, Hwang C S 2015 Nano Energy 12 131Google Scholar

    [22]

    Park M H, Kim H J, Kim Y J, Moon T, Kim K D, Hwang C S 2014 Adv. Energy Mater. 4 1400610Google Scholar

    [23]

    Kirbach S, Lederer M, Eßlinger S, Mart C, Czernohorsky M, Weinreich W, Wallmersperger T 2021 Appl. Phys. Lett. 118 012904Google Scholar

    [24]

    Materlik R, Küenneth C, Kersch A 2015 J. Appl. Phys. 117 134109Google Scholar

    [25]

    Ohtaka O, Fukui H, Kunisada T, Fujisawa T, Funakoshi K, Utsumi W, Irifune T, Kuroda K, Kikegawa T 2001 J. Am. Ceram. Soc. 84 1369Google Scholar

    [26]

    Wei Y F, Nukala P, Salverda M, Matzen S, Zhao H J, Momand J, Everhardt A S, Agnus G, Blake G R, Lecoeur P, Kooi B J, Íñiguez J, Dkhil B, Noheda B 2018 Nat. Mater. 17 1095Google Scholar

    [27]

    Kisi E H, 1998 J. Am. Ceram. Soc. 81 741Google Scholar

    [28]

    Müller J, Schröder U, Böscke T S, Müller I, Böttger U, Wilde L, Sundqvist J, Lemberger M, Kucher P, Mikolajick T, Frey L 2011 J. Appl. Phys. 110 114113Google Scholar

    [29]

    Huan T D, Sharma V, Rossetti G A, Jr, Ramprasad R 2014 Phys. Rev. B 90 064111Google Scholar

    [30]

    Nukala P, Antoja-Lleonart J, Wei Y F, Yedra L, Dkhil B, Noheda B 2019 ACS Appl. Electron. Mater. 1 2585Google Scholar

    [31]

    Park M H, Lee Y H, Kim H J, Schenk T, Lee W, Kim K D, Fengler F P G, Mikolajick T, Schroeder U, Hwang C S 2017 Nanoscale 9 9973Google Scholar

    [32]

    Batra R, Huan T D, Jones J L, Rossetti G, Ramprasad R 2017 J. Phys. Chem. C 121 4139Google Scholar

    [33]

    Park M H, Lee Y H, Mikolajick T, Schroeder U, Hwang C S 2019 Adv. Electron. Mater. 5 1800522Google Scholar

    [34]

    Park M H, Lee Y H, Kim H J, Kim Y J, Moon T, Kim K D, Hyun S D, Mikolajick T, Schroeder U, Hwang C S 2018 Nanoscale 10 716Google Scholar

    [35]

    Lee Y H, Hyun S D, Kim H J, Kim J S, Yoo C, Moon T, Kim K D, Park H W, Lee Y B, Kim B S, Roh J, Park M H, Hwang C S 2019 Adv. Electron. Mater. 5 1800436Google Scholar

    [36]

    Mimura T, Shimizu T, Kiguchi T, Akama A, Konno T J, Katsuya Y, Sakata O, Funakubo H 2019 Jpn. J. Appl. Phys. 58 SBBB09Google Scholar

    [37]

    Martin D, Yurchuk E, Müller S, Müller J, Paul J, Sundquist J, Slesazeck S, Schlöesser T, Bentum R V, Trentzsch M, Schröder U, Mikolajick T 2013 Solid-State Electron. 88 65Google Scholar

    [38]

    Kashir A, Kim H, Oh S, Hwang H 2021 ACS Appl. Electron. Mater. 3 629Google Scholar

    [39]

    Hoffmann M, Schroeder U, Schenk T, Shimizu T, Funakubo H, Sakata O, Pohl D, Drescher M, Adelmann C, Materlik R, Kersch A, Mikolajick T 2015 J. Appl. Phys. 118 072006Google Scholar

    [40]

    Ku B, Choi S, Song Y, Choi C 2020 IEEE Symposium on VLSI Technology Honolulu, HI, USA, June 15-19, 2020 p1

    [41]

    Schroeder U, Richter C, Park M H, Schenk T, Pesic M, Hoffmann M, Fengler F P G, Pohl D, Rellinghaus B, Zhou C Z, Chung C C, Jones J L, Mikolajick T 2018 Inorg. Chem. 57 2752Google Scholar

    [42]

    Schenk T, Mueller S, Schroeder U, Materlik R, Kersch A, Popovici M, Adelmann C, Elshocht S V, Mikolajick T 2013 Proceedings of the European Solid-State Device Research Conference (ESSDERC) Bucharest, Romania, September 16-20, 2013 p260

    [43]

    Luo C Q, Kang C Y, Song Y L, Wang W P, Zhang W F 2021 Appl. Phys. Lett. 119 042902Google Scholar

    [44]

    Luo J D, Lai Y Y, Hsiang K Y, Wu C F, Yeh Y T, Chung H T, Li YS, Chuang K C, Li WS, Liao C Y, Chen P G, Chen K N, Cheng H C 2021 IEEE T. Electron Dev. 68 1374Google Scholar

    [45]

    Liu Y J, Song S J, Gong P, Xu L J, Li K F, Tang X B, Li W W, Yang H 2022 Appl. Phys. Lett. 121 122902Google Scholar

    [46]

    Jin L H, Tang X W, Song D P, Wei R H, Yang J, Dai J M, Song W H, Zhu X B, Suna Y P 2015 J. Mater. Chem. C 3 10742Google Scholar

    [47]

    Park M H, Lee Y H, Kim H J, Kim Y J, Moon T, Kim K D, Hyun S D, Hwang C S 2018 ACS Appl. Mater. Inter. 10 42666Google Scholar

    [48]

    Li T, Dong J C, Zhange N, Wen Z C, Suna Z Z, Hai Y, Wang K W, Liu H Y, Tamura N, Mi S B, Cheng S D, Ma C S, He Y B, Li L, Ke S M, Huang H T, Cao Y G 2021 Acta Mater. 207 116696Google Scholar

    [49]

    Lomenzo P D, Jachalke S, Stoecker H, Mehner E, Richter C, Mikolajick T, Schroeder U 2020 Nano Energy 74 104733Google Scholar

    [50]

    Martin D, Müller J, Schenk T, Arruda T M, Kumar A, Strelcov E, Yurchuk E, Müller S, Pohl D, Schröder U, Kalinin S V, Mikolajick T 2014 Adv. Mater. 26 8198Google Scholar

    [51]

    Yurchuk E, Müller J, Knebel S, Sundqvist J, Graham A P, Melde T, Schröder U, Mikolajick T 2013 Thin Solid Films 533 88Google Scholar

    [52]

    Materlik R, Künneth C, Falkowski M, Mikolajick T, Kersch A 2018 J. Appl. Phys. 123 164101Google Scholar

    [53]

    Kozodaev M G, Chernikova A G, Korostylev E V, Park M H, Khakimov R R, Hwang C S, Markeev A M 2019 J. Appl. Phys. 125 034101Google Scholar

    [54]

    Kozodaev M G, Chernikova A G, Khakimov R R, Park M H, Markeev A M, Hwang C S 2018 Appl. Phys. Lett. 113 123902Google Scholar

    [55]

    Hoffmann M, Schroeder U, Künneth C, Kersch A, Starschich S, Böttger U, Mikolajick T 2015 Nano Energy 18 154Google Scholar

    [56]

    Lomenzo P D, Zhao P, Takmeel Q, Moghaddam S, Nishida T, Nelson M, Fancher C M, Grimley E D, Sang X, LeBeau J M, Jones J L 2014 J. Vac. Sci. Technol. B 32 03d123Google Scholar

    [57]

    Lee C K, Cho E, Lee H S, Hwang C S, Han S 2008 Phys. Rev. B 78 012102Google Scholar

    [58]

    Park M H, Schenk T, Fancher C M, Grimley E D, Zhou C, Richter C, LeBeau J M, Jones J L, Mikolajick T, Schroeder U 2017 J. Mater. Chem. C 5 4677Google Scholar

    [59]

    Starschich S, Boettger U 2017 J. Mater. Chem. C 5 333Google Scholar

    [60]

    Yao Y F, Zhou D Y, Li S D, Wang J J, Sun N N, Liu F, Zhao X M 2019 J. Appl. Phys. 126 154103Google Scholar

    [61]

    Mueller S, Adelmann C, Singh A, Elshocht S Van, Schroeder U, Mikolajick T 2012 ECS J. Solid State Sci. Technol. 1 N123Google Scholar

    [62]

    Schroeder U, Mueller S, Mueller J, Yurchuk E, Martin D, Adelmann C, Schloesser T, Bentum R V, Mikolajick T 2013 ECS J. Solid State Sci. Technol. 2 N69Google Scholar

    [63]

    Tromm T C U, Zhang J, Schubert J, Luysberg M, Zander W, Han Q, Meuffels P, Meertens D, Glass S, Bernardy P, Mantl S 2017 Appl. Phys. Lett. 111 142904Google Scholar

    [64]

    Luo J D, Yeh Y T, Lai Y Y, Wu C F, Chung H T, Li Y S, Chuang K C, Li W S, Chen P G, Lee M H, Cheng H C 2020 Vacuum 176 109317Google Scholar

    [65]

    Kim K D, Park M H, Kim H J, Kim Y J, Moon T, Lee Y H, Hyun S D, Gwon T, Hwang C S 2016 J. Mater. Chem. C 4 6864Google Scholar

    [66]

    Park M H, Kim H J, Kim Y J, Lee W, Kim H K, C S Hwang 2013 Appl. Phys. Lett. 102 112914Google Scholar

    [67]

    Oh S, Song J, Yoo I K, Hwang H 2019 IEEE Electr. Device L. 40 1092Google Scholar

    [68]

    Zhou Y, Zhang Y K, Yang Q, Jiang J, Fan P, Liao M, Zhou Y C 2019 Comp. Mater. Sci. 167 143Google Scholar

    [69]

    Xu L, Nishimura T, Shibayama S, Yajima T, Migita S, Toriumi A 2016 Appl. Phys. Express 9 091501Google Scholar

    [70]

    Wang J, Li H P, Stevens R 1992 J. Mater. Sci. 27 5397Google Scholar

    [71]

    Kim S J, Narayan D, Lee J G, Mohan J, Lee J S, Lee J, Kim H S, Byun Y C, Lucero A T, Young C D, Summerfelt S R, San T, Colombo L, Kim J 2017 Appl. Phys. Lett. 111 242901Google Scholar

    [72]

    Lomenzo P D, Takmeel Q, Zhou C Z, Fancher C M, Lambers E, Rudawski N G, Jones J L, Moghaddam S, Nishida T 2015 J. Appl. Phys. 117 134105Google Scholar

    [73]

    Karbasian G, Reis R D, Yadav A K, Tan A J, Hu C M, Salahuddin S 2017 Appl. Phys. Lett. 111 022907Google Scholar

    [74]

    Lee Y, Goh Y, Hwang J, Das D, Jeon S 2021 IEEE Trans. Electr. Dev. 68 523Google Scholar

    [75]

    Cao R R, Wang Y, Zhao S J, Yang Y, Zhao X L, Wang W, Zhang X M, Lv H B, Liu Q, Liu M 2018 IEEE Electr. Device L. 39 1207Google Scholar

    [76]

    Zhang Y, Fan Z, Wang D, Wang J L, Zou Z M, Li Y S, Li Q, Tao R Q, Chen D Y, Zeng M, Gao X S, Dai J Y, Zhou G F, Lu X B, J M Liu 2020 ACS Appl. Mater. Inter. 12 40510Google Scholar

    [77]

    Goh Y, Cho S H, Park S H K, Jeon S 2020 Nanoscale 12 9024Google Scholar

    [78]

    Zhang Z M, Hsu S L, Stoica V A, Paik H, Parsonnet E, Qualls A, Wang J J, Xie L, Kumari M, Das S, Leng Z N, McBriarty M, Proksch R, Gruverman A, Schlom D G, Chen L Q, Salahuddin S, Martin L W, Ramesh R 2021 Adv. Mater. 33 2006089Google Scholar

    [79]

    Shiraishi T, Katayama K, Yokouchi T, Shimizu T, Oikawa T, Sakata O, Uchida H, Imai Y, Kiguchi T, Konno T J, Funakubo H 2016 Appl. Phys. Lett. 108 262904Google Scholar

    [80]

    Li T, Zhang N, Sun Z Z, Xie C X, Ye M, Mazumdar S, Shu L, Wang Y, Wang D Y, Chen L, Ke S, Huang H 2018 J. Mater. Chem. C 6 9224Google Scholar

    [81]

    Katayama K, Shimizu T, Sakata O, Shiraishi T, Nakamura S, Kiguchi T, Akama A, Konno T J, Uchida H, Funakubo H 2016 Appl. Phys. Lett. 109 112901Google Scholar

    [82]

    Song T F, Bachelet R, Saint-Girons G, Solanas R, Fina I, Sánchez F 2020 ACS Appl. Electron. Mater. 2 3221Google Scholar

    [83]

    Estandia S, Dix N, Chisholm M F, Fina I, Sánchez F 2020 Cryst. Growth Des. 20 3801Google Scholar

    [84]

    Li T, Ye M, Sun Z Z, Zhang N, Zhang W, Inguva S, Xie C X, Chen L, Wang Y, Ke S M, Huang H T 2019 ACS Appl. Mater. Inter. 11 4139Google Scholar

    [85]

    Zhou H, Wu L J, Wang H Q, Zheng J C, Zhang L H, Kisslinger K, Li Y P, Wang Z Q, Cheng H, Ke S M, Li Y, Kang J Y, Zhu Y M 2017 Nat. Commun. 8 1474Google Scholar

    [86]

    Lyu J, Fina I, Solanas R, Fontcuberta J, Sánchez F 2018 Appl. Phys. Lett. 113 082902Google Scholar

    [87]

    Lyu J, Fina I, Bachelet R, Saint-Girons G, Estandía S, Gázquez J, Fontcuberta J, Sánchez F 2019 Appl. Phys. Lett. 114 222901Google Scholar

    [88]

    Cheema S S, Kwon D, Shanker N, Reis R D, Hsu S L, Xiao J, Zhang H G, Wagner R, Datar A, McCarter M R, Serrao C R, Yadav A K, Karbasian G, Hsu C H, Tan A J, Wang L C, Thakare V, Zhang X, Mehta A, Karapetrova E, Chopdekar R V, Shafer P, Arenholz E, Hu C, Proksch R, Ramesh R, Ciston J, Salahuddin S 2020 Nature 580 478Google Scholar

    [89]

    Xu X H, Huang F T, Qi Y B, Singh S, Rabe K M, Obeysekera D, Yang J J, Chu M W, Cheong S W 2021 Nat. Mater. 20 826Google Scholar

    [90]

    Estandía S, Dix N, Gazquez J, Fina I, Lyu J, Chisholm M F, Fontcuberta J, Sánchez F 2019 ACS Appl. Electron Mater. 1 1449Google Scholar

    [91]

    Lyu J, Fina I, Fontcuberta J, Sanchez F 2019 ACS Appl. Mater. Inter. 11 6224Google Scholar

    [92]

    Park M H, Kim H J, Kim Y J, Lee W, Moon T, Kim K D, Hwang C S 2014 Appl. Phys. Lett. 105 072902Google Scholar

    [93]

    Yan Y, Zhou D Y, Guo C X, Xu J, Yang X R, Liang H L, Zhou F Y, Chu S C, Liu X Y 2016 J. Sol-Gel Sci. Technol. 7 430Google Scholar

    [94]

    Chernikova A G, Kuzmichev D S, Negrov D V, Kozodaev M G, Polyakov S N, Markeev A M 2016 Appl. Phys. Lett. 108 242905Google Scholar

    [95]

    Mittmann T, Materano M, Lomenzo P D, Park M H, Stolichnov I, Cavalieri M, Zhou C Z, Chung C C, Jones J L, Szyjka T, Müller M, Kersch A, Mikolajick T, Schroeder U 2019 Adv. Mater. Inter. 6 1900042Google Scholar

    [96]

    Liao J J, Zeng B J, Sun Q, Chen Q, Liao M, Qiu C G, Zhang Z Y, Zhou Y C 2019 IEEE Electr. Device L. 40 1868Google Scholar

    [97]

    Migita S, Ota H, Asanuma S, Morita Y, Toriumi A 2021 Appl. Phys. Express 14 051006Google Scholar

    [98]

    Chen Y H, Wang L, Liu L Y, Tang L, Yuan X, Chen H Y, Zhou K C, Zhang D 2021 J. Mater. Sci. 56 6064Google Scholar

    [99]

    Shin H W, Son J Y 2020 Appl. Phys. Lett. 117 202902Google Scholar

    [100]

    Chen Q, Zhang Y K, Liu W Y, Jiang J, Yang Q, Jiang L M 2021 Int. J. Mech. Sci. 212 106828Google Scholar

    [101]

    Kim H J, Park M H, Kim Y J, Lee Y H, Jeon W, Gwon T, Moon T, Kim K D, Hwang C S 2014 Appl. Phys. Lett. 105 192903Google Scholar

    [102]

    Nakayama S, Funakubo H, Uchida H 2018 Jpn. J. Appl. Phys. 57 11UF06Google Scholar

    [103]

    Chen H Y, Chen Y H, Tang L, Luo H, Zhou K C, Yuan X, Zhang D 2020 J. Mater. Chem. C 8 2820Google Scholar

    [104]

    Tang L, Chen C, Wei A Q, Li K, Zhang D, Zhou K C 2019 Ceram. Int. 45 3140Google Scholar

    [105]

    Liu H, Zheng S Z, Chen Q, Zeng B J, Jiang J, Peng Q X, Liao M, Zhou Y C 2019 J. Mater. Sci. :Mater. Electron. 30 5771Google Scholar

    [106]

    Wang X X, Zhou D Y, Li S D, Liu X H, Zhao P, Sun N N, Ali F, Wang J J 2018 Ceram. Int. 44 13867Google Scholar

    [107]

    Weeks S L, Pal A, Narasimhan V K, Littau K A, Chiang T 2017 ACS Appl. Mater. Inter. 9 13440Google Scholar

    [108]

    Park M H, Kim H J, Lee G, Park J, Lee Y H, Kim Y J, Moon T, Kim K D, Hyun S D, Park H W, Chang H J, Choi J H, Hwang C S 2019 Appl. Phys. Rev. 6 041403Google Scholar

    [109]

    Si M W, Lyu X, Ye P D 2019 ACS Appl. Electron. Mater. 1 745Google Scholar

    [110]

    Wang J L, Wang D, Li Q, Zhang A H, Gao D, Guo M, Feng J J, Fan Z, Chen D Y, Qin M H, Zeng M, Gao X S, Zhou G F, Lu X B, Liu J M 2019 IEEE Electr. Device L. 40 1937Google Scholar

    [111]

    Chen H Y, Tang L, Liu L Y, Chen Y H, Luo H, Yuan X, Zhang D 2021 Appl. Surf. Sci. 542 148737Google Scholar

    [112]

    Onaya T, Nabatame T, Sawamoto N, Ohi A, Ikeda N, Chikyow T, Ogura A 2017 Appl. Phys. Express 10 081501Google Scholar

    [113]

    Wong H S P, Salahuddin S 2015 Nat. Nanotechnol. 10 191Google Scholar

    [114]

    Müller J, Böscke T S, Müllera S, Yurchuk E, Polakowski P, Paul J, Martin D, Schenk T, Khullar K, Kersch A, Weinreich W, Riedel S, Seidel K, Kumar A, Arruda T M, Kalinin S V, Schlösser T, Boschke R, Bentum R V, Schröder U, Mikolajick T 2013 IEEE International Electron Devices Meeting (IEDM) 13 280Google Scholar

    [115]

    Huang F, Wang Y, Liang X, Qin J, Zhang Y, Yuan X F, Wang Z, Peng B, Deng L J, Liu Q, Bi L, Liu M 2017 IEEE International Electron Devices Meeting (IEDM) 38 330Google Scholar

    [116]

    Mueller S, Slesazeck S, Henker S, Flachowsky S, Polakowski P, Paul J, Smith E, Müller J, Mikolajick T 2016 Ferroelectrics 497 42Google Scholar

    [117]

    Chernikova A, Kozodaev M, Markeev A, Negrov D, Spiridonov M, Zarubin S, Bak O, Buragohain P, Lu H, Suvorova E, Gruverman A, Zenkevich A 2016 ACS Appl. Mater. Inter. 8 7232Google Scholar

    [118]

    Fox G R, Chu F, Davenport T 2001 J. Vac. Sci. Technol. B 19 1967Google Scholar

    [119]

    Fan Z, Chen J S, Wang J 2016 J. Adv. Dielectr. 6 1630003Google Scholar

    [120]

    Ishiwara H 2012 J. Nanosci. Nanotechnol. 12 7619Google Scholar

    [121]

    Okuno J, Kunihiro T, Konishi K, Materano M, Ali T, Kuehnel K, Seidel K, Mikolajick T, Schroeder U, Tsukamoto M, Umebayashi T 2021 IEEE J. Electron Devi. 10 29Google Scholar

    [122]

    Mulaosmanovic H, Ocker J, Müller S, Schroeder U, Müller J, Polakowski P, Flachowsky S, Bentum R V, Mikolajick T, Slesazeck S 2017 ACS Appl. Mater. Interf. 9 3792Google Scholar

    [123]

    Yan S C, Lan G M, Sun C J, Chen Y H, Wu C H, Peng H K, Lin Y H, Wu Y H, Wu Y C 2021 IEEE Electr. Device L. 42 1307Google Scholar

    [124]

    Choi W Y, Park B G, Lee J D, Liu T J K, 2007 IEEE Electr. Device L. 28 743Google Scholar

    [125]

    Salahuddin S, Datta S 2008 Nano Lett. 8 405Google Scholar

    [126]

    谭欣, 翟亚红 2019 材料导报 33 433Google Scholar

    Tan X, Zhai Y H 2019 Materials Reports 33 433Google Scholar

    [127]

    Ionescu A M 2018 Nat. Nanotechnol. 13 7Google Scholar

    [128]

    Si M W, Su C J, Jiang C S, Conrad N J, Zhou H, Maize K D, Qiu G, Wu C T, Shakouri A, Alam M A, Ye P D 2018 Nat. Nanotechnol 13 24Google Scholar

    [129]

    McGuire F A, Lin Y C, Price K, Rayner G B, Khandelwal S, Salahuddin S, Franklin A D 2017 Nano Lett. 17 4801Google Scholar

    [130]

    Esaki L, Laibowitz R B, Stiles P J 1971 IBM Tech. Discl. Bull. 13 2161

    [131]

    Zhuravlev M Y, Sabirianov R F, Jaswal S S, Tsymbal E Y 2005 Phys. Rev. Lett. 94 246802Google Scholar

    [132]

    Garcia V, Bibes M 2014 Nat. Commun. 5 4289Google Scholar

    [133]

    Du X Z, Sun H Y, Wang H, Li J C, Yin Y W, Li X G 2022 ACS Appl. Mater. Inter. 14 1355Google Scholar

    [134]

    Goh Y, Hwang J, Lee Y, Kim M, Jeon S 2020 Appl. Phys. Lett. 117 242901Google Scholar

    [135]

    Cheema S S, Shanker N, Hsu C H, Datar A, Bae J, Kwon D, Salahuddin S 2021 Adv. Electron. Mater. 8 2100499Google Scholar

    [136]

    Drachman D A 2005 Neurology 64 2004Google Scholar

    [137]

    Kim M K, Lee J S 2020 Adv. Mater. 32 1907826Google Scholar

    [138]

    Majumdar S 2021 Adv. Intell. Syst. 4 2100175Google Scholar

    [139]

    Lee D H, Park G H, Kim S H, Park J Y, Yang K, Slesazeck S, Mikolajick T, Park M H 2022 InfoMat 4 e12380Google Scholar

    [140]

    Kim M K, Lee J S 2019 Nano Lett. 19 2044Google Scholar

    [141]

    Xi F B, Han Y, M S Liu, Bae J H, Tiedemann A, Grützmacher D, Zhao Q T 2021 ACS Appl. Mater. Inter. 13 32005Google Scholar

    [142]

    Goh Y, Hwang J, Kim M, Lee Y, Jung M, Jeon S 2021 ACS Appl. Mater. Inter. 13 59422Google Scholar

    [143]

    Yao Z H, Song Z, Hao H, Yu Z Y, Cao M H, Zhang S J, Lanagan M T, Liu H X 2017 Adv. Mater. 29 1601727Google Scholar

    [144]

    Ali F, Zhou D Y, Sun N N, Ali H W, Abbas A, Iqbal F, Dong F, Kim K H 2020 ACS Appl. Energy Mater. 3 6036Google Scholar

    [145]

    Yao M W, Li Q X, Li F, Peng Y, Su Z, Yao X 2018 Mater. Chem. Phys. 206 48Google Scholar

    [146]

    Yang B B, Guo M Y, Jin L H, Tang X W, Wei R H, Hu L, Yang J, Song W H, Dai J M, Lou X J, Zhu X B, Sun Y P 2018 Appl. Phys. Lett. 112 033904Google Scholar

    [147]

    Lomenzo P D, Chung C C, Zhou C Z, Jones J L, Nishida T 2017 Appl. Phys. Lett. 110 232904Google Scholar

    [148]

    Hoffmann M, Fengler F P G, Max B, Schroeder U, Slesazeck S, Mikolajick T 2019 Adv. Energy Mater. 9 1901154Google Scholar

    [149]

    He Y, Zheng G, Wu X, Liu W J, Zhang D W, Ding S J 2022 Nanoscale Adv. 4 4648Google Scholar

    [150]

    Spahr H, Nowak C, Hirschberg F, Reinker J, Kowalsky W, Hente D, Johannes H H 2013 Appl. Phys. Lett. 103 042907Google Scholar

    [151]

    Zhang T D, Li W L, Hou Y F, Yu Y, Song R X, Cao W P, Fei W D 2017 J. Am. Ceram. Soc. 100 3080Google Scholar

    [152]

    Lee H J, Won S S, Cho K H, Han C K, Mostovych N, Kingon A I, Kim S H, Lee H Y 2018 Appl. Phys. Lett. 112 092901Google Scholar

    [153]

    Zhang X, Shen Y, Xu B, Zhang Q H, Gu L, Jiang J Y, Ma J, Lin Y H, Nan C W 2016 Adv. Mater. 28 2055Google Scholar

    [154]

    电子工程师 https://m.elecfans.com/article/620744.html [2023-03-07]

    [155]

    Sun K, Chen J, Yan X 2021 Adv. Funct. Mater. 31 2006773Google Scholar

    [156]

    Schenk T, Godard N, Mahjoub A, Girod S, Matavz A, Bobnar V, Defay E, Glinsek S 2019 Phys. Status Solidi-R 14 1900626Google Scholar

  • 图 1  HfO2基薄膜可以具有优异的铁电、压电、介电、反铁电和热释电性, 在很多领域具有广泛的应用前景

    Fig. 1.  HfO2 based films exhibit excellent ferroelectric, piezoelectric, dielectric, antiferroelectric and pyroelectric properties, so they have wide application prospects in many fields.

    图 2  (a)—(f) HfO2晶体结构示意图, 其中(a) m相, (b) t相, (c) c相, (d) oI相[24]以及(e)极化向下和(f)极化向上的oIII相; (g) Hf0.5Zr0.5O2薄膜的自由能曲线; (h) 不同晶粒尺寸的Hf0.5Zr0.5O2 薄膜在不同温度下的相图[33]; (i) Hf0.93Y0.07O2热处理过程中的相变流程图[36]

    Fig. 2.  Crystal structures of HfO2 with (a) m phase, (b) t phase, (c) c phase, (d) oI phase[24], oIII phase with (e) downward polarization and (f) upward polarization; (g) free energy curve of Hf0.5Zr0.5O2 films; (h) phase diagrams of Hf0.5Zr0.5O2 films with different grain sizes at different temperatures[33]; (i) phase evolution during Hf0.93Y0.07O2 heat treatment [36].

    图 3  (a) Hf1–xZrxO2薄膜的P-Eεr-E曲线[19]; (b) Hf1–xYxO2–δ薄膜的P-V曲线[28]; (c) Hf1–xAxO2 (A = Si, Al, Y, Gd, La或Sr)薄膜的Pr值随晶体半径和A掺杂量变化的等值线图[18]

    Fig. 3.  (a) P-E and εr-E curve of Hf1–xZrxO2 films[19]; (b) P-V curves of Hf1–xYxO2–δ films[28]; (c) contour plot of the Pr of Hf1–xAxO2 (A = Si, Al, Y, Gd, La and Sr) as a function of crystal radius and dopant content[18].

    图 4  (a)退火温度为300—500 ℃时Hf0.5Zr0.5O2薄膜的P-E曲线; (b) TiN电极的厚度为45—180 nm时Hf0.5Zr0.5O2薄膜的P-E曲线[71]; (c)不同电极的Hf0.5Zr0.5O2的o相比例; (d)不同电极的Hf0.5Zr0.5O2的2Pr[74]; (e), (f)有无VOx上电极的Hf0.5Zr0.5O2薄膜的P-V曲线和不同次数铁电极化翻转后的Pr[76]

    Fig. 4.  P-E curves of Hf0.5Zr0.5O2 film at (a) 300–500 ℃ annealing temperatures or with (b) 45–180 nm thick TiN electrode[71]. (c) o-phase ratio and (d) 2Pr of Hf0.5Zr0.5O2 with different electrodes[74]. (e) P-E curves of Hf0.5Zr0.5O2 film with or without VOx top electrode[76]. (f) Pr values of Hf0.5Zr0.5O2 film with or without VOx top electrode after different polarization switching cycles 76].

    图 5  (a) ALD和PVD制备的HfO2薄膜的2Pr与厚度的关系[95]; (b), (c)不同膜厚的(b) Hf0.5Zr0.5O2薄膜和(c) Hf0.5Zr0.5O2/Al2O3/Hf0.5Zr0.5O2薄膜的P-E曲线[101]; (d) 4×(HfO2(1 nm)/ ZrO2(1 nm))薄膜和8 nm Hf0.5Zr0.5O2固溶体薄膜的P-E曲线[107]; (e), (f) Al2O3/Hf0.5Zr0.5O2 (20 nm)双层薄膜随Al2O3厚度变化的(e) C-V和(f) P-V曲线[109]

    Fig. 5.  (a) Thickness dependence of the 2Pr of HfO2 films prepared by ALD and PVD[95]. P-E curves of the (b) Hf0.5Zr0.5O2 films and (c) Hf0.5Zr0.5O2/Al2O3/Hf0.5Zr0.5O2 films with various thicknesses[101]. (d) P-E curves of HfO2(1 nm)/ ZrO2(1 nm) × 4 nanolaminates and the Hf0.5Zr0.5O2 solid solution[107]. (e) C-V and (f) P-V curves of Al2O3/Hf0.5Zr0.5O2 with different Al2O3 thicknesses[109].

    图 6  (a) 1T1C铁电随机存储器结构示意图; (b) 1T1C存储器的SHMOO图[121]; (c)平面型铁电场效应管结构示意图和(d)相应器件在上、下铁电极化方向时的转移特性曲线[122]; (e)铁电鳍片式场效应管结构示意图; (f) HfO2铁电鳍片式场效应管的转移特性曲线[123]

    Fig. 6.  (a) Structure diagram and (b) SHMOO plot of a 1T1C ferroelectric random-access memory[121]; (c) schematic diagram of planar ferroelectric field effect transistor and (d) the transfer characteristic curve of FeFET device with upward and downward polarization[122]; (e) structure diagram of fin field-effect transistor; (f) the transfer characteristic curve of HfO2 ferroelectric fin field-effect transistor [123].

    图 7  (a)铁电电容器从正电容到负电容的能量-电荷变化曲线[127]; (b) 负电容对NC-FET亚阈值斜率的影响[127]; (c) Al2O3/Hf0.5Zr0.5O2TiN/Si[128]负电容晶体管; (d) HfO2/TiN/Hf0.5Zr0.5O2TiN/SiO2/Si[129]负电容晶体管

    Fig. 7.  (a) Energy landscape of a ferroelectric capacitor [127]; (b) effect of negative capacitance on the subthreshold (SS) slope of the NC-FET[127]; (c) device architecture of Al2O3/Hf0.5Zr0.5O2TiN/Si NC-FET[128]; (d) device architecture of HfO2/TiN/Hf0.5Zr0.5O2TiN/SiO2/Si NC-FET[129].

    图 8  铁电薄膜(Fe)在(a)“低势垒Φ”和(b) “高势垒Φ+”状态下的FTJ结构[132]; Au/Hf0.5Zr0.5O2/La2/3Sr1/3MnO3/NSTO FTJ在(c)不同脉冲电压Vp下和(d)多次铁电极化翻转循环后的电阻值[133]; (e) TiN/Hf0.5Zr0.5O2/W结构FTJ在1—108次铁电极化翻转后的隧穿电流值[134]; (f) W/Hf0.8Zr0.2O2(1 nm)/SiO2(1 nm)/Si结构 FTJ在1—103次铁电极化翻转后的隧穿电流密度[135]

    Fig. 8.  (a), (b) FTJ structures with low or high barrier potential states (i.e. Φ or Φ+)[132]. Resistance of Au/Hf0.5Zr0.5O2/La2/3Sr1/3MnO3/NSTO FTJ as a function of (c) pulse voltage Vp and (d) polarization switching cycles[133]. (e) Tunneling current value of TiN/Hf0.5Zr0.5O2/W FTJ after different polarization switching cycles[134]. (f) Tunneling current density of W/Hf0.8Zr0.2O2(1 nm)/SiO2(1 nm)/Si FTJ after polarization switching cycles[135].

    图 9  (a)生物突触和动作电位示意图[137]; (b) FeFET模拟生物突触示意图; (c) LTP和LTD的突触权重-时间曲线[141]; (d) FeFET的光子突触结构示意图及其光电导-衰减时间曲线; (e) HZO薄膜铁电极化向下时器件的突触权重-时间曲线[137]

    Fig. 9.  (a) Schematic illustrations of biological synapses and action potential[137]. (b) Sketches on how a FeFET based synapse device; (c) synaptic weight as a function of time (Δt), showing a biological STDP behavior[141]. (d) Schematic device structure of the photonic synapse and optical responses; (e) the synaptic weight as a function of relaxing time[137].

    图 10  (a)线性介电、(b)铁电和(c)反铁电材料的P-E曲线, 其中蓝色区域代表储能密度[144], P表示材料的极化, E表示施加的电场; (d), (e) HfxZr1–xO2 (x = 0.1—0.4)薄膜的(d) P-E电滞回线和(e)储能密度[22]

    Fig. 10.  P-E curves of (a) linear dielectric, (b) ferroelectric, and (c) antiferroelectric materials, where P represents the polarization of the material, E represents the applied electric field and the blue area represents the energy storage density of each material144]. (d) P-E hysteresis loops and (e) energy storage density of HfxZr1–xO2 (x = 0.1–0.4) thin films[22].

    表 1  常见HfO2基铁电薄膜的制备条件和铁电性能汇总

    Table 1.  Summary of preparation conditions and ferroelectric properties of common HfO2-based ferroelectric films.

    掺杂元素掺杂浓度结构沉积方法薄膜厚度/nm沉积温度/℃退火电场/(MV·cm–1)2Pr/(μC·m–2)2Ec/(MV·cm–1)极化翻转次数/cycle
    Si[37]4.4 mol%TiN/Si:HfO2/TiNALD9N/A800 ℃, N24.5481.74N/A
    Zr[38]50 at%W/Zr:HfO2/WALD10250700 ℃, N2, 5 s3.5652.4104 at3.0 MV cm–1
    Y[28]5.2 mol%TiN/Y:HfO2/TiNALD10N/A600 ℃, N2, 20 s4.5482.4N/A
    Gd[39]3.4 cat%TaN/Gd:HfO2/TaNALD10300800 ℃, N2, 20 s70N/A105 at4.0 MV cm–1
    Al[40]6.4 mol%W/TiN/Al:HfO2/SiALD10280700 ℃, N2, 10 s81009.5106 at8.0 MV cm–1
    La[41]10.0 cat%TiN/La:HfO2/TiNALD12280800 ℃, N2, 20 s4.5552.85×105at 4 MV cm–1
    Sr[42]9.9 mol%TiN/Sr:HfO2/TiNALD10300800 ℃, N2, 20 s3.546$ \sim $3.2106 at3.0 MV cm–1
    Ta[43]16 at%Pt/Ta:HfO2/Pt/TiPVD60500No anneal1.251061.6107 at0.8 MV cm–1
    非掺杂[44]N/ATiN/HfO2/TiNPEALD 8N/A600 ℃, Ar, 30 s3.125262.4> 108 at2.5 MV cm–1
    对照[45] Pb(Zr0.53Ti0.47)O3PLD500650650 ℃, O2, 15 minN/A1510.141×1010
    对照[46]BiFeO3CSD525N/A650 ℃, N2N/A1421.0106 at0.4 MV cm–1
    下载: 导出CSV

    表 2  几种HfO2基反铁电薄膜与其他常见材料的储能性能

    Table 2.  Energy storage performance of some HfO2 based antiferroelectric film and other common materials.

    材料类型厚度/nm电场/(MV·cm–1)ESD/(J·cm–3)η/%Ref.
    Hf0.5Zr0.5O2铁电9.24.95557[22]
    Ta2O5/Hf0.5Zr0.5O2介电/反铁电257100>95[148]
    Hf0.5Zr0.5O2/Hf0.25Zr0.75O2铁电/反铁电10671.9557.8[149]
    Hf0.3Zr0.7O2反铁电9.24.354551[22]
    Si:Hf0.5Zr0.5O2反铁电1045382[147]
    Al:Hf0.5Zr0.5O2反铁电1055280[147]
    La:Hf0.5Zr0.5O2反铁电1045070[53]
    Al2O3线性550[150]
    BiFeO3铁电$ \sim $403.2[146]
    BaTiO3铁电$ \sim $3002.628.575[145]
    Pb(Zr0.52Ti0.48)O3铁电3501.1315.658.8[151]
    La:PbZrO3反铁电103117.380.8[152]
    PVDF-HFP铁电1047.931.2[153]
    下载: 导出CSV
  • [1]

    McAdams H P, Acklin K, Blake T, Du X H, Eliason J, Fong J, Kraus W F, Liu D, Madan S, Moise T, Natarajan S, Qian N, Qiu Y C, Remack K A, Rodriguez J, Roscher J, Seshadri A, Summerfelt S R 2004 IEEE J. Solid-St. Circ. 39 667Google Scholar

    [2]

    Krupanidhi S B, Maffei N, Sayer M, ElAssal K 1983 J. Appl. Phys. 54 6601Google Scholar

    [3]

    Eaton S, Butler D, Parris M, Wilson D, McNeille H 1988 ISSCC Dig. Techn. Papers p130

    [4]

    Setter N, Damjanovic D, L Eng, Fox G, Gevorgian S, Hong S, Kingon A, Kohlstedt H, Park N Y, Stephenson G B, Stolitchnov I, Taganstev A K, Taylor D V, Yamada T, Streiffer S 2006 J. Appl. Phys. 100 051606Google Scholar

    [5]

    Choi S H, Ko H Y, Heo J E, Son Y H, Bae B J, Yoo D C, Im D H, Jung Y J, Byun K R, Hahm J H, Shin S H, Yoon B U, Hong C K, Cho H K, Moon J T 2006 Integr. Ferroelectr. 84 147Google Scholar

    [6]

    Park M H, Lee Y H, Kim H J, Kim Y J, Moon T, Kim K D, Muller J, Kersch A, Schroeder U, Mikolajick T, Hwang C S 2015 Adv. Mater. 27 1811Google Scholar

    [7]

    Müller J, Polakowski P, Mueller S, Mikolajick T, 2015 ECS J. Solid State Sci. Technol. 4 N30Google Scholar

    [8]

    Böscke T S, Müller J, Bräuhaus D, Schröder U, Böttger U 2011 Appl. Phys. Lett. 99 102903Google Scholar

    [9]

    Robertson J, Falabretti B 2006 J. Appl. Phys. 100 014111Google Scholar

    [10]

    Fischer D, Kersch A 2008 Appl. Phys. Lett. 92 012908Google Scholar

    [11]

    Robertson J 2004 Eur. Phys. J. Appl. Phys. 28 265Google Scholar

    [12]

    Kim S J, Mohan J, Kim H S, Hwang S M, Kim N, Jung Y C, Sahota A, Kim K, Yu H Y, Cha P R, Young C D, Choi R, Ahn J, Kim J 2020 Materials 13 2968Google Scholar

    [13]

    Min H P, Kim H J, Kim Y J, Moon T, Hwang C S 2014 Appl. Phys. Lett. 104 072901Google Scholar

    [14]

    Polakowski P, Müller J 2015 Appl. Phys. Lett. 106 232905Google Scholar

    [15]

    Starschich S, Griesche D, Schneller T, Waser R, Böttger U 2014 Appl. Phys. Lett. 104 202903Google Scholar

    [16]

    Shimizu T, Katayama K, Kiguchi T, Akama A, Konno T J, Funakubo H 2015 Appl. Phys. Lett. 107 032910Google Scholar

    [17]

    Shimizu T, Katayama K, Kiguchi T, Akama A, Konno T J, Sakata O, Funakubo H 2016 Sci. Rep. 6 32931Google Scholar

    [18]

    Schroeder U, Yurchuk E, Müller J, Martin D, Schenk T, Polakowski P, Adelmann C, Popovici M I, Kalinin S V, Mikolajick T 2014 Jpn. J. Appl. Phys. 53 08LE02Google Scholar

    [19]

    Müller J, Böscke T S, Schröder U, Mueller S, Bräuhaus D, Böttger U, Frey L, Mikolajick T 2012 Nano Lett. 12 4318Google Scholar

    [20]

    Mueller S, Mueller J, Singh A, Riedel S, Sundqvist J, Schroeder U, Mikolajick T 2012 Adv. Funct. Mater. 22 2412Google Scholar

    [21]

    Park M H, Kim H J, Kim Y J, Moon T, Kim K D, Hwang C S 2015 Nano Energy 12 131Google Scholar

    [22]

    Park M H, Kim H J, Kim Y J, Moon T, Kim K D, Hwang C S 2014 Adv. Energy Mater. 4 1400610Google Scholar

    [23]

    Kirbach S, Lederer M, Eßlinger S, Mart C, Czernohorsky M, Weinreich W, Wallmersperger T 2021 Appl. Phys. Lett. 118 012904Google Scholar

    [24]

    Materlik R, Küenneth C, Kersch A 2015 J. Appl. Phys. 117 134109Google Scholar

    [25]

    Ohtaka O, Fukui H, Kunisada T, Fujisawa T, Funakoshi K, Utsumi W, Irifune T, Kuroda K, Kikegawa T 2001 J. Am. Ceram. Soc. 84 1369Google Scholar

    [26]

    Wei Y F, Nukala P, Salverda M, Matzen S, Zhao H J, Momand J, Everhardt A S, Agnus G, Blake G R, Lecoeur P, Kooi B J, Íñiguez J, Dkhil B, Noheda B 2018 Nat. Mater. 17 1095Google Scholar

    [27]

    Kisi E H, 1998 J. Am. Ceram. Soc. 81 741Google Scholar

    [28]

    Müller J, Schröder U, Böscke T S, Müller I, Böttger U, Wilde L, Sundqvist J, Lemberger M, Kucher P, Mikolajick T, Frey L 2011 J. Appl. Phys. 110 114113Google Scholar

    [29]

    Huan T D, Sharma V, Rossetti G A, Jr, Ramprasad R 2014 Phys. Rev. B 90 064111Google Scholar

    [30]

    Nukala P, Antoja-Lleonart J, Wei Y F, Yedra L, Dkhil B, Noheda B 2019 ACS Appl. Electron. Mater. 1 2585Google Scholar

    [31]

    Park M H, Lee Y H, Kim H J, Schenk T, Lee W, Kim K D, Fengler F P G, Mikolajick T, Schroeder U, Hwang C S 2017 Nanoscale 9 9973Google Scholar

    [32]

    Batra R, Huan T D, Jones J L, Rossetti G, Ramprasad R 2017 J. Phys. Chem. C 121 4139Google Scholar

    [33]

    Park M H, Lee Y H, Mikolajick T, Schroeder U, Hwang C S 2019 Adv. Electron. Mater. 5 1800522Google Scholar

    [34]

    Park M H, Lee Y H, Kim H J, Kim Y J, Moon T, Kim K D, Hyun S D, Mikolajick T, Schroeder U, Hwang C S 2018 Nanoscale 10 716Google Scholar

    [35]

    Lee Y H, Hyun S D, Kim H J, Kim J S, Yoo C, Moon T, Kim K D, Park H W, Lee Y B, Kim B S, Roh J, Park M H, Hwang C S 2019 Adv. Electron. Mater. 5 1800436Google Scholar

    [36]

    Mimura T, Shimizu T, Kiguchi T, Akama A, Konno T J, Katsuya Y, Sakata O, Funakubo H 2019 Jpn. J. Appl. Phys. 58 SBBB09Google Scholar

    [37]

    Martin D, Yurchuk E, Müller S, Müller J, Paul J, Sundquist J, Slesazeck S, Schlöesser T, Bentum R V, Trentzsch M, Schröder U, Mikolajick T 2013 Solid-State Electron. 88 65Google Scholar

    [38]

    Kashir A, Kim H, Oh S, Hwang H 2021 ACS Appl. Electron. Mater. 3 629Google Scholar

    [39]

    Hoffmann M, Schroeder U, Schenk T, Shimizu T, Funakubo H, Sakata O, Pohl D, Drescher M, Adelmann C, Materlik R, Kersch A, Mikolajick T 2015 J. Appl. Phys. 118 072006Google Scholar

    [40]

    Ku B, Choi S, Song Y, Choi C 2020 IEEE Symposium on VLSI Technology Honolulu, HI, USA, June 15-19, 2020 p1

    [41]

    Schroeder U, Richter C, Park M H, Schenk T, Pesic M, Hoffmann M, Fengler F P G, Pohl D, Rellinghaus B, Zhou C Z, Chung C C, Jones J L, Mikolajick T 2018 Inorg. Chem. 57 2752Google Scholar

    [42]

    Schenk T, Mueller S, Schroeder U, Materlik R, Kersch A, Popovici M, Adelmann C, Elshocht S V, Mikolajick T 2013 Proceedings of the European Solid-State Device Research Conference (ESSDERC) Bucharest, Romania, September 16-20, 2013 p260

    [43]

    Luo C Q, Kang C Y, Song Y L, Wang W P, Zhang W F 2021 Appl. Phys. Lett. 119 042902Google Scholar

    [44]

    Luo J D, Lai Y Y, Hsiang K Y, Wu C F, Yeh Y T, Chung H T, Li YS, Chuang K C, Li WS, Liao C Y, Chen P G, Chen K N, Cheng H C 2021 IEEE T. Electron Dev. 68 1374Google Scholar

    [45]

    Liu Y J, Song S J, Gong P, Xu L J, Li K F, Tang X B, Li W W, Yang H 2022 Appl. Phys. Lett. 121 122902Google Scholar

    [46]

    Jin L H, Tang X W, Song D P, Wei R H, Yang J, Dai J M, Song W H, Zhu X B, Suna Y P 2015 J. Mater. Chem. C 3 10742Google Scholar

    [47]

    Park M H, Lee Y H, Kim H J, Kim Y J, Moon T, Kim K D, Hyun S D, Hwang C S 2018 ACS Appl. Mater. Inter. 10 42666Google Scholar

    [48]

    Li T, Dong J C, Zhange N, Wen Z C, Suna Z Z, Hai Y, Wang K W, Liu H Y, Tamura N, Mi S B, Cheng S D, Ma C S, He Y B, Li L, Ke S M, Huang H T, Cao Y G 2021 Acta Mater. 207 116696Google Scholar

    [49]

    Lomenzo P D, Jachalke S, Stoecker H, Mehner E, Richter C, Mikolajick T, Schroeder U 2020 Nano Energy 74 104733Google Scholar

    [50]

    Martin D, Müller J, Schenk T, Arruda T M, Kumar A, Strelcov E, Yurchuk E, Müller S, Pohl D, Schröder U, Kalinin S V, Mikolajick T 2014 Adv. Mater. 26 8198Google Scholar

    [51]

    Yurchuk E, Müller J, Knebel S, Sundqvist J, Graham A P, Melde T, Schröder U, Mikolajick T 2013 Thin Solid Films 533 88Google Scholar

    [52]

    Materlik R, Künneth C, Falkowski M, Mikolajick T, Kersch A 2018 J. Appl. Phys. 123 164101Google Scholar

    [53]

    Kozodaev M G, Chernikova A G, Korostylev E V, Park M H, Khakimov R R, Hwang C S, Markeev A M 2019 J. Appl. Phys. 125 034101Google Scholar

    [54]

    Kozodaev M G, Chernikova A G, Khakimov R R, Park M H, Markeev A M, Hwang C S 2018 Appl. Phys. Lett. 113 123902Google Scholar

    [55]

    Hoffmann M, Schroeder U, Künneth C, Kersch A, Starschich S, Böttger U, Mikolajick T 2015 Nano Energy 18 154Google Scholar

    [56]

    Lomenzo P D, Zhao P, Takmeel Q, Moghaddam S, Nishida T, Nelson M, Fancher C M, Grimley E D, Sang X, LeBeau J M, Jones J L 2014 J. Vac. Sci. Technol. B 32 03d123Google Scholar

    [57]

    Lee C K, Cho E, Lee H S, Hwang C S, Han S 2008 Phys. Rev. B 78 012102Google Scholar

    [58]

    Park M H, Schenk T, Fancher C M, Grimley E D, Zhou C, Richter C, LeBeau J M, Jones J L, Mikolajick T, Schroeder U 2017 J. Mater. Chem. C 5 4677Google Scholar

    [59]

    Starschich S, Boettger U 2017 J. Mater. Chem. C 5 333Google Scholar

    [60]

    Yao Y F, Zhou D Y, Li S D, Wang J J, Sun N N, Liu F, Zhao X M 2019 J. Appl. Phys. 126 154103Google Scholar

    [61]

    Mueller S, Adelmann C, Singh A, Elshocht S Van, Schroeder U, Mikolajick T 2012 ECS J. Solid State Sci. Technol. 1 N123Google Scholar

    [62]

    Schroeder U, Mueller S, Mueller J, Yurchuk E, Martin D, Adelmann C, Schloesser T, Bentum R V, Mikolajick T 2013 ECS J. Solid State Sci. Technol. 2 N69Google Scholar

    [63]

    Tromm T C U, Zhang J, Schubert J, Luysberg M, Zander W, Han Q, Meuffels P, Meertens D, Glass S, Bernardy P, Mantl S 2017 Appl. Phys. Lett. 111 142904Google Scholar

    [64]

    Luo J D, Yeh Y T, Lai Y Y, Wu C F, Chung H T, Li Y S, Chuang K C, Li W S, Chen P G, Lee M H, Cheng H C 2020 Vacuum 176 109317Google Scholar

    [65]

    Kim K D, Park M H, Kim H J, Kim Y J, Moon T, Lee Y H, Hyun S D, Gwon T, Hwang C S 2016 J. Mater. Chem. C 4 6864Google Scholar

    [66]

    Park M H, Kim H J, Kim Y J, Lee W, Kim H K, C S Hwang 2013 Appl. Phys. Lett. 102 112914Google Scholar

    [67]

    Oh S, Song J, Yoo I K, Hwang H 2019 IEEE Electr. Device L. 40 1092Google Scholar

    [68]

    Zhou Y, Zhang Y K, Yang Q, Jiang J, Fan P, Liao M, Zhou Y C 2019 Comp. Mater. Sci. 167 143Google Scholar

    [69]

    Xu L, Nishimura T, Shibayama S, Yajima T, Migita S, Toriumi A 2016 Appl. Phys. Express 9 091501Google Scholar

    [70]

    Wang J, Li H P, Stevens R 1992 J. Mater. Sci. 27 5397Google Scholar

    [71]

    Kim S J, Narayan D, Lee J G, Mohan J, Lee J S, Lee J, Kim H S, Byun Y C, Lucero A T, Young C D, Summerfelt S R, San T, Colombo L, Kim J 2017 Appl. Phys. Lett. 111 242901Google Scholar

    [72]

    Lomenzo P D, Takmeel Q, Zhou C Z, Fancher C M, Lambers E, Rudawski N G, Jones J L, Moghaddam S, Nishida T 2015 J. Appl. Phys. 117 134105Google Scholar

    [73]

    Karbasian G, Reis R D, Yadav A K, Tan A J, Hu C M, Salahuddin S 2017 Appl. Phys. Lett. 111 022907Google Scholar

    [74]

    Lee Y, Goh Y, Hwang J, Das D, Jeon S 2021 IEEE Trans. Electr. Dev. 68 523Google Scholar

    [75]

    Cao R R, Wang Y, Zhao S J, Yang Y, Zhao X L, Wang W, Zhang X M, Lv H B, Liu Q, Liu M 2018 IEEE Electr. Device L. 39 1207Google Scholar

    [76]

    Zhang Y, Fan Z, Wang D, Wang J L, Zou Z M, Li Y S, Li Q, Tao R Q, Chen D Y, Zeng M, Gao X S, Dai J Y, Zhou G F, Lu X B, J M Liu 2020 ACS Appl. Mater. Inter. 12 40510Google Scholar

    [77]

    Goh Y, Cho S H, Park S H K, Jeon S 2020 Nanoscale 12 9024Google Scholar

    [78]

    Zhang Z M, Hsu S L, Stoica V A, Paik H, Parsonnet E, Qualls A, Wang J J, Xie L, Kumari M, Das S, Leng Z N, McBriarty M, Proksch R, Gruverman A, Schlom D G, Chen L Q, Salahuddin S, Martin L W, Ramesh R 2021 Adv. Mater. 33 2006089Google Scholar

    [79]

    Shiraishi T, Katayama K, Yokouchi T, Shimizu T, Oikawa T, Sakata O, Uchida H, Imai Y, Kiguchi T, Konno T J, Funakubo H 2016 Appl. Phys. Lett. 108 262904Google Scholar

    [80]

    Li T, Zhang N, Sun Z Z, Xie C X, Ye M, Mazumdar S, Shu L, Wang Y, Wang D Y, Chen L, Ke S, Huang H 2018 J. Mater. Chem. C 6 9224Google Scholar

    [81]

    Katayama K, Shimizu T, Sakata O, Shiraishi T, Nakamura S, Kiguchi T, Akama A, Konno T J, Uchida H, Funakubo H 2016 Appl. Phys. Lett. 109 112901Google Scholar

    [82]

    Song T F, Bachelet R, Saint-Girons G, Solanas R, Fina I, Sánchez F 2020 ACS Appl. Electron. Mater. 2 3221Google Scholar

    [83]

    Estandia S, Dix N, Chisholm M F, Fina I, Sánchez F 2020 Cryst. Growth Des. 20 3801Google Scholar

    [84]

    Li T, Ye M, Sun Z Z, Zhang N, Zhang W, Inguva S, Xie C X, Chen L, Wang Y, Ke S M, Huang H T 2019 ACS Appl. Mater. Inter. 11 4139Google Scholar

    [85]

    Zhou H, Wu L J, Wang H Q, Zheng J C, Zhang L H, Kisslinger K, Li Y P, Wang Z Q, Cheng H, Ke S M, Li Y, Kang J Y, Zhu Y M 2017 Nat. Commun. 8 1474Google Scholar

    [86]

    Lyu J, Fina I, Solanas R, Fontcuberta J, Sánchez F 2018 Appl. Phys. Lett. 113 082902Google Scholar

    [87]

    Lyu J, Fina I, Bachelet R, Saint-Girons G, Estandía S, Gázquez J, Fontcuberta J, Sánchez F 2019 Appl. Phys. Lett. 114 222901Google Scholar

    [88]

    Cheema S S, Kwon D, Shanker N, Reis R D, Hsu S L, Xiao J, Zhang H G, Wagner R, Datar A, McCarter M R, Serrao C R, Yadav A K, Karbasian G, Hsu C H, Tan A J, Wang L C, Thakare V, Zhang X, Mehta A, Karapetrova E, Chopdekar R V, Shafer P, Arenholz E, Hu C, Proksch R, Ramesh R, Ciston J, Salahuddin S 2020 Nature 580 478Google Scholar

    [89]

    Xu X H, Huang F T, Qi Y B, Singh S, Rabe K M, Obeysekera D, Yang J J, Chu M W, Cheong S W 2021 Nat. Mater. 20 826Google Scholar

    [90]

    Estandía S, Dix N, Gazquez J, Fina I, Lyu J, Chisholm M F, Fontcuberta J, Sánchez F 2019 ACS Appl. Electron Mater. 1 1449Google Scholar

    [91]

    Lyu J, Fina I, Fontcuberta J, Sanchez F 2019 ACS Appl. Mater. Inter. 11 6224Google Scholar

    [92]

    Park M H, Kim H J, Kim Y J, Lee W, Moon T, Kim K D, Hwang C S 2014 Appl. Phys. Lett. 105 072902Google Scholar

    [93]

    Yan Y, Zhou D Y, Guo C X, Xu J, Yang X R, Liang H L, Zhou F Y, Chu S C, Liu X Y 2016 J. Sol-Gel Sci. Technol. 7 430Google Scholar

    [94]

    Chernikova A G, Kuzmichev D S, Negrov D V, Kozodaev M G, Polyakov S N, Markeev A M 2016 Appl. Phys. Lett. 108 242905Google Scholar

    [95]

    Mittmann T, Materano M, Lomenzo P D, Park M H, Stolichnov I, Cavalieri M, Zhou C Z, Chung C C, Jones J L, Szyjka T, Müller M, Kersch A, Mikolajick T, Schroeder U 2019 Adv. Mater. Inter. 6 1900042Google Scholar

    [96]

    Liao J J, Zeng B J, Sun Q, Chen Q, Liao M, Qiu C G, Zhang Z Y, Zhou Y C 2019 IEEE Electr. Device L. 40 1868Google Scholar

    [97]

    Migita S, Ota H, Asanuma S, Morita Y, Toriumi A 2021 Appl. Phys. Express 14 051006Google Scholar

    [98]

    Chen Y H, Wang L, Liu L Y, Tang L, Yuan X, Chen H Y, Zhou K C, Zhang D 2021 J. Mater. Sci. 56 6064Google Scholar

    [99]

    Shin H W, Son J Y 2020 Appl. Phys. Lett. 117 202902Google Scholar

    [100]

    Chen Q, Zhang Y K, Liu W Y, Jiang J, Yang Q, Jiang L M 2021 Int. J. Mech. Sci. 212 106828Google Scholar

    [101]

    Kim H J, Park M H, Kim Y J, Lee Y H, Jeon W, Gwon T, Moon T, Kim K D, Hwang C S 2014 Appl. Phys. Lett. 105 192903Google Scholar

    [102]

    Nakayama S, Funakubo H, Uchida H 2018 Jpn. J. Appl. Phys. 57 11UF06Google Scholar

    [103]

    Chen H Y, Chen Y H, Tang L, Luo H, Zhou K C, Yuan X, Zhang D 2020 J. Mater. Chem. C 8 2820Google Scholar

    [104]

    Tang L, Chen C, Wei A Q, Li K, Zhang D, Zhou K C 2019 Ceram. Int. 45 3140Google Scholar

    [105]

    Liu H, Zheng S Z, Chen Q, Zeng B J, Jiang J, Peng Q X, Liao M, Zhou Y C 2019 J. Mater. Sci. :Mater. Electron. 30 5771Google Scholar

    [106]

    Wang X X, Zhou D Y, Li S D, Liu X H, Zhao P, Sun N N, Ali F, Wang J J 2018 Ceram. Int. 44 13867Google Scholar

    [107]

    Weeks S L, Pal A, Narasimhan V K, Littau K A, Chiang T 2017 ACS Appl. Mater. Inter. 9 13440Google Scholar

    [108]

    Park M H, Kim H J, Lee G, Park J, Lee Y H, Kim Y J, Moon T, Kim K D, Hyun S D, Park H W, Chang H J, Choi J H, Hwang C S 2019 Appl. Phys. Rev. 6 041403Google Scholar

    [109]

    Si M W, Lyu X, Ye P D 2019 ACS Appl. Electron. Mater. 1 745Google Scholar

    [110]

    Wang J L, Wang D, Li Q, Zhang A H, Gao D, Guo M, Feng J J, Fan Z, Chen D Y, Qin M H, Zeng M, Gao X S, Zhou G F, Lu X B, Liu J M 2019 IEEE Electr. Device L. 40 1937Google Scholar

    [111]

    Chen H Y, Tang L, Liu L Y, Chen Y H, Luo H, Yuan X, Zhang D 2021 Appl. Surf. Sci. 542 148737Google Scholar

    [112]

    Onaya T, Nabatame T, Sawamoto N, Ohi A, Ikeda N, Chikyow T, Ogura A 2017 Appl. Phys. Express 10 081501Google Scholar

    [113]

    Wong H S P, Salahuddin S 2015 Nat. Nanotechnol. 10 191Google Scholar

    [114]

    Müller J, Böscke T S, Müllera S, Yurchuk E, Polakowski P, Paul J, Martin D, Schenk T, Khullar K, Kersch A, Weinreich W, Riedel S, Seidel K, Kumar A, Arruda T M, Kalinin S V, Schlösser T, Boschke R, Bentum R V, Schröder U, Mikolajick T 2013 IEEE International Electron Devices Meeting (IEDM) 13 280Google Scholar

    [115]

    Huang F, Wang Y, Liang X, Qin J, Zhang Y, Yuan X F, Wang Z, Peng B, Deng L J, Liu Q, Bi L, Liu M 2017 IEEE International Electron Devices Meeting (IEDM) 38 330Google Scholar

    [116]

    Mueller S, Slesazeck S, Henker S, Flachowsky S, Polakowski P, Paul J, Smith E, Müller J, Mikolajick T 2016 Ferroelectrics 497 42Google Scholar

    [117]

    Chernikova A, Kozodaev M, Markeev A, Negrov D, Spiridonov M, Zarubin S, Bak O, Buragohain P, Lu H, Suvorova E, Gruverman A, Zenkevich A 2016 ACS Appl. Mater. Inter. 8 7232Google Scholar

    [118]

    Fox G R, Chu F, Davenport T 2001 J. Vac. Sci. Technol. B 19 1967Google Scholar

    [119]

    Fan Z, Chen J S, Wang J 2016 J. Adv. Dielectr. 6 1630003Google Scholar

    [120]

    Ishiwara H 2012 J. Nanosci. Nanotechnol. 12 7619Google Scholar

    [121]

    Okuno J, Kunihiro T, Konishi K, Materano M, Ali T, Kuehnel K, Seidel K, Mikolajick T, Schroeder U, Tsukamoto M, Umebayashi T 2021 IEEE J. Electron Devi. 10 29Google Scholar

    [122]

    Mulaosmanovic H, Ocker J, Müller S, Schroeder U, Müller J, Polakowski P, Flachowsky S, Bentum R V, Mikolajick T, Slesazeck S 2017 ACS Appl. Mater. Interf. 9 3792Google Scholar

    [123]

    Yan S C, Lan G M, Sun C J, Chen Y H, Wu C H, Peng H K, Lin Y H, Wu Y H, Wu Y C 2021 IEEE Electr. Device L. 42 1307Google Scholar

    [124]

    Choi W Y, Park B G, Lee J D, Liu T J K, 2007 IEEE Electr. Device L. 28 743Google Scholar

    [125]

    Salahuddin S, Datta S 2008 Nano Lett. 8 405Google Scholar

    [126]

    谭欣, 翟亚红 2019 材料导报 33 433Google Scholar

    Tan X, Zhai Y H 2019 Materials Reports 33 433Google Scholar

    [127]

    Ionescu A M 2018 Nat. Nanotechnol. 13 7Google Scholar

    [128]

    Si M W, Su C J, Jiang C S, Conrad N J, Zhou H, Maize K D, Qiu G, Wu C T, Shakouri A, Alam M A, Ye P D 2018 Nat. Nanotechnol 13 24Google Scholar

    [129]

    McGuire F A, Lin Y C, Price K, Rayner G B, Khandelwal S, Salahuddin S, Franklin A D 2017 Nano Lett. 17 4801Google Scholar

    [130]

    Esaki L, Laibowitz R B, Stiles P J 1971 IBM Tech. Discl. Bull. 13 2161

    [131]

    Zhuravlev M Y, Sabirianov R F, Jaswal S S, Tsymbal E Y 2005 Phys. Rev. Lett. 94 246802Google Scholar

    [132]

    Garcia V, Bibes M 2014 Nat. Commun. 5 4289Google Scholar

    [133]

    Du X Z, Sun H Y, Wang H, Li J C, Yin Y W, Li X G 2022 ACS Appl. Mater. Inter. 14 1355Google Scholar

    [134]

    Goh Y, Hwang J, Lee Y, Kim M, Jeon S 2020 Appl. Phys. Lett. 117 242901Google Scholar

    [135]

    Cheema S S, Shanker N, Hsu C H, Datar A, Bae J, Kwon D, Salahuddin S 2021 Adv. Electron. Mater. 8 2100499Google Scholar

    [136]

    Drachman D A 2005 Neurology 64 2004Google Scholar

    [137]

    Kim M K, Lee J S 2020 Adv. Mater. 32 1907826Google Scholar

    [138]

    Majumdar S 2021 Adv. Intell. Syst. 4 2100175Google Scholar

    [139]

    Lee D H, Park G H, Kim S H, Park J Y, Yang K, Slesazeck S, Mikolajick T, Park M H 2022 InfoMat 4 e12380Google Scholar

    [140]

    Kim M K, Lee J S 2019 Nano Lett. 19 2044Google Scholar

    [141]

    Xi F B, Han Y, M S Liu, Bae J H, Tiedemann A, Grützmacher D, Zhao Q T 2021 ACS Appl. Mater. Inter. 13 32005Google Scholar

    [142]

    Goh Y, Hwang J, Kim M, Lee Y, Jung M, Jeon S 2021 ACS Appl. Mater. Inter. 13 59422Google Scholar

    [143]

    Yao Z H, Song Z, Hao H, Yu Z Y, Cao M H, Zhang S J, Lanagan M T, Liu H X 2017 Adv. Mater. 29 1601727Google Scholar

    [144]

    Ali F, Zhou D Y, Sun N N, Ali H W, Abbas A, Iqbal F, Dong F, Kim K H 2020 ACS Appl. Energy Mater. 3 6036Google Scholar

    [145]

    Yao M W, Li Q X, Li F, Peng Y, Su Z, Yao X 2018 Mater. Chem. Phys. 206 48Google Scholar

    [146]

    Yang B B, Guo M Y, Jin L H, Tang X W, Wei R H, Hu L, Yang J, Song W H, Dai J M, Lou X J, Zhu X B, Sun Y P 2018 Appl. Phys. Lett. 112 033904Google Scholar

    [147]

    Lomenzo P D, Chung C C, Zhou C Z, Jones J L, Nishida T 2017 Appl. Phys. Lett. 110 232904Google Scholar

    [148]

    Hoffmann M, Fengler F P G, Max B, Schroeder U, Slesazeck S, Mikolajick T 2019 Adv. Energy Mater. 9 1901154Google Scholar

    [149]

    He Y, Zheng G, Wu X, Liu W J, Zhang D W, Ding S J 2022 Nanoscale Adv. 4 4648Google Scholar

    [150]

    Spahr H, Nowak C, Hirschberg F, Reinker J, Kowalsky W, Hente D, Johannes H H 2013 Appl. Phys. Lett. 103 042907Google Scholar

    [151]

    Zhang T D, Li W L, Hou Y F, Yu Y, Song R X, Cao W P, Fei W D 2017 J. Am. Ceram. Soc. 100 3080Google Scholar

    [152]

    Lee H J, Won S S, Cho K H, Han C K, Mostovych N, Kingon A I, Kim S H, Lee H Y 2018 Appl. Phys. Lett. 112 092901Google Scholar

    [153]

    Zhang X, Shen Y, Xu B, Zhang Q H, Gu L, Jiang J Y, Ma J, Lin Y H, Nan C W 2016 Adv. Mater. 28 2055Google Scholar

    [154]

    电子工程师 https://m.elecfans.com/article/620744.html [2023-03-07]

    [155]

    Sun K, Chen J, Yan X 2021 Adv. Funct. Mater. 31 2006773Google Scholar

    [156]

    Schenk T, Godard N, Mahjoub A, Girod S, Matavz A, Bobnar V, Defay E, Glinsek S 2019 Phys. Status Solidi-R 14 1900626Google Scholar

  • [1] 郑旭, 李钊, 顾月良, 尹帅帅, 姜继超, 郭朴, 邱志勇, 李晓龙. BaTiO3单晶表面结构及表面液体pH值的影响. 物理学报, 2024, 73(10): 106101. doi: 10.7498/aps.73.20240084
    [2] 丁俊, 文黎巍, 李瑞雪, 张英. 铁电极化翻转对硅烯异质结中电子性质的调控. 物理学报, 2022, 71(17): 177303. doi: 10.7498/aps.71.20220815
    [3] 石志鑫, 周大雨, 李帅东, 徐进, UweSchröder. 一阶回转曲线图谱法及其在HfO2基铁电薄膜极化翻转行为研究中的应用. 物理学报, 2021, 70(12): 127702. doi: 10.7498/aps.70.20210115
    [4] 陈东, 余本海. 外延应变和铁电极化双重调控LaMnO3/BaTiO3超晶格的磁性. 物理学报, 2020, 69(22): 226301. doi: 10.7498/aps.69.20200839
    [5] 黎华梅, 侯鹏飞, 王金斌, 宋宏甲, 钟向丽. HfO2基铁电场效应晶体管读写电路的单粒子翻转效应模拟. 物理学报, 2020, 69(9): 098502. doi: 10.7498/aps.69.20200123
    [6] 裴明辉, 田瑜, 张金星. 钙钛矿型铁电氧化物表面结构与功能的控制及其潜在应用. 物理学报, 2020, 69(21): 217709. doi: 10.7498/aps.69.20200884
    [7] 崔宗杨, 谢忠帅, 汪尧进, 袁国亮, 刘俊明. 钙钛矿铁电半导体的光催化研究现状及其展望. 物理学报, 2020, 69(12): 127706. doi: 10.7498/aps.69.20200287
    [8] 王建元, 白健英, 罗炳成, 王拴虎, 金克新, 陈长乐. BaTiO3/La0.67Sr0.33MnO3-复合薄膜的磁致电极化和磁介电特性研究. 物理学报, 2018, 67(1): 017701. doi: 10.7498/aps.67.20172019
    [9] 李超, 姚湲, 杨阳, 沈希, 高滨, 霍宗亮, 康晋锋, 刘明, 禹日成. 纳米材料及HfO2基存储器件的原位电子显微学研究. 物理学报, 2018, 67(12): 126802. doi: 10.7498/aps.67.20180731
    [10] 琚安安, 郭红霞, 张凤祁, 郭维新, 欧阳晓平, 魏佳男, 罗尹虹, 钟向丽, 李波, 秦丽. 铁电存储器中高能质子引发的单粒子功能中断效应实验研究. 物理学报, 2018, 67(23): 237803. doi: 10.7498/aps.67.20181225
    [11] 秦丽, 郭红霞, 张凤祁, 盛江坤, 欧阳晓平, 钟向丽, 丁李利, 罗尹虹, 张阳, 琚安安. 铁电存储器60Co γ射线及电子总剂量效应研究. 物理学报, 2018, 67(16): 166101. doi: 10.7498/aps.67.20180829
    [12] 吴化平, 令欢, 张征, 李研彪, 梁利华, 柴国钟. 铁电材料光催化活性的研究进展. 物理学报, 2017, 66(16): 167702. doi: 10.7498/aps.66.167702
    [13] 代月花, 潘志勇, 陈真, 王菲菲, 李宁, 金波, 李晓风. 基于HfO2的阻变存储器中Ag导电细丝方向和浓度的第一性原理研究. 物理学报, 2016, 65(7): 073101. doi: 10.7498/aps.65.073101
    [14] 蒋然, 杜翔浩, 韩祖银, 孙维登. Ti/HfO2/Pt阻变存储单元中的氧空位聚簇分布. 物理学报, 2015, 64(20): 207302. doi: 10.7498/aps.64.207302
    [15] 代广珍, 代月花, 徐太龙, 汪家余, 赵远洋, 陈军宁, 刘琦. HfO2中影响电荷俘获型存储器的氧空位特性第一性原理研究. 物理学报, 2014, 63(12): 123101. doi: 10.7498/aps.63.123101
    [16] 周大雨, 徐进. Si掺杂HfO2薄膜的铁电和反铁电性质. 物理学报, 2014, 63(11): 117703. doi: 10.7498/aps.63.117703
    [17] 张兴尧, 郭旗, 陆妩, 张孝富, 郑齐文, 崔江维, 李豫东, 周东. 串口型铁电存储器总剂量辐射损伤效应和退火特性. 物理学报, 2013, 62(15): 156107. doi: 10.7498/aps.62.156107
    [18] 许军, 黄宇健, 丁士进, 张卫. Ta和TaN底电极对原子层淀积HfO2介质MIM电性能的影响. 物理学报, 2009, 58(5): 3433-3436. doi: 10.7498/aps.58.3433
    [19] 王飞鹏, 夏钟福, 邱勋林, 沈 军. 聚丙烯孔洞铁电驻极体膜的电极化及其电荷动态特性. 物理学报, 2006, 55(7): 3705-3710. doi: 10.7498/aps.55.3705
    [20] 李智强, 陈敏, 沈文彬, 李景德. 铁电极化子动力学理论. 物理学报, 2001, 50(12): 2477-2481. doi: 10.7498/aps.50.2477
计量
  • 文章访问数:  14195
  • PDF下载量:  777
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-20
  • 修回日期:  2022-12-17
  • 上网日期:  2023-01-07
  • 刊出日期:  2023-05-05

/

返回文章
返回