搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

原位生长技术制备石墨烯强化铜基复合材料

周海涛 熊希雅 罗飞 罗炳威 刘大博 申承民

引用本文:
Citation:

原位生长技术制备石墨烯强化铜基复合材料

周海涛, 熊希雅, 罗飞, 罗炳威, 刘大博, 申承民

Graphene enforced copper matrix composites fabricated by in-situ deposition technique

Zhou Hai-Tao, Xiong Xi-Ya, Luo Fei, Luo Bing-Wei, Liu Da-Bo, Shen Cheng-Min
PDF
HTML
导出引用
  • 利用等离子增强化学气相沉积方法, 在铜粉表面原位生长了站立石墨烯, 用于制备石墨烯强化铜基复合材料. 研究表明, 石墨烯包覆在铜粉外表面, 微观尺度实现了两者的均匀混合; 生长的初期阶段, 碳、氢等离子基团可将铜粉表面的氧化层还原, 有助于铜粉-石墨烯之间形成良好的界面; 石墨烯的成核是一个生长/刻蚀相互竞争的过程, 其尺寸可受制备温度调控. 利用放电等离子烧结方法将粉末压制成型, 测试结果显示, 添加石墨烯样品的电阻率降低了一个数量级, 维氏硬度和屈服强度分别提高了15.6%和28.8%.
    Due to the outstanding mechanical and electronic properties, graphene has been widely investigated as the nano-filler for fabricating metallic matrix composites. The key point in these studies is how to realize a uniform distribution of graphene in the metallic powders. The traditional methods mainly include ball-milling and colloidal processing. However, both of them result in massive structural defects on graphene flakes and further degrade its strengthening effects. Therefore, it is meaningful to explore a new method. In this study, we present a new way, i.e. in-situ growth of graphene on copper powders in the plasma enhanced chemical vapor deposition system (PECVD). The scanning electron microscope(SEM) images indicate that the powder is fully covered by graphene nanoflakes, realizing uniform mixing on a micro-scale. Further research finds that there exists a competition between growth and etching at the initial stage of the graphene growth. Methane is dissociated into various active species (CHx, atomic H and C) by the radio frequency. The C atoms self-assemble into graphene islands, yet the H atoms tend to etch these islands away. At a lower temperature, the etching effect takes a dominant position and then only the bigger islands are able to survive in this process, resulting in bigger graphene nanoflakes. As a contrast, it is a growth-dominant process at higher temperature, resulting in a much higher nucleation density and smaller graphene sheets. Therefore, the size of graphene sheets can be well controlled by tuning the growth temperature, for example, the sizes are 300 and 100 nm at 500 ℃ and 600 ℃ respectively. Moreover, the X-ray photoelectron spectroscopy(XPS) spectra show that the oxide layer at the surface of copper powder can be removed as the graphene flakes grow, which contributes to a fine interface between the two parts and further leads to outstanding performance of the final composite. The powder is consolidated by spark plasma sintering(SPS) technique, and several properties of this composite are tested. The results indicate that compared with the pure copper, the copper with the addition of graphene can reduce the resistivity by one order of magnitude and increase the hardness and yield strength by 15.6% and 28.8%, respectively. This work provides an alternative way to fabricate graphene-enforced composite and shows promising application prospects.
      通信作者: 申承民, cmshen@iphy.ac.cn
    • 基金项目: 国家重点研发计划(批准号: 2018FYA0305800)和国家自然科学基金(批准号: 51602300)资助的课题
      Corresponding author: Shen Cheng-Min, cmshen@iphy.ac.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2018FYA0305800) and the National Natural Science Foundation of China (Grant No. 51602300)
    [1]

    Hwang J, Yoon T, Jin S H, Lee J, Kim T S, Hong S H, Jeon S 2013 Adv. Mater. 25 6724Google Scholar

    [2]

    Li Z, Guo Q, Li Z Q, Fan G L, Xiong D B, Su Y S, Zhang J, Zhang D 2015 Nano Lett. 15 8077Google Scholar

    [3]

    Yue H Y, Yao L H, Gao X, Zhang S L, Guo E J, Zhang H, Lin X Y, Wang B 2017 J. Alloys Compd. 691 755Google Scholar

    [4]

    Li J F, Zhang L, Xiao J K, Zhou K C 2015 Trans. Nonferrous Met. Soc. China 25 3354Google Scholar

    [5]

    燕绍九, 杨程, 洪起虎, 陈军洲, 刘大博, 戴圣龙 2014 材料工程 0(4) 1Google Scholar

    Yan S J, Yang C, Hong Q H, Chen J Z, Liu D B, Dai S L 2014 J. Mater. Eng. 0(4) 1Google Scholar

    [6]

    Kim Y, Lee J, Yeom M S, Shin J W, Kim H, Cui Y, Kysar J W, Hone J, Jung Y, Jeon S, Han S M 2013 Nat. Commun. 4 2114Google Scholar

    [7]

    Liu J, Yan H X, Jiang K 2013 Ceram. Int. 39 6215Google Scholar

    [8]

    Pavithra C L P, Sarada B V, Rajulapati K V, Rao T N, Sundararajan G 2014 Sci. Rep. 4 4049

    [9]

    Porwal H, Tatarko P, Grasso S, Khaliq J, Dlouhy I, Reece M J 2013 Carbon 64 359Google Scholar

    [10]

    Wang J Y, Li Z Q, Fan G L, Pan H H, Chen Z X, Zhang D 2012 Scr. Mater. 66 594Google Scholar

    [11]

    Nieto A, Huang L, Han Y H, Schoenung J M 2015 Ceram. Int. 41 5926Google Scholar

    [12]

    Ramirez C, Osendi M I 2014 Ceram. Int. 40 11187Google Scholar

    [13]

    Gutierrez-Gonzalez C F, Smirnov A, Centeno A, Fernandez A, Alonso B, Rocha V G, Torrecillas R, Zurutuza A, Bartolome J F 2015 Ceram. Int. 41 7434Google Scholar

    [14]

    Poirier D, Gauvin R, Drew R A L 2009 Composites Part A 40 1482Google Scholar

    [15]

    Li Z, Fan G L, Tan Z Q, Guo Q, Xiong D B, Su Y S, Li Z Q, Zhang D 2014 Nanotechnology 25 325601Google Scholar

    [16]

    Jiang L L, Yang T Z, Liu F, Dong J, Yao Z H, Shen C M, Deng S Z, Xu N S, Liu Y Q, Gao H J 2013 Adv. Mater. 25 250Google Scholar

    [17]

    Graf D, Molitor F, Ensslin K, Stampfer C, Jungen A, Hierold C, Wirtz L 2007 Nano Lett. 7 238Google Scholar

    [18]

    Zhou H T, Yu N, Zou F, Yao Z H, Gao G, Shen C M 2016 Chin. Phys. B 25 096106Google Scholar

    [19]

    Zhou H T, Liu D B, Luo F, Tian Y, Chen D S, Luo B W, Zhou Z, Shen C M 2019 Chin. Phys. B 28 068102Google Scholar

    [20]

    Liu D H, Yang W, Zhang L C, Zhang J, Meng J L, Yang R, Zhang G Y, Shi D X 2014 Carbon 72 387Google Scholar

    [21]

    Zhang L C, Shi Z W, Liu D H, Yang R, Shi D X, Zhang G Y 2012 Nano Res. 5 258Google Scholar

    [22]

    Liu Z J, Zhao Z H, Wang Y Y, Dou S, Yan D F, Liu D D, Xia Z H, Wang S Y 2017 Adv. Mater. 29 1606207Google Scholar

    [23]

    李秀辉, 燕绍九, 洪起虎, 赵双赞, 陈翔 2019 材料工程 47(1) 11Google Scholar

    Li X H, Yan S J, Hong Q H, Zhao S Z, Chen X 2019 J. Mater. Eng. 47(1) 11Google Scholar

    [24]

    Bartoluccia S, Parasa J, Rafieeb M, Rafieec J, Leea S, Kapoora D, Koratkarc N 2011 Mater. Sci. Eng., A 528 7933Google Scholar

    [25]

    Chen D S, Zhou H T, Tian Y, Luo F, Liu D B, Luo B W 2019 Micro-Nano Lett. 14 613Google Scholar

  • 图 1  等离子增强化学气相沉积系统示意图

    Fig. 1.  Schematic presentation of plasma enhanced chemical vapor deposition system (PECVD).

    图 2  利用等离子增强化学气相沉积方法在铜粉表面制备竖直站立石墨烯 (a)前和(b)后的SEM图; (c) 拉曼光谱; (d) 石墨烯边缘的HR-TEM图; 不同温度下制备的石墨烯的SEM图((e) 600 ℃和(f) 500 ℃, 生长时间为20和40 min), 结果表明可以通过调节生长温度, 控制石墨烯纳米片的尺寸

    Fig. 2.  The SEM image of the copper powder (a) before and (b) after the deposition of graphene; (c) Raman spectra of graphene; (d) HR-TEM image of the edge of graphene; the SEM image of graphene deposited at different temperatures ((e) 600 ℃ and (f) 500 ℃), indicating the size of graphene can be well controlled by tuning the growth temperature.

    图 3  (a) 铜原子的电子排布示意图; (b) XPS全谱扫描谱线; (c) C 1s精细谱; (d) Cu 2p精细谱

    Fig. 3.  (a) The electron configuration of copper atom; (b) XPS of the graphene grown on copper powder; (c) C 1s spectra; (d) Cu 2p spectra.

    图 4  添加石墨烯铜粉经SPS成型后样品的拉曼光谱曲线

    Fig. 4.  Raman spectroscopy of the graphene-added copper alloy, prepared by spark plasma sinter of the graphene-copper powders.

    表 1  放电等离子烧结样品的性能表征结果

    Table 1.  The properties of the spark plasma sintered samples.

    密度/
    (g·cm–3)
    电阻率/
    (10–5 Ω·cm)
    维氏硬
    度/HV
    屈服强
    度/MPa
    未添加石墨烯样品8.7424.607752
    添加石墨烯样品8.371.368967
    下载: 导出CSV
  • [1]

    Hwang J, Yoon T, Jin S H, Lee J, Kim T S, Hong S H, Jeon S 2013 Adv. Mater. 25 6724Google Scholar

    [2]

    Li Z, Guo Q, Li Z Q, Fan G L, Xiong D B, Su Y S, Zhang J, Zhang D 2015 Nano Lett. 15 8077Google Scholar

    [3]

    Yue H Y, Yao L H, Gao X, Zhang S L, Guo E J, Zhang H, Lin X Y, Wang B 2017 J. Alloys Compd. 691 755Google Scholar

    [4]

    Li J F, Zhang L, Xiao J K, Zhou K C 2015 Trans. Nonferrous Met. Soc. China 25 3354Google Scholar

    [5]

    燕绍九, 杨程, 洪起虎, 陈军洲, 刘大博, 戴圣龙 2014 材料工程 0(4) 1Google Scholar

    Yan S J, Yang C, Hong Q H, Chen J Z, Liu D B, Dai S L 2014 J. Mater. Eng. 0(4) 1Google Scholar

    [6]

    Kim Y, Lee J, Yeom M S, Shin J W, Kim H, Cui Y, Kysar J W, Hone J, Jung Y, Jeon S, Han S M 2013 Nat. Commun. 4 2114Google Scholar

    [7]

    Liu J, Yan H X, Jiang K 2013 Ceram. Int. 39 6215Google Scholar

    [8]

    Pavithra C L P, Sarada B V, Rajulapati K V, Rao T N, Sundararajan G 2014 Sci. Rep. 4 4049

    [9]

    Porwal H, Tatarko P, Grasso S, Khaliq J, Dlouhy I, Reece M J 2013 Carbon 64 359Google Scholar

    [10]

    Wang J Y, Li Z Q, Fan G L, Pan H H, Chen Z X, Zhang D 2012 Scr. Mater. 66 594Google Scholar

    [11]

    Nieto A, Huang L, Han Y H, Schoenung J M 2015 Ceram. Int. 41 5926Google Scholar

    [12]

    Ramirez C, Osendi M I 2014 Ceram. Int. 40 11187Google Scholar

    [13]

    Gutierrez-Gonzalez C F, Smirnov A, Centeno A, Fernandez A, Alonso B, Rocha V G, Torrecillas R, Zurutuza A, Bartolome J F 2015 Ceram. Int. 41 7434Google Scholar

    [14]

    Poirier D, Gauvin R, Drew R A L 2009 Composites Part A 40 1482Google Scholar

    [15]

    Li Z, Fan G L, Tan Z Q, Guo Q, Xiong D B, Su Y S, Li Z Q, Zhang D 2014 Nanotechnology 25 325601Google Scholar

    [16]

    Jiang L L, Yang T Z, Liu F, Dong J, Yao Z H, Shen C M, Deng S Z, Xu N S, Liu Y Q, Gao H J 2013 Adv. Mater. 25 250Google Scholar

    [17]

    Graf D, Molitor F, Ensslin K, Stampfer C, Jungen A, Hierold C, Wirtz L 2007 Nano Lett. 7 238Google Scholar

    [18]

    Zhou H T, Yu N, Zou F, Yao Z H, Gao G, Shen C M 2016 Chin. Phys. B 25 096106Google Scholar

    [19]

    Zhou H T, Liu D B, Luo F, Tian Y, Chen D S, Luo B W, Zhou Z, Shen C M 2019 Chin. Phys. B 28 068102Google Scholar

    [20]

    Liu D H, Yang W, Zhang L C, Zhang J, Meng J L, Yang R, Zhang G Y, Shi D X 2014 Carbon 72 387Google Scholar

    [21]

    Zhang L C, Shi Z W, Liu D H, Yang R, Shi D X, Zhang G Y 2012 Nano Res. 5 258Google Scholar

    [22]

    Liu Z J, Zhao Z H, Wang Y Y, Dou S, Yan D F, Liu D D, Xia Z H, Wang S Y 2017 Adv. Mater. 29 1606207Google Scholar

    [23]

    李秀辉, 燕绍九, 洪起虎, 赵双赞, 陈翔 2019 材料工程 47(1) 11Google Scholar

    Li X H, Yan S J, Hong Q H, Zhao S Z, Chen X 2019 J. Mater. Eng. 47(1) 11Google Scholar

    [24]

    Bartoluccia S, Parasa J, Rafieeb M, Rafieec J, Leea S, Kapoora D, Koratkarc N 2011 Mater. Sci. Eng., A 528 7933Google Scholar

    [25]

    Chen D S, Zhou H T, Tian Y, Luo F, Liu D B, Luo B W 2019 Micro-Nano Lett. 14 613Google Scholar

  • [1] 刘瑛, 郭斯琳, 张勇, 杨鹏, 吕克洪, 邱静, 刘冠军. 1/f噪声及其在二维材料石墨烯中的研究进展. 物理学报, 2023, 72(1): 017302. doi: 10.7498/aps.72.20221253
    [2] 陈善登, 白清顺, 窦昱昊, 郭万民, 王洪飞, 杜云龙. 金刚石晶界辅助石墨烯沉积的成核机理仿真. 物理学报, 2022, 71(8): 086103. doi: 10.7498/aps.71.20211981
    [3] 明知非, 宋海洋, 安敏荣. 基于分子动力学模拟的石墨烯镁基复合材料力学行为. 物理学报, 2022, 71(8): 086201. doi: 10.7498/aps.71.20211753
    [4] 魏宁, 赵思涵, 李志辉, 区炳显, 花安平, 赵军华. 石墨烯尺寸和分布对石墨烯/铝基复合材料裂纹扩展的影响. 物理学报, 2022, 71(13): 134702. doi: 10.7498/aps.71.20212203
    [5] 徐翔, 张莹, 闫庆, 刘晶晶, 王骏, 徐新龙, 华灯鑫. 不同堆垛结构二硫化铼/石墨烯异质结的光电化学特性. 物理学报, 2021, 70(9): 098203. doi: 10.7498/aps.70.20201904
    [6] 王铄, 王文辉, 吕俊鹏, 倪振华. 化学气相沉积法制备大面积二维材料薄膜: 方法与机制. 物理学报, 2021, 70(2): 026802. doi: 10.7498/aps.70.20201398
    [7] 白清顺, 窦昱昊, 何欣, 张爱民, 郭永博. 基于分子动力学模拟的铜晶面石墨烯沉积生长机理. 物理学报, 2020, 69(22): 226102. doi: 10.7498/aps.69.20200781
    [8] 王晓愚, 毕卫红, 崔永兆, 付广伟, 付兴虎, 金娃, 王颖. 基于化学气相沉积方法的石墨烯-光子晶体光纤的制备研究. 物理学报, 2020, 69(19): 194202. doi: 10.7498/aps.69.20200750
    [9] 张晓波, 青芳竹, 李雪松. 化学气相沉积石墨烯薄膜的洁净转移. 物理学报, 2019, 68(9): 096801. doi: 10.7498/aps.68.20190279
    [10] 张忠强, 贾毓瑕, 郭新峰, 葛道晗, 程广贵, 丁建宁. 凹槽铜基底表面与单层石墨烯的相互作用特性研究. 物理学报, 2018, 67(3): 033101. doi: 10.7498/aps.67.20172249
    [11] 杨文龙, 韩浚生, 王宇, 林家齐, 何国强, 孙洪国. 聚酰亚胺/功能化石墨烯复合材料力学性能及玻璃化转变温度的分子动力学模拟. 物理学报, 2017, 66(22): 227101. doi: 10.7498/aps.66.227101
    [12] 杨慧慧, 高峰, 戴明金, 胡平安. 介电层表面直接生长石墨烯的研究进展. 物理学报, 2017, 66(21): 216804. doi: 10.7498/aps.66.216804
    [13] 李浩, 付志兵, 王红斌, 易勇, 黄维, 张继成. 铜基底上双层至多层石墨烯常压化学气相沉积法制备与机理探讨. 物理学报, 2017, 66(5): 058101. doi: 10.7498/aps.66.058101
    [14] 王彬, 冯雅辉, 王秋实, 张伟, 张丽娜, 马晋文, 张浩然, 于广辉, 王桂强. 化学气相沉积法制备的石墨烯晶畴的氢气刻蚀. 物理学报, 2016, 65(9): 098101. doi: 10.7498/aps.65.098101
    [15] 叶鹏飞, 陈海涛, 卜良民, 张堃, 韩玖荣. SnO2量子点/石墨烯复合结构的合成及其光催化性能研究. 物理学报, 2015, 64(7): 078102. doi: 10.7498/aps.64.078102
    [16] 韩林芷, 赵占霞, 马忠权. 化学气相沉积法制备大尺寸单晶石墨烯的工艺参数研究. 物理学报, 2014, 63(24): 248103. doi: 10.7498/aps.63.248103
    [17] 冯秋菊, 许瑞卓, 郭慧颖, 徐坤, 李荣, 陶鹏程, 梁红伟, 刘佳媛, 梅艺赢. 衬底位置对化学气相沉积法制备的磷掺杂p型ZnO纳米材料形貌和特性的影响. 物理学报, 2014, 63(16): 168101. doi: 10.7498/aps.63.168101
    [18] 王浪, 冯伟, 杨连乔, 张建华. 化学气相沉积法制备石墨烯的铜衬底预处理研究. 物理学报, 2014, 63(17): 176801. doi: 10.7498/aps.63.176801
    [19] 王文荣, 周玉修, 李铁, 王跃林, 谢晓明. 高质量大面积石墨烯的化学气相沉积制备方法研究. 物理学报, 2012, 61(3): 038702. doi: 10.7498/aps.61.038702
    [20] 施 展, 南策文. 铁电/铁磁三相颗粒复合材料的磁电性能计算. 物理学报, 2004, 53(8): 2766-2770. doi: 10.7498/aps.53.2766
计量
  • 文章访问数:  9601
  • PDF下载量:  194
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-19
  • 修回日期:  2020-12-16
  • 上网日期:  2021-04-08
  • 刊出日期:  2021-04-20

/

返回文章
返回