搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高压下纳米晶ZnS晶粒和晶界性质及相变机理

王春杰 王月 高春晓

引用本文:
Citation:

高压下纳米晶ZnS晶粒和晶界性质及相变机理

王春杰, 王月, 高春晓

Grain and grain boundary characteristics and phase transition of ZnS nanocrystallines under pressure

Wang Chun-Jie, Wang Yue, Gao Chun-Xiao
PDF
HTML
导出引用
  • 采用高压在位交流阻抗谱技术, 研究了ZnS纳米晶在0—29.8 GPa压力范围内的晶粒和晶界性质变化及相关相变机理. 从晶粒和晶界的模谱图像中观察到, 随着压力的增加, 象征晶界影响的圆弧逐渐增加, 而代表晶粒作用的圆弧逐渐减弱. 此外, 晶粒电阻和晶界电阻随压力的升高呈现不同的变化速率, 并在11和15 GPa处出现了不连续变化点, 分别对应着由纤锌矿到闪锌矿到岩盐相结构转变的压力点. 进一步通过分析相变过程中晶界弛豫频率随压力的线性变化关系, 研究了ZnS由纤锌矿到闪锌矿到岩盐相的相变机理.
    In this paper, the grain and grain boundary characteristics and mechanisms of phase transition (from wurtzite to zinc-blende to rock-salt phase structure) of ZnS nanocrystallines are investigated via in situ impedance measurement under pressure up to 29.8 GPa. It should be noted that there are two semiarcs can be found from the modulus plots of ZnS under different pressures. The semiarc in high frequency region represents the grain characteristic, and another one in low frequency region refers to the grain boundary characteristic. The former decreases gradually with pressure increasing and the latter shows an opposite trend. This fact indicates that the effect of grain characteristic becomes weaker and weaker, and the role of grain boundary characteristic is just on the contrary. The grain resistance and grain boundary resistance of ZnS nanocrystalline are also studied. In the low pressure region, both resistances increase with different increment rate with pressure increasing, which can be attributed to the enhanced ability of trap charge carriers due to the small size effect of nanoparticles. In addition, two discontinuous points (about 11 and 15 GPa) can be observed in both resistance curves, corresponding to the points of phase transition from wurtzite to zinc-blende to rock-salt phase structure. With pressure increasing, both resistances decrease gradually until 21 GPa, and this point corresponds to the end of transition from zinc-blende to rock-salt phase structure. Their consequent variations are different, grain boundary resistance gradually decreases with the pressure increasing, while the grain resistance is almost a constant. Additionally, the relaxation frequency, as an intrinsic characteristic, is not affected by the geometrical parameters. According to the linear relation between the grain boundary relaxation frequency and pressure in the pressure range of phase transformation, the mechanism of structure transition from wurtzite to zinc-blende to rock-salt phase structure is also discussed in detail. Based on the investigations, the in situ impedance spectroscopy can not only be used to accurately measure the grain and grain boundary characteristics, but also provide information for studying the phase transformation under pressure.
      通信作者: 王月, wangsuiyue@foxmail.com
    • 基金项目: 国家级-国家自然科学基金(11404032)
      Corresponding author: Wang Yue, wangsuiyue@foxmail.com
    [1]

    Ding Z, Quinn B M, Haram S K, Pell L E, Korgel B A, Bard A J 2002 Science 296 1293Google Scholar

    [2]

    Stoica T, Sutter E, Meijers R J, Debnath R K, Calarco R, Luth H, Grutzmacher D 2008 Small 4 751Google Scholar

    [3]

    Bai F, Bian K, Huang X 2019 Chem. Rev. 119 7673Google Scholar

    [4]

    Haase M, Alivisatos A P 1992 J. Phys. Chem. 96 6756Google Scholar

    [5]

    Cui X Y, Hu T J, Wang J S, Zhang J K, Zhao R, Li F F 2017 RSC Adv. 7 12098Google Scholar

    [6]

    Ono S, Kikegawa T 2018 Phase Transitions 91 9Google Scholar

    [7]

    Biering S, Schwerdtfeger P 2012 J. Chem. Phys. 137 034705Google Scholar

    [8]

    Bilge M, Özdemir S, Kart H H 2008 Mater. Chem. Phys. 111 559Google Scholar

    [9]

    Wang Z, Guo Q 2009 J. Phys. Chem.C 113 4286Google Scholar

    [10]

    Pan Y W, Qu S, Dong S, Cui Q L, Gao C X, Zou G T 2002 J. Phys. Condens. Mater. 14 10487Google Scholar

    [11]

    Bi C, Pan L Q, Guo Z G, Zhao Y L, Huang M F, Xin J 2010 Mater. Lett. 64 1681Google Scholar

    [12]

    Wang Y, Han Y H, Gao C X, Ma Y Z, Liu C L, Peng G, Wu B J, Liu B, Hu T J, Cui X Y, Ren W B, Li Y, Su N N, Liu H W, Zou G T 2010 Rev. Sci. Instrum 81 013904Google Scholar

    [13]

    王月, 张凤霞, 王春杰, 高春晓 2014 物理学报 63 216401Google Scholar

    Wang Y, Zhang F X, Wang C J, Gao C X 2014 Acta Phys. Sin. 63 216401Google Scholar

    [14]

    曹楚南, 张鉴清 2002 电化学阻抗谱导论 (典藏版1) (北京: 科学出版社) 第21页

    Cao C N, Zhang J Q 2002 Introduction to Electrochemical Impedance Spectroscopy (Vol. 1) (Beijing: Science Press) p21 (in Chinese)

    [15]

    Li J, Wang W 2005 Phys. Rev. B 72 125325Google Scholar

    [16]

    Maier J 1987 Solid State Ionics 23 59Google Scholar

    [17]

    Fleig J, Maier J 1998 J. Electrochem. Soc. 145 2081Google Scholar

    [18]

    Fleig, J 2002 Solid State Ionics 150 181Google Scholar

    [19]

    Tolbert S H, Alivisatos A P 1994 Science 265 373Google Scholar

    [20]

    Tolbert S H, Alivisatos A P 1995 J. Chem. Phys. 102 4642Google Scholar

    [21]

    Tolbert S H, Herhold A B, Brus L E, Alivisatos A P 1996 Phys. Rev. Lett. 76 4384Google Scholar

    [22]

    Zhang H Z, Huang F, Gilbert B, Banfield J F 2003 J. Phys. Chem. B 107 13051Google Scholar

    [23]

    Zhao M, Zheng W T, Li J C, Wen Z, Gu M X, Sun C Q 2007 Phys. Rev. B 75 085427Google Scholar

    [24]

    Kodiyalam S, Rajiv K K, Hideaki K, Aiichiro N, Fuyuki S, Vashishta P 2001 Phys. Rev. Lett. 86 55Google Scholar

    [25]

    Ye X, Sun D Y, Gong X G 2008 Phys. Rev. B 77 094108Google Scholar

    [26]

    Wickham J N, Herhold A B, Alivisators A P 2000 Phys. Rev. Lett. 84 923Google Scholar

    [27]

    Goldstein A N, Echer C M, Alivisatos A P 1992 Science 256 1425Google Scholar

    [28]

    Brus L E, Harkless J A W, Stillinger F H 1996 J. Am. Chem. Soc. 118 4834Google Scholar

    [29]

    Macdonald J R 1987 Impedance Spectrum (New York: Wiley) pp13–14, 205

    [30]

    Chen C C, Herhold A B, Johnson C S, Alivisatos A P 1997 Science 276 398Google Scholar

    [31]

    Wang Z W, Daemen L L, Zhao Y S, Zha C S, Downs R T, Wang X, Wang Z L 2005 Nat. Mater. 4 922Google Scholar

    [32]

    Gilbert B, Frazer B H, Zhang H, Huang F, Banfield J F, Haskel D, Lang J C, Srajer G, de Stasio G 2002 Phys. Rev. B 66 245205Google Scholar

  • 图 1  纤锌矿ZnS纳米晶XRD谱图

    Fig. 1.  XRD pattern of wurtzite ZnS nanocrystals.

    图 2  (a) 金刚石对顶砧薄膜电极示意图: 1, Mo电极; 2, 裸露的金刚石砧面; 3, 沉积在金刚石砧面的Al2O3薄膜; 4, 沉积在Mo薄膜上的Al2O3薄膜; (b)金刚石对顶砧剖面示意图

    Fig. 2.  (a) The configuration of a complete microcircuit on a diamond anvil: 1, the Mo electrodes; 2, the exposed diamond anvil; 3, the Al2O3 layer deposited on the diamond anvil; 4, the Al2O3 layer deposited on the Mo film; (b) the cross section of the designed diamond-anvil-cell.

    图 3  不同压力下ZnS纳米晶的模谱图 (a) 8.4 GPa; (b) 12.6 GPa; (c) 18.3 GPa; (d) 29.8 GPa

    Fig. 3.  The modulus plots of ZnS nanocrystallines under different pressures: (a) 8.4 GPa; (b) 12.6 GPa; (c) 18.3 GPa; (d) 29.8 GPa.

    图 4  晶粒电阻(Rg)和晶界电阻(Rgb)随压力的变化关系

    Fig. 4.  Pressure dependence of grain resistance (Rg) and grain boundary resistance (Rgb) under high pressure.

    图 5  晶界弛豫频率随压力的变化

    Fig. 5.  The change of grain boundary relaxation frequency of ZnS nanocrystalline as a function of pressure.

  • [1]

    Ding Z, Quinn B M, Haram S K, Pell L E, Korgel B A, Bard A J 2002 Science 296 1293Google Scholar

    [2]

    Stoica T, Sutter E, Meijers R J, Debnath R K, Calarco R, Luth H, Grutzmacher D 2008 Small 4 751Google Scholar

    [3]

    Bai F, Bian K, Huang X 2019 Chem. Rev. 119 7673Google Scholar

    [4]

    Haase M, Alivisatos A P 1992 J. Phys. Chem. 96 6756Google Scholar

    [5]

    Cui X Y, Hu T J, Wang J S, Zhang J K, Zhao R, Li F F 2017 RSC Adv. 7 12098Google Scholar

    [6]

    Ono S, Kikegawa T 2018 Phase Transitions 91 9Google Scholar

    [7]

    Biering S, Schwerdtfeger P 2012 J. Chem. Phys. 137 034705Google Scholar

    [8]

    Bilge M, Özdemir S, Kart H H 2008 Mater. Chem. Phys. 111 559Google Scholar

    [9]

    Wang Z, Guo Q 2009 J. Phys. Chem.C 113 4286Google Scholar

    [10]

    Pan Y W, Qu S, Dong S, Cui Q L, Gao C X, Zou G T 2002 J. Phys. Condens. Mater. 14 10487Google Scholar

    [11]

    Bi C, Pan L Q, Guo Z G, Zhao Y L, Huang M F, Xin J 2010 Mater. Lett. 64 1681Google Scholar

    [12]

    Wang Y, Han Y H, Gao C X, Ma Y Z, Liu C L, Peng G, Wu B J, Liu B, Hu T J, Cui X Y, Ren W B, Li Y, Su N N, Liu H W, Zou G T 2010 Rev. Sci. Instrum 81 013904Google Scholar

    [13]

    王月, 张凤霞, 王春杰, 高春晓 2014 物理学报 63 216401Google Scholar

    Wang Y, Zhang F X, Wang C J, Gao C X 2014 Acta Phys. Sin. 63 216401Google Scholar

    [14]

    曹楚南, 张鉴清 2002 电化学阻抗谱导论 (典藏版1) (北京: 科学出版社) 第21页

    Cao C N, Zhang J Q 2002 Introduction to Electrochemical Impedance Spectroscopy (Vol. 1) (Beijing: Science Press) p21 (in Chinese)

    [15]

    Li J, Wang W 2005 Phys. Rev. B 72 125325Google Scholar

    [16]

    Maier J 1987 Solid State Ionics 23 59Google Scholar

    [17]

    Fleig J, Maier J 1998 J. Electrochem. Soc. 145 2081Google Scholar

    [18]

    Fleig, J 2002 Solid State Ionics 150 181Google Scholar

    [19]

    Tolbert S H, Alivisatos A P 1994 Science 265 373Google Scholar

    [20]

    Tolbert S H, Alivisatos A P 1995 J. Chem. Phys. 102 4642Google Scholar

    [21]

    Tolbert S H, Herhold A B, Brus L E, Alivisatos A P 1996 Phys. Rev. Lett. 76 4384Google Scholar

    [22]

    Zhang H Z, Huang F, Gilbert B, Banfield J F 2003 J. Phys. Chem. B 107 13051Google Scholar

    [23]

    Zhao M, Zheng W T, Li J C, Wen Z, Gu M X, Sun C Q 2007 Phys. Rev. B 75 085427Google Scholar

    [24]

    Kodiyalam S, Rajiv K K, Hideaki K, Aiichiro N, Fuyuki S, Vashishta P 2001 Phys. Rev. Lett. 86 55Google Scholar

    [25]

    Ye X, Sun D Y, Gong X G 2008 Phys. Rev. B 77 094108Google Scholar

    [26]

    Wickham J N, Herhold A B, Alivisators A P 2000 Phys. Rev. Lett. 84 923Google Scholar

    [27]

    Goldstein A N, Echer C M, Alivisatos A P 1992 Science 256 1425Google Scholar

    [28]

    Brus L E, Harkless J A W, Stillinger F H 1996 J. Am. Chem. Soc. 118 4834Google Scholar

    [29]

    Macdonald J R 1987 Impedance Spectrum (New York: Wiley) pp13–14, 205

    [30]

    Chen C C, Herhold A B, Johnson C S, Alivisatos A P 1997 Science 276 398Google Scholar

    [31]

    Wang Z W, Daemen L L, Zhao Y S, Zha C S, Downs R T, Wang X, Wang Z L 2005 Nat. Mater. 4 922Google Scholar

    [32]

    Gilbert B, Frazer B H, Zhang H, Huang F, Banfield J F, Haskel D, Lang J C, Srajer G, de Stasio G 2002 Phys. Rev. B 66 245205Google Scholar

  • [1] 王月, 邵渤淮, 陈双龙, 王春杰, 高春晓. 高压下缺陷对锐钛矿相TiO2多晶电输运性能的影响: 交流阻抗测量. 物理学报, 2023, 72(12): 126401. doi: 10.7498/aps.72.20230020
    [2] 田城, 蓝剑雄, 王苍龙, 翟鹏飞, 刘杰. BaF 2高压相变行为的第一性原理研究. 物理学报, 2022, 71(1): 017102. doi: 10.7498/aps.71.20211163
    [3] 田春玲, 刘海燕, 王彪, 刘福生, 甘云丹. 稠密流体氮高温高压相变及物态方程. 物理学报, 2022, 71(15): 158701. doi: 10.7498/aps.71.20220124
    [4] 王月, 邵渤淮, 陈双龙, 王春杰, 高春晓. 高压下TiO2纳米线晶粒和晶界性质及电输运行为. 物理学报, 2022, 71(9): 096101. doi: 10.7498/aps.71.20212276
    [5] 田城, 蓝剑雄, 王苍龙, 翟鹏飞, 刘杰. BaF2高压相变行为的第一性原理研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211163
    [6] 张珠峰, 任银拴. 溶剂热制备铬掺杂硫化锌和硫化纳米结构和磁性能. 物理学报, 2021, 70(13): 137103. doi: 10.7498/aps.70.20201963
    [7] 王艳, 曹仟慧, 胡翠娥, 曾召益. Ce-La-Th合金高压相变的第一性原理计算. 物理学报, 2019, 68(8): 086401. doi: 10.7498/aps.68.20182128
    [8] 王春杰, 王月, 高春晓. 高压下金红石相TiO2的晶界电学性质. 物理学报, 2019, 68(20): 206401. doi: 10.7498/aps.68.20190630
    [9] 种涛, 王桂吉, 谭福利, 赵剑衡, 唐志平. 窗口声阻抗对锆相变动力学的影响. 物理学报, 2018, 67(7): 070204. doi: 10.7498/aps.67.20172198
    [10] 宋萍, 蔡灵仓, 李欣竹, 陶天炯, 赵信文, 王学军, 方茂林. 低孔隙度疏松锡的高压声速与相变. 物理学报, 2015, 64(10): 106401. doi: 10.7498/aps.64.106401
    [11] 王金荣, 朱俊, 郝彦军, 姬广富, 向钢, 邹洋春. 高压下RhB的相变、弹性性质、电子结构及硬度的第一性原理计算. 物理学报, 2014, 63(18): 186401. doi: 10.7498/aps.63.186401
    [12] 周平, 王新强, 周木, 夏川茴, 史玲娜, 胡成华. 第一性原理研究硫化镉高压相变及其电子结构与弹性性质. 物理学报, 2013, 62(8): 087104. doi: 10.7498/aps.62.087104
    [13] 卢志鹏, 祝文军, 卢铁城, 孟川民, 徐亮, 李绪海. 高温高压下过渡金属Ru的结构相变. 物理学报, 2013, 62(17): 176402. doi: 10.7498/aps.62.176402
    [14] 李建华, 崔元顺, 曾祥华, 陈贵宾. ZnS结构相变、电子结构和光学性质的研究. 物理学报, 2013, 62(7): 077102. doi: 10.7498/aps.62.077102
    [15] 余本海, 陈东. α-, β-和γ-Si3N4 高压下的电子结构和相变: 第一性原理研究. 物理学报, 2012, 61(19): 197102. doi: 10.7498/aps.61.197102
    [16] 明星, 王小兰, 杜菲, 陈岗, 王春忠, 尹建武. 菱铁矿FeCO3高压相变与性质的第一性原理研究. 物理学报, 2012, 61(9): 097102. doi: 10.7498/aps.61.097102
    [17] 罗晓婧, 杨昌平, 宋学平, 徐玲芳. 巨介电常数氧化物CaCu3Ti4O12的介电和阻抗特性. 物理学报, 2010, 59(5): 3516-3522. doi: 10.7498/aps.59.3516
    [18] 周密, 张鹏, 刘铁成, 许大鹏, 姜永恒, 高淑琴, 里佐威. 压强对苯分子费米共振的影响. 物理学报, 2010, 59(1): 210-214. doi: 10.7498/aps.59.210
    [19] 王 晖, 刘金芳, 何 燕, 陈 伟, 王 莺, L. Gerward, 蒋建中. 高压下纳米锗的状态方程与相变. 物理学报, 2007, 56(11): 6521-6525. doi: 10.7498/aps.56.6521
    [20] 杨旭东, 徐仲英, 罗向东, 方再历, 李国华, 苏荫强, 葛惟昆. ZnS中Te等电子中心的时间分辨光谱研究. 物理学报, 2005, 54(5): 2272-2276. doi: 10.7498/aps.54.2272
计量
  • 文章访问数:  7656
  • PDF下载量:  125
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-19
  • 修回日期:  2020-04-23
  • 上网日期:  2020-05-08
  • 刊出日期:  2020-07-20

/

返回文章
返回