搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

太赫兹多波束调控反射编码超表面

黄若彤 李九生

引用本文:
Citation:

太赫兹多波束调控反射编码超表面

黄若彤, 李九生

Terahertz multibeam modulation reflection-coded metasurface

Huang Ruo-Tong, Li Jiu-Sheng
PDF
HTML
导出引用
  • 已报道的大多数编码超表面仅利用相位或幅度编码进行电磁波调控, 限制了太赫兹波调控灵活性. 本文提出了一种反射超表面单元, 通过相位编码构造超表面, 在圆极化波入射下获得反射波束分裂和偏转功能, 实现对圆极化波束的灵活调控; 同一超表面单元结构利用幅度编码构造超表面在线极化太赫兹波入射下, 实现空间成像功能. 通过相位编码和幅度编码结合构造超表面, 提高了对太赫兹波操控的灵活性, 该编码超表面构造思路可以为太赫兹器件设计提供一种全新思路.
    Most of reported coding metasurfaces only use phase encoding or amplitude encoding to regulate electromagnetic waves, which limits the flexibility of terahertz wave regulation. In this work, a metasurface element structure is proposed. The metasurface element is composed of three layers, i.e. metal pattern structure layer, intermediate medium layer, and metal base layer. According to the geometric phase principle, the phase coverage in the 2π range can be achieved by rotating the metal pattern structure layer under the incidence of the circular-polarized terahertz wave. The metasurface element structure is arranged reasonably by using the phase coding, and the 1-bit and 2-bit phase coding metasurface are designed. First of all, the coding metasurface with interlacing “0” and “1” is designed to generate a double beam reflection under the vertical incidence of circular polarized terahertz waves, while the two-dimensional checkerboard coding metasurface with “0” and “1” generates a symmetrical four-beam reflection. In addition, the metasurface is designed to deflect the reflected beam, and the coding period is changed to design the metasurface to deflect the reflected beam to the specified angle, showing good flexibility. Finally, the convolutional operation is introduced to flexibly regulate the circular polarized beam, and the functions of beam splitting and reflection beam deflection are obtained. The amplitude coded metasurface is designed under theincidence of the online polarized terahertz wave, and the near-field imaging effect can be realized by the amplitude differentiation of polarization reflection. The designed amplitude coded metasurface realizes the function of imaging in space, presenting the designed “CJLU” pattern, which has different imaging effects at different observation locations. When the observation plane distance is 80 μm at the observation frequency of 1.22 THz, the near-field imaging effect is best. In conclusion, we propose a terahertz multibeam modulation reflection-coded metasurface, which combines geometric phase and amplitude variation to achieve different terahertz wave modulation functions under different polarization incident terahertz waves. The results from the simulated near-field radiation model and the far-field radiation model are both in agreement with the theoretical calculation predictions. The designed metasurface provides a degree of freedom method for terahertz wave polarization and phase manipulation, which greatly improves the efficiency of terahertz wave manipulation and has potential applications in terahertz systems.
      通信作者: 李九生, lijsh2008@126.com
    • 基金项目: 国家自然科学基金(批准号: 61871355, 61831012)、浙江省科技厅人才工程 (批准号: 2018R52043)和浙江省重点研发项目 (批准号: 2021C03153, 2022C03166)资助的课题.
      Corresponding author: Li Jiu-Sheng, lijsh2008@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61871355, 61831012), the Talent Project of Zhejiang Provincial Department of Science and Technology, China (Grant No. 2018R52043), and the Zhejiang Key R & D Project of China (Grant Nos. 2021C03153, 2022C03166).
    [1]

    Zhang C, Deng L, Wang L, Chen X, Li S 2021 Appl. Sci. 11 7128Google Scholar

    [2]

    Huang J, Yin X, Xu M, Liu M, Zhang Y, Zhang H 2022 Res. Phys. 33 105204Google Scholar

    [3]

    Sun X, Xu M, Wang G, Song Q, Li Y, Gao X 2022 Appl. Opt. 61 34Google Scholar

    [4]

    Xu Z, Sheng H, Wang Q, Zhou L, Shen Y 2021 SN Appl. Sci. 3 1Google Scholar

    [5]

    Dash S, Liaskos C, Akyildiz IF, Pitsillides A 2020 Mater. Sci. Forum 1009 63Google Scholar

    [6]

    Wang L, Lan F, Zeng H, et al. 2021 IEEE. 1 93Google Scholar

    [7]

    Gong Y, Quan B, Hu F, Wang H, Zhang L, Jiang M 2022 E Low dimens. Syst. Nanostruct. 143 115334Google Scholar

    [8]

    Niu J, Li C, Mo W, Yao Q, Zhu A 2022 J. Phys. D-Appl. Phys. 55 395105Google Scholar

    [9]

    Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light Sci. Appl. 3 218Google Scholar

    [10]

    Li Z, Wang W, Deng S, Qu J, Li Y, Lü B 2022 Opt. Lett. 47 441Google Scholar

    [11]

    Yang D, Wang W, Lü E, Wang H, Liu B, Hou Y 2022 Iscience 25 104824Google Scholar

    [12]

    He C, Song Z 2022 Opt. Express 30 25498Google Scholar

    [13]

    Liu C X, Yang F, Fu X J, Wu J W, Zhang L, Yang J 2021 Adv. Opt. Mater. 9 2100932Google Scholar

    [14]

    Pan W M, Li J S 2021 Opt. Express 29 12918Google Scholar

    [15]

    Zhao D, Tan Z, Zhao H, Fan F, Chang S 2022 Opt. Lett. 47 818Google Scholar

    [16]

    Zheng S, Li C, Fang G 2021 Opt. Express 29 43403Google Scholar

    [17]

    Wang T, Chen B, Wu J, Yang S, Shen Z, Cai J 2021 Appl. Phys. Lett. 118 081101Google Scholar

    [18]

    Li W, Hu X, Wu J, Fan K, Chen B, Zhang C 2022 Light Sci. Appl. 11 1Google Scholar

    [19]

    Lin Q W, Wong H, Huitema L, Crunteanu A 2022 Adv. Opt. Mater. 10 2101699Google Scholar

    [20]

    Ren B, Feng Y, Tang S, Wu J L, Liu B, Song J 2022 Opt. Express 30 16229Google Scholar

    [21]

    Ren B, Feng Y, Tang S, Wang L, Jiang H, Jiang Y 2021 Opt. Express 29 17258Google Scholar

    [22]

    Li J, Cheng Y, Fan J, Chen F, Luo H, Li X 2022 Phys. Lett. 428 127932Google Scholar

    [23]

    Wei J, Qi Y, Zhang B, Ding J, Liu W, Wang X 2022 Opt. Commun. 502 127425Google Scholar

    [24]

    Zang X, Yao B, Chen L, Xie J, Guo X 2021 Light: Adv. Manuf. 2 148Google Scholar

    [25]

    Liu S, Ouyang C, Yao Z, Zhao J, Li Y, Feng L 2022 Opt. Express 30 28158Google Scholar

    [26]

    Qi Y, Zhang B, Ding J, Zhang T, Wang X, Yi Z 2021 Chin. Phys. B. 30 024211Google Scholar

    [27]

    He J, Chen R, Li Y, Chen S, Liu Z, Zhang Q 2021 Appl. Opt. 60 5752Google Scholar

    [28]

    Zhong M, Li J S 2022 Opt. Commun. 511 127997Google Scholar

    [29]

    Kou W, Shi W, Zhang Y, Yang Z, Chen T, Gu J 2021 IEEE. 12 13Google Scholar

    [30]

    Chen D C, Zhu X F, Wei Q, Yao J, Wu D J 2020 J. Phys. D Appl. Phys 53 255501Google Scholar

    [31]

    Saifullah Y, Yang G, Feng X U 2021 J. Radars 10 382Google Scholar

    [32]

    Li S, Li Z, Han B, Huang G, Liu X, Yang H 2022 Front Mater 9 854062Google Scholar

  • 图 1  编码超表面结构示意图 (a) 幅度编码超表面; (b) 相位编码超表面; (c) 超表面单元

    Fig. 1.  Schematic diagram of the proposed coding metasurface: (a) Amplitude coding metasurface; (b) phase coding metasurface; (c) unit cell.

    图 2  圆极化波入射时超表面单元的反射振幅和相位 (a)反射振幅; (b)反射相位

    Fig. 2.  Reflection amplitude and phase of the unit cell under the circularly polarized wave incidence: (a) Reflection amplitude; (b) reflection phase.

    图 3  产生两分束太赫兹反射波的1-bit编码超表面 (a) 编码排布示意图; (b) 三维远场散射图; (c) 归一化反射振幅图

    Fig. 3.  1-bit coding metasurface for generating two-reflected beam: (a) Layout diagram of coding metasurface; (b) three-dimensional far field scattering diagram; (c) normalized reflection amplitude diagram.

    图 4  产生四分束的1-bit编码超表面 (a) 编码排布示意图; (b) 三维远场散射图; (c) 归一化反射振幅图

    Fig. 4.  1-bit coding metasurface for generating quadrant beam: (a) Layout diagram of coding metasurface; (b) three-dimensional far field scattering diagram; (c) normalized reflection amplitude diagram.

    图 5  编码超表面卷积过程示意图 (a)—(c) S1, S2和S3的超表面单元排布示意图; (d)—(f) 0.48 THz处左圆偏振入射时, S1, S2和S3的3D远场散射图; (g)—(i) 0.48 THz处左圆偏振入射时, S1, S2和S3的2D散射图

    Fig. 5.  Convolution process schematic diagram of the coding metasurface: (a)–(c) Layout diagram of S1, S2 and S3 metasurfaces; (d)–(f) 3D far-field scattering diagram of S1, S2 and S3 under left circularly polarized incidence at 0.48 THz; (g)–(i) 2D scattering diagram of S1, S2 and S3 under left circularly polarized incident at 0.48 THz.

    图 6  2-bit反射编码超表面(“00-01-10-11···”) (a) 超表面排布示意图; (b) 超表面结构; (c) 三维远场散射图; (d) 归一化反射振幅图

    Fig. 6.  2-bit reflected coding metasurface (“00-01-10-11···”): (a) Layout diagram of coding metasurface; (b) metasurface structure; (c) three-dimensional far field scattering diagram; (d) normalized reflection amplitude diagram.

    图 7  2-bit反射编码超表面(“0000-0101-1010-1111”) (a) 超表面排布示意图; (b) 超表面结构; (c) 三维远场散射图; (d) 归一化反射振幅图

    Fig. 7.  2-bit reflection encoding metasurface (“0000-0101-1010-1111”): (a) Layout diagram of coding metasurface; (b) metasurface structure; (c) three-dimensional far field scattering diagram; (d) normalized reflection amplitude diagram.

    图 8  线极化波入射时超表面单元产生的反射幅度和反射相位 (a) 反射幅度; (b)反射相位

    Fig. 8.  Reflected amplitude and phase of the unit cell under linearly polarized wave incidence: (a) Reflection amplitude; (b) reflection phase.

    图 9  “CJLU”超表面排布示意图

    Fig. 9.  Layout diagram of "CJLU" metasurface.

    图 10  观测频率1.22 THz处, 观测平面距离为60 μm的近场图像

    Fig. 10.  Near field image on an observation plane of 60 μm distance at 1.22 THz.

    图 11  观测频率1.22 THz处, 观测平面距离为80 μm的近场图像

    Fig. 11.  Near field image on an observation plane of 80 μm distance at 1.22 THz.

    图 12  观测频率1.22 THz处, 观测平面距离为100 μm的近场图像

    Fig. 12.  Near field image on an observation plane of 100 μm distance at 1.22 THz.

    表 1  编码超表面单元

    Table 1.  Unit cell of the proposed coding metasurface.

    1-bit相位编码01
    2-bit相位编码00 011011
    旋转角度/(°)0 4590135
    相位/(°)–137.21 –49.0943.99131.99
    俯视图
    下载: 导出CSV
  • [1]

    Zhang C, Deng L, Wang L, Chen X, Li S 2021 Appl. Sci. 11 7128Google Scholar

    [2]

    Huang J, Yin X, Xu M, Liu M, Zhang Y, Zhang H 2022 Res. Phys. 33 105204Google Scholar

    [3]

    Sun X, Xu M, Wang G, Song Q, Li Y, Gao X 2022 Appl. Opt. 61 34Google Scholar

    [4]

    Xu Z, Sheng H, Wang Q, Zhou L, Shen Y 2021 SN Appl. Sci. 3 1Google Scholar

    [5]

    Dash S, Liaskos C, Akyildiz IF, Pitsillides A 2020 Mater. Sci. Forum 1009 63Google Scholar

    [6]

    Wang L, Lan F, Zeng H, et al. 2021 IEEE. 1 93Google Scholar

    [7]

    Gong Y, Quan B, Hu F, Wang H, Zhang L, Jiang M 2022 E Low dimens. Syst. Nanostruct. 143 115334Google Scholar

    [8]

    Niu J, Li C, Mo W, Yao Q, Zhu A 2022 J. Phys. D-Appl. Phys. 55 395105Google Scholar

    [9]

    Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light Sci. Appl. 3 218Google Scholar

    [10]

    Li Z, Wang W, Deng S, Qu J, Li Y, Lü B 2022 Opt. Lett. 47 441Google Scholar

    [11]

    Yang D, Wang W, Lü E, Wang H, Liu B, Hou Y 2022 Iscience 25 104824Google Scholar

    [12]

    He C, Song Z 2022 Opt. Express 30 25498Google Scholar

    [13]

    Liu C X, Yang F, Fu X J, Wu J W, Zhang L, Yang J 2021 Adv. Opt. Mater. 9 2100932Google Scholar

    [14]

    Pan W M, Li J S 2021 Opt. Express 29 12918Google Scholar

    [15]

    Zhao D, Tan Z, Zhao H, Fan F, Chang S 2022 Opt. Lett. 47 818Google Scholar

    [16]

    Zheng S, Li C, Fang G 2021 Opt. Express 29 43403Google Scholar

    [17]

    Wang T, Chen B, Wu J, Yang S, Shen Z, Cai J 2021 Appl. Phys. Lett. 118 081101Google Scholar

    [18]

    Li W, Hu X, Wu J, Fan K, Chen B, Zhang C 2022 Light Sci. Appl. 11 1Google Scholar

    [19]

    Lin Q W, Wong H, Huitema L, Crunteanu A 2022 Adv. Opt. Mater. 10 2101699Google Scholar

    [20]

    Ren B, Feng Y, Tang S, Wu J L, Liu B, Song J 2022 Opt. Express 30 16229Google Scholar

    [21]

    Ren B, Feng Y, Tang S, Wang L, Jiang H, Jiang Y 2021 Opt. Express 29 17258Google Scholar

    [22]

    Li J, Cheng Y, Fan J, Chen F, Luo H, Li X 2022 Phys. Lett. 428 127932Google Scholar

    [23]

    Wei J, Qi Y, Zhang B, Ding J, Liu W, Wang X 2022 Opt. Commun. 502 127425Google Scholar

    [24]

    Zang X, Yao B, Chen L, Xie J, Guo X 2021 Light: Adv. Manuf. 2 148Google Scholar

    [25]

    Liu S, Ouyang C, Yao Z, Zhao J, Li Y, Feng L 2022 Opt. Express 30 28158Google Scholar

    [26]

    Qi Y, Zhang B, Ding J, Zhang T, Wang X, Yi Z 2021 Chin. Phys. B. 30 024211Google Scholar

    [27]

    He J, Chen R, Li Y, Chen S, Liu Z, Zhang Q 2021 Appl. Opt. 60 5752Google Scholar

    [28]

    Zhong M, Li J S 2022 Opt. Commun. 511 127997Google Scholar

    [29]

    Kou W, Shi W, Zhang Y, Yang Z, Chen T, Gu J 2021 IEEE. 12 13Google Scholar

    [30]

    Chen D C, Zhu X F, Wei Q, Yao J, Wu D J 2020 J. Phys. D Appl. Phys 53 255501Google Scholar

    [31]

    Saifullah Y, Yang G, Feng X U 2021 J. Radars 10 382Google Scholar

    [32]

    Li S, Li Z, Han B, Huang G, Liu X, Yang H 2022 Front Mater 9 854062Google Scholar

  • [1] 陈闻博, 陈鹤鸣. 基于超材料复合结构的太赫兹液晶移相器. 物理学报, 2022, 71(17): 178701. doi: 10.7498/aps.71.20212400
    [2] 惠战强, 高黎明, 刘瑞华, 韩冬冬, 汪伟. 低损耗大带宽双芯负曲率太赫兹光纤偏振分束器. 物理学报, 2022, 71(4): 048702. doi: 10.7498/aps.71.20211650
    [3] 冯龙呈, 杜琛, 杨圣新, 张彩虹, 吴敬波, 范克彬, 金飚兵, 陈健, 吴培亨. 太赫兹实时近场光谱成像研究. 物理学报, 2022, 71(16): 164201. doi: 10.7498/aps.71.20220131
    [4] 刘紫玉, 亓丽梅, 道日娜, 戴林林, 武利勤. 基于VO2的波束可调太赫兹天线. 物理学报, 2022, 71(18): 188703. doi: 10.7498/aps.71.20220817
    [5] 闫志巾, 施卫. 太赫兹GaAs光电导天线阵列辐射特性. 物理学报, 2021, 70(24): 248704. doi: 10.7498/aps.70.20211210
    [6] 惠战强. 低损耗大带宽双芯负曲率太赫兹光纤偏振分束器. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211650
    [7] 陈志文, 佘圳跃, 廖开宇, 黄巍, 颜辉, 朱诗亮. 基于Rydberg原子天线的太赫兹测量. 物理学报, 2021, 70(6): 060702. doi: 10.7498/aps.70.20201870
    [8] 冯正, 王大承, 孙松, 谭为. 自旋太赫兹源:性能、调控及其应用. 物理学报, 2020, 69(20): 208705. doi: 10.7498/aps.69.20200757
    [9] 王大勇, 李兵, 戎路, 赵洁, 王云新, 翟长超. 连续太赫兹波双物距叠层定量相衬成像. 物理学报, 2020, 69(2): 028701. doi: 10.7498/aps.69.20191310
    [10] 李晓楠, 周璐, 赵国忠. 基于反射超表面产生太赫兹涡旋波束. 物理学报, 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [11] 张真真, 黎华, 曹俊诚. 高速太赫兹探测器. 物理学报, 2018, 67(9): 090702. doi: 10.7498/aps.67.20180226
    [12] 闫昕, 梁兰菊, 张璋, 杨茂生, 韦德泉, 王猛, 李院平, 吕依颖, 张兴坊, 丁欣, 姚建铨. 基于石墨烯编码超构材料的太赫兹波束多功能动态调控. 物理学报, 2018, 67(11): 118102. doi: 10.7498/aps.67.20180125
    [13] 汪静丽, 刘洋, 钟凯. 基于领结型多孔光纤的双芯太赫兹偏振分束器. 物理学报, 2017, 66(2): 024209. doi: 10.7498/aps.66.024209
    [14] 张学进, 陆延青, 陈延峰, 朱永元, 祝世宁. 太赫兹表面极化激元. 物理学报, 2017, 66(14): 148705. doi: 10.7498/aps.66.148705
    [15] 冯伟, 张戎, 曹俊诚. 基于石墨烯的太赫兹器件研究进展. 物理学报, 2015, 64(22): 229501. doi: 10.7498/aps.64.229501
    [16] 鲍迪, 沈晓鹏, 崔铁军. 太赫兹人工电磁媒质研究进展. 物理学报, 2015, 64(22): 228701. doi: 10.7498/aps.64.228701
    [17] 鹿文亮, 娄淑琴, 王鑫, 申艳, 盛新志. 基于太赫兹时域光谱技术的伪色彩太赫兹成像的实验研究. 物理学报, 2015, 64(11): 114206. doi: 10.7498/aps.64.114206
    [18] 戴雨涵, 陈小浪, 赵强, 张继华, 陈宏伟, 杨传仁. 太赫兹波段谐振频率可调的开口谐振环结构. 物理学报, 2013, 62(6): 064101. doi: 10.7498/aps.62.064101
    [19] 韩煜, 袁学松, 马春燕, 鄢扬. 波瓣波导谐振腔太赫兹回旋管的研究. 物理学报, 2012, 61(6): 064102. doi: 10.7498/aps.61.064102
    [20] 张显斌, 施 卫. 基于可调谐准高斯波束太赫兹源的成像系统研究. 物理学报, 2008, 57(8): 4984-4990. doi: 10.7498/aps.57.4984
计量
  • 文章访问数:  3311
  • PDF下载量:  149
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-14
  • 修回日期:  2022-12-17
  • 上网日期:  2022-12-26
  • 刊出日期:  2023-03-05

/

返回文章
返回