-
当今世界能源浪费巨大, 其中绝大多数以废热的形式被浪费掉. 热电效应可以将热能转换为电能并且没有危险物质的释放, 因此热电效应的应用吸引了越来越多人的兴趣. 自从石墨烯被发现以来, 越来越多的二维层状材料被报道, 它们通常比体块材料有着更加优越的电学、光学等物理性质, 而新的理论和实验技术的发展, 也促进了人们对于它们的研究. 在本文中, 首先介绍了基于二维材料热电性质的测量方法和测试技术, 并对其测试中具有挑战性的问题进行讨论. 随后对石墨烯、过渡金属硫化物、黑磷等材料的热电应用进行了介绍. 最后, 讨论了提升热电性能的各种策略与亟待解决的问题, 并对此做出展望.Nowadays, there are enormous amounts of energy wasted in the world, most of which is in the form of wasted heat. Thermoelectric effect, by converting heat energy into electricity without releasing dangerous substances, has aroused more and more interest from researchers. Since the discovery of graphene, more and more two-dimensional layered materials have been reported, which typically own superior electrical, optical and other physical properties over the bulk materials, and the development of the new theory and experimental technologies stimulates further research for them as well. In this work, first we introduce the measurement methods and techniques that are suitable for characterizing the thermoelectric properties of two-dimensional materials, and then discuss the relevant current challenging issues. Subsequently, graphene, transition metal disulfides, black phosphorus and other 2-dimensional materials in thermoelectric applications are introduced. Finally, we discuss the various strategies to improve the thermoelectric performance and the problems that need solving urgently.
-
Keywords:
- thermoelectric /
- 2-dimensional materials /
- electrical transport /
- thermal transport
[1] Dresselhaus M S, Chen G, Tang M Y, Yang R, Lee H, Wang D, Ren Z, Fleurial J P, Gogna P 2007 Adv. Mater. 19 1043
Google Scholar
[2] Kim R, Datta S, Lundstrom M S 2009 J. Appl. Phys. 105 034506
Google Scholar
[3] Maassen J, Lundstrom M 2013 Appl. Phys. Lett. 102 093103
Google Scholar
[4] Pichanusakorn P, Bandaru P 2010 Mater. Sci. Eng. , R 67 19
Google Scholar
[5] Hicks L D, Dresselhaus M S 1993 Phys. Rev. B 47 16631
Google Scholar
[6] Hicks L D, Dresselhaus M S 1993 Phys. Rev. B 47 12727
Google Scholar
[7] Song H, Liu J, Liu B, Wu J, Cheng H M, Kang F 2018 Joule 2 442
Google Scholar
[8] Ioffe A F, Stil'Bans L, Iordanishvili E, Stavitskaya T, Gelbtuch A, Vineyard G 1959 Phys. Today 12 42
[9] Wood C 1988 Rep. Prog. Phys. 51 459
Google Scholar
[10] Wu J, Chen Y, Wu J, Hippalgaonkar K 2018 Adv. Electron. Mater. 4 1800248
Google Scholar
[11] Graf M J, Yip S K, Sauls J A, Rainer D 1996 Phys. Rev. B 53 15147
Google Scholar
[12] Jonson M, Mahan G D 1980 Phys. Rev. B 21 4223
Google Scholar
[13] Mao J, Liu Z, Ren Z 2016 NPJ Quantum Mater. 1 16028
Google Scholar
[14] Cutler M, Mott N F 1969 Phys. Rev. 181 1336
Google Scholar
[15] Zuev Y M, Chang W, Kim P 2009 Phys. Rev. Lett. 102 096807
Google Scholar
[16] Sun P, Wei B, Zhang J, Tomczak J M, Strydom A, Søndergaard M, Iversen B B, Steglich F 2015 Nat. Commun. 6 7475
Google Scholar
[17] Mahan G, Sofo J 1996 PNAS 93 7436
Google Scholar
[18] Sootsman J R, Chung D Y, Kanatzidis M G 2009 Angew. Chem. Int. Ed. 48 8616
Google Scholar
[19] Ishida A, Cao D, Morioka S, Veis M, Inoue Y, Kita T 2008 Appl. Phys. Lett. 92 182105
Google Scholar
[20] Heremans J P, Jovovic V, Toberer E S, Saramat A, Kurosaki K, Charoenphakdee A, Yamanaka S, Snyder G J 2008 Science 321 554
Google Scholar
[21] Lee G H, Cooper R C, An S J, Lee S, Van Der Zande A, Petrone N, Hammerberg A G, Lee C, Crawford B, Oliver W 2013 Science 340 1073
Google Scholar
[22] 吴祥冰, 汤雯婷, 徐象繁 2020 物理学报 69 196602
Google Scholar
Wu X, Tang W, Xu X 2020 Acta Phys. Sin. 69 196602
Google Scholar
[23] Choi S J, Kim B K, Lee T H, Kim Y H, Li Z, Pop E, Kim J J, Song J H, Bae M H 2016 Nano Lett. 16 3969
Google Scholar
[24] Yang F, Wu J, Suwardi A, Zhao Y, Liang B, Jiang J, Xu J, Chi D, Hippalgaonkar K, Lu J 2021 Adv. Mater. 33 2004786
Google Scholar
[25] Saito Y, Iizuka T, Koretsune T, Arita R, Shimizu S, Iwasa Y 2016 Nano Lett. 16 4819
Google Scholar
[26] Aiyiti A, Bai X, Wu J, Xu X, Li B 2018 Sci. Bull. 63 452
Google Scholar
[27] Wang H, Zheng D, Zhang X, Takamatsu H, Hu W 2017 RSC Adv. 7 25298
Google Scholar
[28] Kayyalha M, Maassen J, Lundstrom M, Shi L, Chen Y P 2016 J. Appl. Phys. 120 134305
Google Scholar
[29] Klarskov M B, Dam H F, Petersen D H, Hansen T M, Löwenborg A, Booth T, Schmidt M S, Lin R, Nielsen P, Bøggild P 2011 Nanotechnology 22 445702
Google Scholar
[30] Yoshimoto S, Murata Y, Kubo K, Tomita K, Motoyoshi K, Kimura T, Okino H, Hobara R, Matsuda I, Honda S, Katayama M, Hasegawa S 2007 Nano Lett. 7 956
Google Scholar
[31] Liu K K, Zhang W, Lee Y H, Lin Y C, Chang M T, Su C Y, Chang C S, Li H, Shi Y, Zhang H 2012 Nano Lett. 12 1538
Google Scholar
[32] Lee Y H, Zhang X Q, Zhang W, Chang M T, Lin C T, Chang K D, Yu Y C, Wang J T W, Chang C S, Li L J 2012 Adv. Mater. 24 2320
Google Scholar
[33] Wang H, Yu L, Lee Y H, Fang W, Hsu A, Herring P, Chin M, Dubey M, Li L J, Kong J, Palacios T 2012 International Electron Devices Meeting (IEDM) San Francisco, CA, December 10-13, 2012, pp4.6.1–4.6. 4
[34] Podzorov V, Gershenson M, Kloc C, Zeis R, Bucher E 2004 Appl. Phys. Lett. 84 3301
Google Scholar
[35] Hippalgaonkar K, Wang Y, Ye Y, Qiu D Y, Zhu H, Wang Y, Moore J, Louie S G, Zhang X 2017 Phys. Rev. B 95 115407
Google Scholar
[36] Song H F, Kang F Y 2022 Acta Phys. Chim. Sin 38 2101013
[37] Zhao Y, Cai Y, Zhang L, Li B, Zhang G, Thong J T 2020 Adv. Funct. Mater. 30 1903929
Google Scholar
[38] Gu X, Wei Y, Yin X, Li B, Yang R 2018 Rev. Mod. Phys. 90 041002
Google Scholar
[39] Shi L, Li D, Yu C, Jang W, Kim D, Yao Z, Kim P, Majumdar A 2003 J. Heat Transfer 125 881
Google Scholar
[40] Kim S, Shin S, Kim T, Du H, Song M, Lee C, Kim K, Cho S, Seo D H, Seo S 2016 Carbon 98 352
Google Scholar
[41] Pettes M T, Jo I, Yao Z, Shi L 2011 Nano Lett. 11 1195
Google Scholar
[42] Pizzocchero F, Gammelgaard L, Jessen B S, Caridad J M, Wang L, Hone J, Bøggild P, Booth T J 2016 Nat. Commun. 7 11894
Google Scholar
[43] Zhao S, Wang H 2020 ES Energy Environ. 9 59
[44] Wang H, Kurata K, Fukunaga T, Ago H, Takamatsu H, Zhang X, Ikuta T, Takahashi K, Nishiyama T, Takata Y 2016 Sens. Actuators, A 247 24
Google Scholar
[45] Suh J, Yu K M, Fu D, Liu X, Yang F, Fan J, Smith D J, Zhang Y H, Furdyna J K, Dames C 2015 Adv. Mater. 27 3681
Google Scholar
[46] Goldsmid H, Sharp J 1999 J. Electron. Mater. 28 869
Google Scholar
[47] Kim H S, Gibbs Z M, Tang Y, Wang H, Snyder G J 2015 APL Mater. 3 041506
Google Scholar
[48] Lee C, Wei X, Kysar J W, Hone J 2008 Science 321 385
Google Scholar
[49] Grigorenko A N, Polini M, Novoselov K 2012 Nat. Photonics 6 749
Google Scholar
[50] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I, Dubonos S, Firsov a 2005 Nature 438 197
Google Scholar
[51] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666
Google Scholar
[52] Zhang Y, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201
Google Scholar
[53] Neto A C, Guinea F, Peres N M, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109
Google Scholar
[54] Cai W, Moore A L, Zhu Y, Li X, Chen S, Shi L, Ruoff R S 2010 Nano Lett. 10 1645
Google Scholar
[55] Novoselov K S, Jiang D, Schedin F, Booth T, Khotkevich V, Morozov S, Geim A K 2005 PNAS 102 10451
Google Scholar
[56] Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau C N 2008 Nano Lett. 8 902
Google Scholar
[57] Ghosh D, Calizo I, Teweldebrhan D, Pokatilov E P, Nika D L, Balandin A A, Bao W, Miao F, Lau C N 2008 Appl. Phys. Lett. 92 151911
Google Scholar
[58] Xu X, Pereira L F, Wang Y, Wu J, Zhang K, Zhao X, Bae S, Tinh Bui C, Xie R, Thong J T 2014 Nat. Commun. 5 3689
Google Scholar
[59] Lindsay L, Broido D, Mingo N 2011 Phys. Rev. B 83 235428
Google Scholar
[60] Wei P, Bao W, Pu Y, Lau C N, Shi J 2009 Phys. Rev. Lett. 102 166808
Google Scholar
[61] Checkelsky J G, Ong N 2009 Phys. Rev. B 80 081413
Google Scholar
[62] Hwang E, Rossi E, Sarma S D 2009 Phys. Rev. B 80 235415
Google Scholar
[63] Wang C R, Lu W S, Hao L, Lee W L, Lee T K, Lin F, Cheng I C, Chen J Z 2011 Phys. Rev. Lett. 107 186602
Google Scholar
[64] Nam S G, Ki D K, Lee H J 2010 Phys. Rev. B 82 245416
Google Scholar
[65] Wang D, Shi J 2011 Phys. Rev. B 83 113403
Google Scholar
[66] Seol J H, Moore A L, Shi L, Jo I, Yao Z 2011 J. Heat Transfer 133 022403
Google Scholar
[67] Jang W, Chen Z, Bao W, Lau C N, Dames C 2010 Nano Lett. 10 3909
Google Scholar
[68] Yang J, Ziade E, Maragliano C, Crowder R, Wang X, Stefancich M, Chiesa M, Swan A K, Schmidt A J 2014 J. Appl. Phys. 116 023515
Google Scholar
[69] Ghosh S, Bao W, Nika D L, Subrina S, Pokatilov E P, Lau C N, Balandin A A 2010 Nat. Mater. 9 555
Google Scholar
[70] Wang J, Zhu L, Chen J, Li B, Thong J T 2013 Adv. Mater. 25 6884
Google Scholar
[71] Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L 2010 Nat. Nanotechnol. 5 722
Google Scholar
[72] Nomura K, MacDonald A H 2007 Phys. Rev. Lett. 98 076602
Google Scholar
[73] Chen J H, Jang C, Xiao S, Ishigami M, Fuhrer M S 2008 Nat. Nanotechnol. 3 206
Google Scholar
[74] Hwang E, Adam S, Sarma S D 2007 Phys. Rev. Lett. 98 186806
Google Scholar
[75] Ando T 2006 J. Phys. Soc. Jpn. 75 074716
Google Scholar
[76] Morozov S, Novoselov K, Katsnelson M, Schedin F, Elias D C, Jaszczak J A, Geim A 2008 Phys. Rev. Lett. 100 016602
Google Scholar
[77] Katsnelson M, Geim A 2008 Philos. Trans. R. Soc. London, Ser. A 366 195
[78] Ishigami M, Chen J, Cullen W, Fuhrer M, Williams E 2007 Nano Lett. 7 1643
Google Scholar
[79] Fratini S, Guinea F 2008 Phys. Rev. B 77 195415
Google Scholar
[80] Duan J, Wang X, Lai X, Li G, Watanabe K, Taniguchi T, Zebarjadi M, Andrei E Y 2016 PNAS 113 14272
Google Scholar
[81] Zebarjadi M 2015 Appl. Phys. Lett. 106 203506
Google Scholar
[82] Seol J H, Jo I, Moore A L, Lindsay L, Aitken Z H, Pettes M T, Li X, Yao Z, Huang R, Broido D 2010 Science 328 213
Google Scholar
[83] Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805
Google Scholar
[84] Liu X, Zhang G, Pei Q X, Zhang Y W 2013 Appl. Phys. Lett. 103 133113
Google Scholar
[85] Bertolazzi S, Brivio J, Kis A 2011 ACS Nano 5 9703
Google Scholar
[86] Wilson J A, Yoffe A 1969 Adv. Phys. 18 193
Google Scholar
[87] Seh Z W, Yu J H, Li W, Hsu P-C, Wang H, Sun Y, Yao H, Zhang Q, Cui Y 2014 Nat. Commun. 5 5017
Google Scholar
[88] Yin Z, Li H, Li H, Jiang L, Shi Y, Sun Y, Lu G, Zhang Q, Chen X, Zhang H 2012 ACS Nano 6 74
Google Scholar
[89] Wang X, Wang P, Wang J, Hu W, Zhou X, Guo N, Huang H, Sun S, Shen H, Lin T 2015 Adv. Mater. 27 6575
Google Scholar
[90] Zhu H, Wang Y, Xiao J, Liu M, Xiong S, Wong Z J, Ye Z, Ye Y, Yin X, Zhang X 2015 Nat. Nanotechnol. 10 151
Google Scholar
[91] Wu W, Wang L, Li Y, Zhang F, Lin L, Niu S, Chenet D, Zhang X, Hao Y, Heinz T F 2014 Nature 514 470
Google Scholar
[92] Cao T, Wang G, Han W, Ye H, Zhu C, Shi J, Niu Q, Tan P, Wang E, Liu B 2012 Nat. Commun. 3 887
Google Scholar
[93] Yu H, Yao W 2017 Nat. Mater. 16 876
Google Scholar
[94] Wei X, Wang Y, Shen Y, Xie G, Xiao H, Zhong J, Zhang G 2014 Appl. Phys. Lett. 105 103902
Google Scholar
[95] Ding Z, Jiang J W, Pei Q X, Zhang Y W 2015 Nanotechnology 26 065703
Google Scholar
[96] Zhao Y, Zheng M, Wu J, Huang B, Thong J T 2020 Nanotechnology 31 225702
Google Scholar
[97] Peng B, Ning Z, Zhang H, Shao H, Xu Y, Ni G, Zhu H 2016 J. Phys. Chem. C 120 29324
Google Scholar
[98] Ding Z, Pei Q X, Jiang J W, Zhang Y W 2015 J. Phys. Chem. C 119 16358
Google Scholar
[99] Gu X, Li B, Yang R 2016 J. Appl. Phys. 119 085106
Google Scholar
[100] Xu K, Gabourie A J, Hashemi A, Fan Z, Wei N, Farimani A B, Komsa H-P, Krasheninnikov A V, Pop E, Ala-Nissila T 2019 Phys. Rev. B 99 054303
Google Scholar
[101] Zhou W, Gong H M, Jin X H, Chen Y, Li H M, Liu S 2022 Front. Phys. 10 842789
Google Scholar
[102] Yoon Y, Ganapathi K, Salahuddin S 2011 Nano Lett. 11 3768
Google Scholar
[103] Baugher B W, Churchill H O, Yang Y, Jarillo-Herrero P 2013 Nano Lett. 13 4212
Google Scholar
[104] Cai X, Wu Z, Han X, Chen Y, Xu S, Lin J, Han T, He P, Feng X, An L 2022 Nat. Commun. 13 1777
Google Scholar
[105] Ng H, Chi D, Hippalgaonkar K 2017 J. Appl. Phys. 121 204303
Google Scholar
[106] Yoshida M, Iizuka T, Saito Y, Onga M, Suzuki R, Zhang Y, Iwasa Y, Shimizu S 2016 Nano Lett. 16 2061
Google Scholar
[107] Zhao Y, Yu P, Zhang G, Sun M, Chi D, Hippalgaonkar K, Thong J T, Wu J 2020 Adv. Funct. Mater. 30 2004896
Google Scholar
[108] Zeng J, He X, Liang S J, Liu E, Sun Y, Pan C, Wang Y, Cao T, Liu X, Wang C 2018 Nano Lett. 18 7538
Google Scholar
[109] Lindroth D O, Erhart P 2016 Phys. Rev. B 94 115205
Google Scholar
[110] Jiang P, Qian X, Gu X, Yang R 2017 Adv. Mater. 29 1701068
Google Scholar
[111] Wickramaratne D, Zahid F, Lake R K 2014 J. Phys. Chem. 140 124710
Google Scholar
[112] Imai H, Shimakawa Y, Kubo Y 2001 Phys. Rev. B 64 241104
Google Scholar
[113] Qin D, Yan P, Ding G, Ge X, Song H, Gao G 2018 Sci. Rep. 8 2764
Google Scholar
[114] Oyedele A D, Yang S, Liang L, Puretzky A A, Wang K, Zhang J, Yu P, Pudasaini P R, Ghosh A W, Liu Z 2017 J. Am. Chem. Soc. 139 14090
Google Scholar
[115] Li J, Zhang X, Chen Z, Lin S, Li W, Shen J, Witting I T, Faghaninia A, Chen Y, Jain A 2018 Joule 2 976
Google Scholar
[116] Tangpakonsab P, Moontragoon P, Hussain T, Kaewmaraya T 2022 ACS Appl. Energy Mater. 5 13081
Google Scholar
[117] Hung N T, Nugraha A R T, Saito R 2017 Appl. Phys. Lett. 111 092107
Google Scholar
[118] Hung N T, Nugraha A R T, Yang T, Zhang Z D, Saito R 2019 J. Appl. Phys. 125 082502
Google Scholar
[119] Wang Q, Han L, Wu L, Zhang T, Li S, Lu P 2019 Nanoscale Res. Lett. 14 287
Google Scholar
[120] Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H, Zhang Y 2014 Nat. Nanotechnol. 9 372
Google Scholar
[121] St Laurent B, Dey D, Yu L, Hollen S 2021 ACS Appl. Electron. Mater. 3 4066
Google Scholar
[122] Hu Z, Li Q, Lei B, Zhou Q, Xiang D, Lyu Z, Hu F, Wang J, Ren Y, Guo R 2017 Angew. Chem. Int. Ed. 56 9131
Google Scholar
[123] Abate Y, Akinwande D, Gamage S, Wang H, Snure M, Poudel N, Cronin S B 2018 Adv. Mater. 30 1704749
Google Scholar
[124] Zhang J L, Han C, Hu Z, Wang L, Liu L, Wee A T, Chen W 2018 Adv. Mater. 30 1802207
Google Scholar
[125] Lee S, Yang F, Suh J, Yang S, Lee Y, Li G, Choe H S, Suslu A, Chen Y, Ko C 2015 Nat. Commun. 6 8573
Google Scholar
[126] Zhao Y, Zhang G, Nai M H, Ding G, Li D, Liu Y, Hippalgaonkar K, Lim C T, Chi D, Li B 2018 Adv. Mater. 30 1804928
Google Scholar
[127] Liu H, Choe H S, Chen Y, Suh J, Ko C, Tongay S, Wu J 2017 Appl. Phys. Lett. 111 102101
Google Scholar
[128] Luo Z, Maassen J, Deng Y, Du Y, Garrelts R P, Lundstrom M S, Ye P D, Xu X 2015 Nat. Commun. 6 8572
Google Scholar
[129] Qin G, Yan Q B, Qin Z, Yue S Y, Hu M, Su G 2015 Phys. Chem. Chem. Phys. 17 4854
Google Scholar
[130] Zhao Y, Yang L, Kong L, Nai M H, Liu D, Wu J, Liu Y, Chiam S Y, Chim W K, Lim C T 2017 Adv. Funct. Mater. 27 1702824
Google Scholar
[131] Flores E, Ares J R, Castellanos-Gomez A, Barawi M, Ferrer I J, Sánchez C 2015 Appl. Phys. Lett. 106 022102
Google Scholar
[132] Zhang J, Liu H, Cheng L, Wei J, Liang J, Fan D, Jiang P, Sun L, Shi J 2016 J. Mater. Chem. C 4 991
Google Scholar
[133] Lü H, Lu W, Shao D, Lu H, Sun Y 2016 J. Mater. Chem. C 4 4538
Google Scholar
[134] Carrete J, Mingo N, Curtarolo S 2014 Appl. Phys. Lett. 105 101907
Google Scholar
[135] Zhang L C, Qin G, Fang W Z, Cui H J, Zheng Q R, Yan Q B, Su G 2016 Sci. Rep. 6 35705
Google Scholar
[136] Ding G, Hu Y, Li D, Wang X 2019 Results Phys. 15 102631
Google Scholar
[137] Guo R, Wang X, Kuang Y, Huang B 2015 Phys. Rev. B 92 115202
Google Scholar
[138] Zhao L D, Lo S H, Zhang Y, Sun H, Tan G, Uher C, Wolverton C, Dravid V P, Kanatzidis M G 2014 Nature 508 373
Google Scholar
[139] Zhou C, Lee Y K, Yu Y, Byun S, Luo Z Z, Lee H, Ge B, Lee Y L, Chen X, Lee J Y 2021 Nat. Mater. 20 1378
Google Scholar
[140] Sun Y, Shuai Z, Wang D 2019 J. Phys. Chem. C 123 12001
Google Scholar
[141] Zhao T, Sun Y, Shuai Z, Wang D 2017 Chem. Mater. 29 6261
Google Scholar
[142] Wu M, Zeng X C 2017 Nano Lett. 17 6309
Google Scholar
[143] Wu J, Liu Y, Tan Z, Tan C, Yin J, Li T, Tu T, Peng H 2017 Adv. Mater. 29 1704060
Google Scholar
[144] Fu Q, Zhu C, Zhao X, Wang X, Chaturvedi A, Zhu C, Wang X, Zeng Q, Zhou J, Liu F 2019 Adv. Mater. 31 1804945
Google Scholar
[145] Wu J, Yuan H, Meng M, Chen C, Sun Y, Chen Z, Dang W, Tan C, Liu Y, Yin J 2017 Nat. Nanotechnol. 12 530
Google Scholar
[146] Yang F, Wang R, Zhao W, Jiang J, Wei X, Zheng T, Yang Y, Wang X, Lu J, Ni Z 2019 Appl. Phys. Lett. 115 193103
Google Scholar
[147] Leburton J P 1984 J. Appl. Phys. 56 2850
Google Scholar
[148] Gelmont B, Shur M, Stroscio M 1995 J. Appl. Phys. 77 657
Google Scholar
[149] Paul S, Bhattacharya D 1989 Phys. Rev. B 39 13521
Google Scholar
[150] Alkan B, Unal B, Ozdemir A 1995 Semicond. Sci. Technol. 10 1458
Google Scholar
[151] Zook J D 1964 Phys. Rev. 136 A869
Google Scholar
[152] Wang F Q, Guo Y, Wang Q, Kawazoe Y, Jena P 2017 Chem. Mater. 29 9300
Google Scholar
[153] Rau J W, Kannewurf C 1971 Phys. Rev. B 3 2581
Google Scholar
[154] Li L, Gong P, Sheng D, Wang S, Wang W, Zhu X, Shi X, Wang F, Han W, Yang S 2018 Adv. Mater. 30 1804541
Google Scholar
[155] Panasci S, Schilirò E, Migliore F, Cannas M, Gelardi F, Roccaforte F, Giannazzo F, Agnello S 2021 Appl. Phys. Lett. 119 093103
Google Scholar
[156] Velicky M, Donnelly G E, Hendren W R, McFarland S, Scullion D, DeBenedetti W J, Correa G C, Han Y, Wain A J, Hines M A 2018 ACS Nano 12 10463
Google Scholar
[157] Liu F 2021 Prog. Surf. Sci. 96 100626
Google Scholar
[158] Zou B, Zhou Y, Zhou Y, Wu Y, He Y, Wang X, Yang J, Zhang L, Chen Y, Zhou S, Guo H, Sun H 2022 Nano Res. 15 8470
Google Scholar
[159] Wu J, Liu Y, Liu Y, Cai Y, Zhao Y, Ng H K, Watanabe K, Taniguchi T, Zhang G, Qiu C W 2020 PNAS 117 13929
Google Scholar
[160] Sharma M, Kumar A, Ahluwalia P 2019 Physica E 107 117
Google Scholar
[161] Zheng Y, Slade T J, Hu L, Tan X Y, Luo Y, Luo Z Z, Xu J, Yan Q, Kanatzidis M G 2021 Chem. Soc. Rev. 50 9022
Google Scholar
[162] Yan Z, Yoon M, Kumar S 2018 2 D Mater. 5 031008
[163] Zhao Y, Zheng M, Wu J, Guan X, Suwardi A, Li Y, Lal M, Xie G, Zhang G, Zhang L 2021 Nanoscale 13 11561
Google Scholar
[164] Aiyiti A, Hu S, Wang C, Xi Q, Cheng Z, Xia M, Ma Y, Wu J, Guo J, Wang Q 2018 Nanoscale 10 2727
Google Scholar
[165] Chen J H, Li L, Cullen W G, Williams E D, Fuhrer M S 2011 Nat. Phys. 7 535
Google Scholar
[166] Takahashi H, Okazaki R, Ishiwata S, Taniguchi H, Okutani A, Hagiwara M, Terasaki I 2016 Nat. Commun. 7 12732
Google Scholar
[167] Zhou J, Liao B, Qiu B, Huberman S, Esfarjani K, Dresselhaus M S, Chen G 2015 PNAS 112 14777
Google Scholar
[168] Pan Y, Chen S, Wang P, Li Y, Zheng Q 2019 Ceram. Int. 45 19534
Google Scholar
[169] Lee W, Lim G, Ko S H 2021 Nano Energy 87 106188
Google Scholar
[170] Wu X, Yang N, Luo T 2015 Appl. Phys. Lett. 107 191907
Google Scholar
[171] Rosi F 1968 Solid-State Electron. 11 833
Google Scholar
[172] Guo Y, Dun C, Xu J, Li P, Huang W, Mu J, Hou C, Hewitt C A, Zhang Q, Li Y 2018 ACS Appl. Mater. Interfaces 10 33316
Google Scholar
[173] Ng H K, Abutaha A, Voiry D, Verzhbitskiy I, Cai Y, Zhang G, Liu Y, Wu J, Chhowalla M, Eda G 2019 ACS Appl. Mater. Interfaces 11 12184
Google Scholar
[174] An C J, Kang Y H, Lee C, Cho S Y 2018 Adv. Funct. Mater. 28 1800532
Google Scholar
[175] Xiang D, Han C, Wu J, Zhong S, Liu Y, Lin J, Zhang X A, Ping Hu W, Özyilmaz B, Neto A 2015 Nat. Commun. 6 8949
Google Scholar
[176] Kong S, Wu T, Yuan M, Huang Z, Meng Q L, Jiang Q, Zhuang W, Jiang P, Bao X 2017 J. Mater. Chem. A 5 2004
Google Scholar
[177] Perera M M, Lin M W, Chuang H J, Chamlagain B P, Wang C T, Tan X B, Cheng M M C, Tománek D, Zhou Z X 2013 ACS Nano 7 4449
Google Scholar
[178] Böttner H, Chen G, Venkatasubramanian R 2006 MRS Bull. 31 211
Google Scholar
[179] Venkatasubramanian R, Siivola E, Colpitts T, O'quinn B 2001 Nature 413 597
Google Scholar
[180] Harman T, Taylor P, Walsh M, LaForge B 2002 Science 297 2229
Google Scholar
[181] Harman T, Taylor P, Spears D, Walsh M 2000 J. Electron. Mater. 29 L1
Google Scholar
[182] Hicks L, Harman T, Sun X, Dresselhaus M 1996 Phys. Rev. B 53 R10493
Google Scholar
[183] Ding G, He J, Gao G, Yao K 2018 J. Appl. Phys. 124 165101
Google Scholar
[184] Wan C, Gu X, Dang F, Itoh T, Wang Y, Sasaki H, Kondo M, Koga K, Yabuki K, Snyder G J 2015 Nat. Mater. 14 622
Google Scholar
[185] Wang S, Yang X, Hou L, Cui X, Zheng X, Zheng J 2022 Nat. Commun. 13 4401
Google Scholar
[186] Luckyanova M N, Garg J, Esfarjani K, Jandl A, Bulsara M T, Schmidt A J, Minnich A J, Chen S, Dresselhaus M S, Ren Z 2012 Science 338 936
Google Scholar
[187] Zhang G, Zhang Y W 2015 Mech. Mater. 91 382
Google Scholar
[188] Peng Z, Chen X, Fan Y, Srolovitz D J, Lei D 2020 Light Sci. Appl. 9 190
Google Scholar
[189] Yang S, Chen Y, Jiang C 2021 InfoMat 3 397
Google Scholar
[190] Yan Y, Ding S, Wu X, Zhu J, Feng D, Yang X, Li F 2020 RSC Adv. 10 39455
Google Scholar
[191] Manzeli S, Allain A, Ghadimi A, Kis A 2015 Nano Lett. 15 5330
Google Scholar
[192] Meng L, Zhang Y, Hu S, Wang X, Liu C, Guo Y, Wang X, Yan X 2016 Appl. Phys. Lett. 108 263104
Google Scholar
[193] Castellanos-Gomez A, Roldán R, Cappelluti E, Buscema M, Guinea F, van der Zant H S, Steele G A 2013 Nano Lett. 13 5361
Google Scholar
[194] Zhu C, Wang G, Liu B, Marie X, Qiao X, Zhang X, Wu X, Fan H, Tan P, Amand T 2013 Phys. Rev. B 88 121301
Google Scholar
[195] Ng H K, Xiang D, Suwardi A, Hu G, Yang K, Zhao Y, Liu T, Cao Z, Liu H, Li S 2022 Nat. Electron. 5 489
Google Scholar
[196] Jiang J W, Park H S, Rabczuk T 2013 J. Appl. Phys. 114 064307
Google Scholar
[197] Conley H J, Wang B, Ziegler J I, Haglund Jr R F, Pantelides S T, Bolotin K I 2013 Nano Lett. 13 3626
Google Scholar
[198] Desai S B, Seol G, Kang J S, Fang H, Battaglia C, Kapadia R, Ager J W, Guo J, Javey A 2014 Nano Lett. 14 4592
Google Scholar
[199] Hoat D, Naseri M, Binh N T, Vu T V, Rivas-Silva J, Obeid M M, Cocoletzi G H 2021 Phys. B:Condens. Matter 603 412757
Google Scholar
[200] Qin G, Yan Q B, Qin Z, Yue S Y, Cui H J, Zheng Q R, Su G 2014 Sci. Rep. 4 6946
Google Scholar
[201] Bera J, Sahu S 2019 RSC Adv. 9 25216
Google Scholar
[202] Qin D, Ge X J, Ding G Q, Gao G Y, Lü J T 2017 RSC Adv. 7 47243
Google Scholar
-
图 1 (a) 塞贝克系数、电导率、功率因数随载流子浓度的相互依赖关系和电子热导率与晶格热导率随载流子浓度的依赖关系[10]; (b) 不同维度材料的电子态密度随能量的变化关系[13]
Fig. 1. (a) The interdependence of Seebeck coefficient, conductivity, power factor for different carrier concentration and electron thermal conductivity and lattice thermal conductivity as a function of carrier concentration[10]; (b) electronic DOS of different dimensional materials as a function of energy[13].
图 2 (a) 基于场效应晶体管对二维半导体热电性质测量器件示意图[24]; (b) 利用电子双层结构离子液体晶体管对二维材料的热电性质测量器件示意图[25]; (c) 悬空热桥法器件示意图[26]; (d) 利用H型方法测量样品的塞贝克系数示意图[27]
Fig. 2. (a) Schematic image of device for measuring thermoelectric property based on field effect transistor (FET)[24]; (b) schematic image of device for thermoelectric property measurement based on electronic double-layer structure ionic liquid transistor[25]; (c) schematic image of suspended thermal bridge device[26]; (d) schematic image of H-type method device[27].
图 3 (a) 石墨烯中不同声子模式对热导率的贡献[59]; (b) 石墨烯热导率与样品长度关系的不同结果汇总[38]; (c) 石墨烯的电导率和塞贝克系数随栅极电压的变化关系(上方插图为石墨烯器件的扫描电子显微镜图像, 下方插图为
${V_{\rm{g}}}$ = –5, –30 V时塞贝克系数随温度的变化)[15]; (d) 在290 K下, G/hBN和G/SiO2的PFT随栅极电压的变化关系[10]Fig. 3. (a) Contribution of different phonon modes to thermal conductivity in graphene[59]; (b) summary of thermal conductivity of graphene as a function of sample length[38]; (c) conductivity and Seebeck coefficient of graphene as a function of gate voltage (Upper inset: SEM image of a graphene device, the scale bar is 2 μm. Lower inset: Seebeck coefficient of graphene as a function of temperature at
${V_{\rm{g}}}$ = –5, –30 V) [15]; (d) PFT as a function of gate voltage in both devices at 290 K[10].图 4 (a) 单层二硫化钼的示意图(其中紫色为Mo原子、黄色为S原子)[84]; (b) 室温下关于MoS2的热导率研究结果的汇总[38]; (c) 不同
${V_{\rm{g}}} - {V_{\rm th}}$ 下, 四端法测得的MoS2的电导率和塞贝克系数随样品厚度(层数)的变化关系[28]; (d) 不同${V_{\rm{g}}} - {V_{\rm th}}$ 下, MoS2的功率因数随样品厚度(层数)的变化关系[28]; (e) 不同厚度(1—3层)的MoS2的功率因数随${V_g}$ 的变化关系[35]Fig. 4. (a) Schematic image of monolayer MoS2 (Where purple is Mo atom and yellow is S atom) [84]; (b) summary of thermal conductivity of MoS2 at room temperature[38]; (c) four-probe conductivity and Seebeck coefficient of MoS2 as a function of the thickness (number of layers) measured at different
${V_{\rm{g}}} - {V_{\rm th}}$ values; (d) PF of MoS2 as a function of the thickness (number of layers) measured at different${V_{\rm{g}}} - {V_{\rm th}}$ values[28]; (e) PF of MoS2 with different thick (monolayer-three layers) as a function of the${V_{\rm{g}}}$ [35].图 5 (a) 300 K下, 极薄单晶WSe2的电导率(两端法)、塞贝克系数和功率因数随
${V_{\rm{g}}}$ 的变化关系[106]; (b) 厚度为5和9 nm的PdSe2薄片的功率因数[107]; (c) 室温下不同厚度的InSe薄膜的功率因数随载流子浓度的变化关系[108]Fig. 5. (a)
${\sigma _{{\text{2D}}}}$ ,$S$ and${S^2}\sigma $ of ultrathin WSe2 single crystals as a function of the${V_{\text{g}}}$ at T = 300 K[106]; (b) power factor of PdSe2 flakes with thickness of 5 and 9 nm[107]; (c) power factor of InSe film with different thickness as a function of carrier concentration at room temperature[108].图 6 (a) 黑磷晶体结构的示意图[125]; (b) 黑磷纳米带在AC和ZZ方向的热导率和杨氏模量测量值, 其中热导率和杨氏模量有着相似的各向异性比值(分别为2.24和2.05)[126]; (c) AC方向和ZZ方向的黑磷纳米带电导率(c)和塞贝克系数(d)随温度的变化关系[127]; (e) 黑磷塞贝克系数的少层实验数据和体块理论计算数值(实线为
${S_x}$ , 虚线为${S_y}$ )的比较[25]; (f) 210 K下, 少层黑磷的功率因数随栅极电压的变化关系[25]Fig. 6. (a) Schematic image of BP reproduced with permission[125]; (b) thermal conductivity and Young’s modulus values of the BP nanoribbons. The thermal conductivity anisotropy ratio (≈2.24) between ZZ and AC is similar to that of Young’s modulus (≈2.05)[126]; temperature dependence of electrical conductivity (c) and Seebeck coefficient (d) of BP nanoribbons along the AC and ZZ directions[127]; (e) comparison between experimental data and bulk values of theoretical calculation (
${S_x}$ , solid line;${S_y}$ dashed line) of Seebeck coefficient of BP[25]; (f) power factor of few layer BP as a function of gate voltage at 210 K[25].图 8 (a) MoS2/hBN器件的四端法电导率随温度和栅极电压的变化关系(低温下电导率出现异常的峰值用红色虚线标出)[159]; (b) MoS2/SiO2和MoS2/hBN器件的塞贝克系数与温度的变化关系(其中MoS2/hBN器件
${V_{\rm{g}}}$ = 70 V以圆形表示,${V_g}$ = 50 V以方形表示,${V_{\rm{g}}}$ = 30 V以钻石形状表示)[159]; (c) 氦离子辐射同时增加Bi2Te3塞贝克系数和载流子浓度(虚线为不同散射弛豫时间指数下塞贝克系数的计算结果)[45]; (d) 不同厚度的Bi2Te3的功率因数随辐射剂量的变化关系[45]Fig. 8. (a) Four-probe electrical conductivity of MoS2/hBN devices as a function of Temperature and back gate voltage[159]; (b) temperature dependent Seebeck coefficient of MoS2/SiO2 and MoS2/hBN device at
${V_{\rm{g}}}$ = 70 V (circle), 50 V (square), and 30 V (diamond) [159]; (c) the simultaneous increase of Seebeck coefficient and carrier concentration of helium ion irradiated Bi2Te3[45]; (d) irradiation dose dependent power factor of Bi2Te3 with different thicknesses[45].图 9 (a) 在SiO2/Si基底上, 真空退火3次LixMoS2的拉曼光谱图[173]; (b) 经过每次退火后的LixMoS2的塞贝克系数、电导率和功率因数[173]; (c) 沿各个方向的本征MoS2和氧原子掺杂MoS2的PF随温度的变化[176]; (d) 沿各个方向的本征MoS2和氧原子掺杂MoS2的热导率随温度的变化[176]
Fig. 9. (a) Raman spectra of a LixMoS2 flake on SiO2/Si substrate across three separate annealing cycles performed in vacuum[173]; (b) Seebeck coefficient, electrical conductivity, and power factor of LixMoS2 device across all annealing cycles[173]; (c) power factor of the pristine MoS2 and oxygen-doped MoS2 along both directions[176]; (d) thermal conductivity of the pristine MoS2 and oxygen-doped MoS2 along both directions[176].
图 10 (a) Bi2Te3/Sb2Te3超晶格、PbSnSeTe/PbTe量子点超晶格、PbTe0.02Se0.98/PbTe量子点超晶格的热电优值[178]; (b) 计算获得的不同周期厚度的横向超晶格晶格热导率随温度的关系[183]; (c) TiS2[(HA)x(H2O)y(DMSO)z]超晶格材料的HAADF-STEM 图像(展示了褶皱的晶格结构)[10]; (d) 放大的TiS2[(HA)x(H2O)y(DMSO)z]超晶格材料的HAADF-STEM 图像[10]; (e) 本征TaS2和SCCM-TaS2的电导率[185]; (f) 本征TaS2和SCCM-TaS2的塞贝克系数[185]
Fig. 10. (a) Thermoelectric figure of merit for Bi2Te3/Sb2Te3 superlattices, PbSnSeTe/PbTe quantum dot superlattices, and PbTe0.02Se0.98/PbTe quantum dot superlattices[178]; (b) temperature dependence of calculated lattice thermal conductivity of lateral superlattices with different periodic thicknesses[183]; (c) HAADF-STEM (high-angle annular dark field scanning transmission electron microscope) image of the TiS2[(HA)x(H2O)y(DMSO)z] hybrid superlattice showing a wavy structure[10]. (d) magnified HAADF-STEM image of TiS2[(HA)x(H2O)y(DMSO)z][10]; (e) electrical conductivity of the pristine TaS2 crystals and SCCM-TaS2 hybrid structure[185]; (f) seebeck coefficient of the pristine TaS2 crystals and SCCM-TaS2 hybrid structure[185].
图 11 (a) 利用AFM对悬空单层MoS2施加应力的示意图[85]; (b) 褶皱的单层MoS2的构造过程示意图[193]; (c) 利用三点弯曲法对MoS2进行延伸示意图[194]; (d) 黑磷的热电优值随温度和应变的变化关系[199]; (e) 在300, 600和900 K下施加双向压缩和拉伸应变的n型或p型WS2的
${{{S^2}\sigma } \mathord{\left/ {\vphantom {{{S^2}\sigma } \tau }} \right. } \tau }$ 值[201]; (f) 不同厚度(层数)的平坦和褶皱的MoS2的功率因数随载流子浓度的变化关系[195]Fig. 11. (a) Schematic image of inducing strain to the suspended monolayer MoS2 by AFM[85]; (b) schematic image of the fabrication process of wrinkled MoS2 nanolayers[193]; (c) schematic image of the extension of MoS2 by the three-point bending apparatus[194]; (d) ZT of BP as a function of temperature and strain[199]; (e)
${{{S^2}\sigma } \mathord{\left/ {\vphantom {{{S^2}\sigma } \tau }} \right. } \tau }$ of WS2 with applied both biaxial compressive and tensile strain for n-type and p-type doping at 300, 600 and 900 K[201]; (f) PF of flat and ripped MoS2 as a function of carrier concentration with different thickness[195]. -
[1] Dresselhaus M S, Chen G, Tang M Y, Yang R, Lee H, Wang D, Ren Z, Fleurial J P, Gogna P 2007 Adv. Mater. 19 1043
Google Scholar
[2] Kim R, Datta S, Lundstrom M S 2009 J. Appl. Phys. 105 034506
Google Scholar
[3] Maassen J, Lundstrom M 2013 Appl. Phys. Lett. 102 093103
Google Scholar
[4] Pichanusakorn P, Bandaru P 2010 Mater. Sci. Eng. , R 67 19
Google Scholar
[5] Hicks L D, Dresselhaus M S 1993 Phys. Rev. B 47 16631
Google Scholar
[6] Hicks L D, Dresselhaus M S 1993 Phys. Rev. B 47 12727
Google Scholar
[7] Song H, Liu J, Liu B, Wu J, Cheng H M, Kang F 2018 Joule 2 442
Google Scholar
[8] Ioffe A F, Stil'Bans L, Iordanishvili E, Stavitskaya T, Gelbtuch A, Vineyard G 1959 Phys. Today 12 42
[9] Wood C 1988 Rep. Prog. Phys. 51 459
Google Scholar
[10] Wu J, Chen Y, Wu J, Hippalgaonkar K 2018 Adv. Electron. Mater. 4 1800248
Google Scholar
[11] Graf M J, Yip S K, Sauls J A, Rainer D 1996 Phys. Rev. B 53 15147
Google Scholar
[12] Jonson M, Mahan G D 1980 Phys. Rev. B 21 4223
Google Scholar
[13] Mao J, Liu Z, Ren Z 2016 NPJ Quantum Mater. 1 16028
Google Scholar
[14] Cutler M, Mott N F 1969 Phys. Rev. 181 1336
Google Scholar
[15] Zuev Y M, Chang W, Kim P 2009 Phys. Rev. Lett. 102 096807
Google Scholar
[16] Sun P, Wei B, Zhang J, Tomczak J M, Strydom A, Søndergaard M, Iversen B B, Steglich F 2015 Nat. Commun. 6 7475
Google Scholar
[17] Mahan G, Sofo J 1996 PNAS 93 7436
Google Scholar
[18] Sootsman J R, Chung D Y, Kanatzidis M G 2009 Angew. Chem. Int. Ed. 48 8616
Google Scholar
[19] Ishida A, Cao D, Morioka S, Veis M, Inoue Y, Kita T 2008 Appl. Phys. Lett. 92 182105
Google Scholar
[20] Heremans J P, Jovovic V, Toberer E S, Saramat A, Kurosaki K, Charoenphakdee A, Yamanaka S, Snyder G J 2008 Science 321 554
Google Scholar
[21] Lee G H, Cooper R C, An S J, Lee S, Van Der Zande A, Petrone N, Hammerberg A G, Lee C, Crawford B, Oliver W 2013 Science 340 1073
Google Scholar
[22] 吴祥冰, 汤雯婷, 徐象繁 2020 物理学报 69 196602
Google Scholar
Wu X, Tang W, Xu X 2020 Acta Phys. Sin. 69 196602
Google Scholar
[23] Choi S J, Kim B K, Lee T H, Kim Y H, Li Z, Pop E, Kim J J, Song J H, Bae M H 2016 Nano Lett. 16 3969
Google Scholar
[24] Yang F, Wu J, Suwardi A, Zhao Y, Liang B, Jiang J, Xu J, Chi D, Hippalgaonkar K, Lu J 2021 Adv. Mater. 33 2004786
Google Scholar
[25] Saito Y, Iizuka T, Koretsune T, Arita R, Shimizu S, Iwasa Y 2016 Nano Lett. 16 4819
Google Scholar
[26] Aiyiti A, Bai X, Wu J, Xu X, Li B 2018 Sci. Bull. 63 452
Google Scholar
[27] Wang H, Zheng D, Zhang X, Takamatsu H, Hu W 2017 RSC Adv. 7 25298
Google Scholar
[28] Kayyalha M, Maassen J, Lundstrom M, Shi L, Chen Y P 2016 J. Appl. Phys. 120 134305
Google Scholar
[29] Klarskov M B, Dam H F, Petersen D H, Hansen T M, Löwenborg A, Booth T, Schmidt M S, Lin R, Nielsen P, Bøggild P 2011 Nanotechnology 22 445702
Google Scholar
[30] Yoshimoto S, Murata Y, Kubo K, Tomita K, Motoyoshi K, Kimura T, Okino H, Hobara R, Matsuda I, Honda S, Katayama M, Hasegawa S 2007 Nano Lett. 7 956
Google Scholar
[31] Liu K K, Zhang W, Lee Y H, Lin Y C, Chang M T, Su C Y, Chang C S, Li H, Shi Y, Zhang H 2012 Nano Lett. 12 1538
Google Scholar
[32] Lee Y H, Zhang X Q, Zhang W, Chang M T, Lin C T, Chang K D, Yu Y C, Wang J T W, Chang C S, Li L J 2012 Adv. Mater. 24 2320
Google Scholar
[33] Wang H, Yu L, Lee Y H, Fang W, Hsu A, Herring P, Chin M, Dubey M, Li L J, Kong J, Palacios T 2012 International Electron Devices Meeting (IEDM) San Francisco, CA, December 10-13, 2012, pp4.6.1–4.6. 4
[34] Podzorov V, Gershenson M, Kloc C, Zeis R, Bucher E 2004 Appl. Phys. Lett. 84 3301
Google Scholar
[35] Hippalgaonkar K, Wang Y, Ye Y, Qiu D Y, Zhu H, Wang Y, Moore J, Louie S G, Zhang X 2017 Phys. Rev. B 95 115407
Google Scholar
[36] Song H F, Kang F Y 2022 Acta Phys. Chim. Sin 38 2101013
[37] Zhao Y, Cai Y, Zhang L, Li B, Zhang G, Thong J T 2020 Adv. Funct. Mater. 30 1903929
Google Scholar
[38] Gu X, Wei Y, Yin X, Li B, Yang R 2018 Rev. Mod. Phys. 90 041002
Google Scholar
[39] Shi L, Li D, Yu C, Jang W, Kim D, Yao Z, Kim P, Majumdar A 2003 J. Heat Transfer 125 881
Google Scholar
[40] Kim S, Shin S, Kim T, Du H, Song M, Lee C, Kim K, Cho S, Seo D H, Seo S 2016 Carbon 98 352
Google Scholar
[41] Pettes M T, Jo I, Yao Z, Shi L 2011 Nano Lett. 11 1195
Google Scholar
[42] Pizzocchero F, Gammelgaard L, Jessen B S, Caridad J M, Wang L, Hone J, Bøggild P, Booth T J 2016 Nat. Commun. 7 11894
Google Scholar
[43] Zhao S, Wang H 2020 ES Energy Environ. 9 59
[44] Wang H, Kurata K, Fukunaga T, Ago H, Takamatsu H, Zhang X, Ikuta T, Takahashi K, Nishiyama T, Takata Y 2016 Sens. Actuators, A 247 24
Google Scholar
[45] Suh J, Yu K M, Fu D, Liu X, Yang F, Fan J, Smith D J, Zhang Y H, Furdyna J K, Dames C 2015 Adv. Mater. 27 3681
Google Scholar
[46] Goldsmid H, Sharp J 1999 J. Electron. Mater. 28 869
Google Scholar
[47] Kim H S, Gibbs Z M, Tang Y, Wang H, Snyder G J 2015 APL Mater. 3 041506
Google Scholar
[48] Lee C, Wei X, Kysar J W, Hone J 2008 Science 321 385
Google Scholar
[49] Grigorenko A N, Polini M, Novoselov K 2012 Nat. Photonics 6 749
Google Scholar
[50] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I, Dubonos S, Firsov a 2005 Nature 438 197
Google Scholar
[51] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666
Google Scholar
[52] Zhang Y, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201
Google Scholar
[53] Neto A C, Guinea F, Peres N M, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109
Google Scholar
[54] Cai W, Moore A L, Zhu Y, Li X, Chen S, Shi L, Ruoff R S 2010 Nano Lett. 10 1645
Google Scholar
[55] Novoselov K S, Jiang D, Schedin F, Booth T, Khotkevich V, Morozov S, Geim A K 2005 PNAS 102 10451
Google Scholar
[56] Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau C N 2008 Nano Lett. 8 902
Google Scholar
[57] Ghosh D, Calizo I, Teweldebrhan D, Pokatilov E P, Nika D L, Balandin A A, Bao W, Miao F, Lau C N 2008 Appl. Phys. Lett. 92 151911
Google Scholar
[58] Xu X, Pereira L F, Wang Y, Wu J, Zhang K, Zhao X, Bae S, Tinh Bui C, Xie R, Thong J T 2014 Nat. Commun. 5 3689
Google Scholar
[59] Lindsay L, Broido D, Mingo N 2011 Phys. Rev. B 83 235428
Google Scholar
[60] Wei P, Bao W, Pu Y, Lau C N, Shi J 2009 Phys. Rev. Lett. 102 166808
Google Scholar
[61] Checkelsky J G, Ong N 2009 Phys. Rev. B 80 081413
Google Scholar
[62] Hwang E, Rossi E, Sarma S D 2009 Phys. Rev. B 80 235415
Google Scholar
[63] Wang C R, Lu W S, Hao L, Lee W L, Lee T K, Lin F, Cheng I C, Chen J Z 2011 Phys. Rev. Lett. 107 186602
Google Scholar
[64] Nam S G, Ki D K, Lee H J 2010 Phys. Rev. B 82 245416
Google Scholar
[65] Wang D, Shi J 2011 Phys. Rev. B 83 113403
Google Scholar
[66] Seol J H, Moore A L, Shi L, Jo I, Yao Z 2011 J. Heat Transfer 133 022403
Google Scholar
[67] Jang W, Chen Z, Bao W, Lau C N, Dames C 2010 Nano Lett. 10 3909
Google Scholar
[68] Yang J, Ziade E, Maragliano C, Crowder R, Wang X, Stefancich M, Chiesa M, Swan A K, Schmidt A J 2014 J. Appl. Phys. 116 023515
Google Scholar
[69] Ghosh S, Bao W, Nika D L, Subrina S, Pokatilov E P, Lau C N, Balandin A A 2010 Nat. Mater. 9 555
Google Scholar
[70] Wang J, Zhu L, Chen J, Li B, Thong J T 2013 Adv. Mater. 25 6884
Google Scholar
[71] Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L 2010 Nat. Nanotechnol. 5 722
Google Scholar
[72] Nomura K, MacDonald A H 2007 Phys. Rev. Lett. 98 076602
Google Scholar
[73] Chen J H, Jang C, Xiao S, Ishigami M, Fuhrer M S 2008 Nat. Nanotechnol. 3 206
Google Scholar
[74] Hwang E, Adam S, Sarma S D 2007 Phys. Rev. Lett. 98 186806
Google Scholar
[75] Ando T 2006 J. Phys. Soc. Jpn. 75 074716
Google Scholar
[76] Morozov S, Novoselov K, Katsnelson M, Schedin F, Elias D C, Jaszczak J A, Geim A 2008 Phys. Rev. Lett. 100 016602
Google Scholar
[77] Katsnelson M, Geim A 2008 Philos. Trans. R. Soc. London, Ser. A 366 195
[78] Ishigami M, Chen J, Cullen W, Fuhrer M, Williams E 2007 Nano Lett. 7 1643
Google Scholar
[79] Fratini S, Guinea F 2008 Phys. Rev. B 77 195415
Google Scholar
[80] Duan J, Wang X, Lai X, Li G, Watanabe K, Taniguchi T, Zebarjadi M, Andrei E Y 2016 PNAS 113 14272
Google Scholar
[81] Zebarjadi M 2015 Appl. Phys. Lett. 106 203506
Google Scholar
[82] Seol J H, Jo I, Moore A L, Lindsay L, Aitken Z H, Pettes M T, Li X, Yao Z, Huang R, Broido D 2010 Science 328 213
Google Scholar
[83] Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805
Google Scholar
[84] Liu X, Zhang G, Pei Q X, Zhang Y W 2013 Appl. Phys. Lett. 103 133113
Google Scholar
[85] Bertolazzi S, Brivio J, Kis A 2011 ACS Nano 5 9703
Google Scholar
[86] Wilson J A, Yoffe A 1969 Adv. Phys. 18 193
Google Scholar
[87] Seh Z W, Yu J H, Li W, Hsu P-C, Wang H, Sun Y, Yao H, Zhang Q, Cui Y 2014 Nat. Commun. 5 5017
Google Scholar
[88] Yin Z, Li H, Li H, Jiang L, Shi Y, Sun Y, Lu G, Zhang Q, Chen X, Zhang H 2012 ACS Nano 6 74
Google Scholar
[89] Wang X, Wang P, Wang J, Hu W, Zhou X, Guo N, Huang H, Sun S, Shen H, Lin T 2015 Adv. Mater. 27 6575
Google Scholar
[90] Zhu H, Wang Y, Xiao J, Liu M, Xiong S, Wong Z J, Ye Z, Ye Y, Yin X, Zhang X 2015 Nat. Nanotechnol. 10 151
Google Scholar
[91] Wu W, Wang L, Li Y, Zhang F, Lin L, Niu S, Chenet D, Zhang X, Hao Y, Heinz T F 2014 Nature 514 470
Google Scholar
[92] Cao T, Wang G, Han W, Ye H, Zhu C, Shi J, Niu Q, Tan P, Wang E, Liu B 2012 Nat. Commun. 3 887
Google Scholar
[93] Yu H, Yao W 2017 Nat. Mater. 16 876
Google Scholar
[94] Wei X, Wang Y, Shen Y, Xie G, Xiao H, Zhong J, Zhang G 2014 Appl. Phys. Lett. 105 103902
Google Scholar
[95] Ding Z, Jiang J W, Pei Q X, Zhang Y W 2015 Nanotechnology 26 065703
Google Scholar
[96] Zhao Y, Zheng M, Wu J, Huang B, Thong J T 2020 Nanotechnology 31 225702
Google Scholar
[97] Peng B, Ning Z, Zhang H, Shao H, Xu Y, Ni G, Zhu H 2016 J. Phys. Chem. C 120 29324
Google Scholar
[98] Ding Z, Pei Q X, Jiang J W, Zhang Y W 2015 J. Phys. Chem. C 119 16358
Google Scholar
[99] Gu X, Li B, Yang R 2016 J. Appl. Phys. 119 085106
Google Scholar
[100] Xu K, Gabourie A J, Hashemi A, Fan Z, Wei N, Farimani A B, Komsa H-P, Krasheninnikov A V, Pop E, Ala-Nissila T 2019 Phys. Rev. B 99 054303
Google Scholar
[101] Zhou W, Gong H M, Jin X H, Chen Y, Li H M, Liu S 2022 Front. Phys. 10 842789
Google Scholar
[102] Yoon Y, Ganapathi K, Salahuddin S 2011 Nano Lett. 11 3768
Google Scholar
[103] Baugher B W, Churchill H O, Yang Y, Jarillo-Herrero P 2013 Nano Lett. 13 4212
Google Scholar
[104] Cai X, Wu Z, Han X, Chen Y, Xu S, Lin J, Han T, He P, Feng X, An L 2022 Nat. Commun. 13 1777
Google Scholar
[105] Ng H, Chi D, Hippalgaonkar K 2017 J. Appl. Phys. 121 204303
Google Scholar
[106] Yoshida M, Iizuka T, Saito Y, Onga M, Suzuki R, Zhang Y, Iwasa Y, Shimizu S 2016 Nano Lett. 16 2061
Google Scholar
[107] Zhao Y, Yu P, Zhang G, Sun M, Chi D, Hippalgaonkar K, Thong J T, Wu J 2020 Adv. Funct. Mater. 30 2004896
Google Scholar
[108] Zeng J, He X, Liang S J, Liu E, Sun Y, Pan C, Wang Y, Cao T, Liu X, Wang C 2018 Nano Lett. 18 7538
Google Scholar
[109] Lindroth D O, Erhart P 2016 Phys. Rev. B 94 115205
Google Scholar
[110] Jiang P, Qian X, Gu X, Yang R 2017 Adv. Mater. 29 1701068
Google Scholar
[111] Wickramaratne D, Zahid F, Lake R K 2014 J. Phys. Chem. 140 124710
Google Scholar
[112] Imai H, Shimakawa Y, Kubo Y 2001 Phys. Rev. B 64 241104
Google Scholar
[113] Qin D, Yan P, Ding G, Ge X, Song H, Gao G 2018 Sci. Rep. 8 2764
Google Scholar
[114] Oyedele A D, Yang S, Liang L, Puretzky A A, Wang K, Zhang J, Yu P, Pudasaini P R, Ghosh A W, Liu Z 2017 J. Am. Chem. Soc. 139 14090
Google Scholar
[115] Li J, Zhang X, Chen Z, Lin S, Li W, Shen J, Witting I T, Faghaninia A, Chen Y, Jain A 2018 Joule 2 976
Google Scholar
[116] Tangpakonsab P, Moontragoon P, Hussain T, Kaewmaraya T 2022 ACS Appl. Energy Mater. 5 13081
Google Scholar
[117] Hung N T, Nugraha A R T, Saito R 2017 Appl. Phys. Lett. 111 092107
Google Scholar
[118] Hung N T, Nugraha A R T, Yang T, Zhang Z D, Saito R 2019 J. Appl. Phys. 125 082502
Google Scholar
[119] Wang Q, Han L, Wu L, Zhang T, Li S, Lu P 2019 Nanoscale Res. Lett. 14 287
Google Scholar
[120] Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H, Zhang Y 2014 Nat. Nanotechnol. 9 372
Google Scholar
[121] St Laurent B, Dey D, Yu L, Hollen S 2021 ACS Appl. Electron. Mater. 3 4066
Google Scholar
[122] Hu Z, Li Q, Lei B, Zhou Q, Xiang D, Lyu Z, Hu F, Wang J, Ren Y, Guo R 2017 Angew. Chem. Int. Ed. 56 9131
Google Scholar
[123] Abate Y, Akinwande D, Gamage S, Wang H, Snure M, Poudel N, Cronin S B 2018 Adv. Mater. 30 1704749
Google Scholar
[124] Zhang J L, Han C, Hu Z, Wang L, Liu L, Wee A T, Chen W 2018 Adv. Mater. 30 1802207
Google Scholar
[125] Lee S, Yang F, Suh J, Yang S, Lee Y, Li G, Choe H S, Suslu A, Chen Y, Ko C 2015 Nat. Commun. 6 8573
Google Scholar
[126] Zhao Y, Zhang G, Nai M H, Ding G, Li D, Liu Y, Hippalgaonkar K, Lim C T, Chi D, Li B 2018 Adv. Mater. 30 1804928
Google Scholar
[127] Liu H, Choe H S, Chen Y, Suh J, Ko C, Tongay S, Wu J 2017 Appl. Phys. Lett. 111 102101
Google Scholar
[128] Luo Z, Maassen J, Deng Y, Du Y, Garrelts R P, Lundstrom M S, Ye P D, Xu X 2015 Nat. Commun. 6 8572
Google Scholar
[129] Qin G, Yan Q B, Qin Z, Yue S Y, Hu M, Su G 2015 Phys. Chem. Chem. Phys. 17 4854
Google Scholar
[130] Zhao Y, Yang L, Kong L, Nai M H, Liu D, Wu J, Liu Y, Chiam S Y, Chim W K, Lim C T 2017 Adv. Funct. Mater. 27 1702824
Google Scholar
[131] Flores E, Ares J R, Castellanos-Gomez A, Barawi M, Ferrer I J, Sánchez C 2015 Appl. Phys. Lett. 106 022102
Google Scholar
[132] Zhang J, Liu H, Cheng L, Wei J, Liang J, Fan D, Jiang P, Sun L, Shi J 2016 J. Mater. Chem. C 4 991
Google Scholar
[133] Lü H, Lu W, Shao D, Lu H, Sun Y 2016 J. Mater. Chem. C 4 4538
Google Scholar
[134] Carrete J, Mingo N, Curtarolo S 2014 Appl. Phys. Lett. 105 101907
Google Scholar
[135] Zhang L C, Qin G, Fang W Z, Cui H J, Zheng Q R, Yan Q B, Su G 2016 Sci. Rep. 6 35705
Google Scholar
[136] Ding G, Hu Y, Li D, Wang X 2019 Results Phys. 15 102631
Google Scholar
[137] Guo R, Wang X, Kuang Y, Huang B 2015 Phys. Rev. B 92 115202
Google Scholar
[138] Zhao L D, Lo S H, Zhang Y, Sun H, Tan G, Uher C, Wolverton C, Dravid V P, Kanatzidis M G 2014 Nature 508 373
Google Scholar
[139] Zhou C, Lee Y K, Yu Y, Byun S, Luo Z Z, Lee H, Ge B, Lee Y L, Chen X, Lee J Y 2021 Nat. Mater. 20 1378
Google Scholar
[140] Sun Y, Shuai Z, Wang D 2019 J. Phys. Chem. C 123 12001
Google Scholar
[141] Zhao T, Sun Y, Shuai Z, Wang D 2017 Chem. Mater. 29 6261
Google Scholar
[142] Wu M, Zeng X C 2017 Nano Lett. 17 6309
Google Scholar
[143] Wu J, Liu Y, Tan Z, Tan C, Yin J, Li T, Tu T, Peng H 2017 Adv. Mater. 29 1704060
Google Scholar
[144] Fu Q, Zhu C, Zhao X, Wang X, Chaturvedi A, Zhu C, Wang X, Zeng Q, Zhou J, Liu F 2019 Adv. Mater. 31 1804945
Google Scholar
[145] Wu J, Yuan H, Meng M, Chen C, Sun Y, Chen Z, Dang W, Tan C, Liu Y, Yin J 2017 Nat. Nanotechnol. 12 530
Google Scholar
[146] Yang F, Wang R, Zhao W, Jiang J, Wei X, Zheng T, Yang Y, Wang X, Lu J, Ni Z 2019 Appl. Phys. Lett. 115 193103
Google Scholar
[147] Leburton J P 1984 J. Appl. Phys. 56 2850
Google Scholar
[148] Gelmont B, Shur M, Stroscio M 1995 J. Appl. Phys. 77 657
Google Scholar
[149] Paul S, Bhattacharya D 1989 Phys. Rev. B 39 13521
Google Scholar
[150] Alkan B, Unal B, Ozdemir A 1995 Semicond. Sci. Technol. 10 1458
Google Scholar
[151] Zook J D 1964 Phys. Rev. 136 A869
Google Scholar
[152] Wang F Q, Guo Y, Wang Q, Kawazoe Y, Jena P 2017 Chem. Mater. 29 9300
Google Scholar
[153] Rau J W, Kannewurf C 1971 Phys. Rev. B 3 2581
Google Scholar
[154] Li L, Gong P, Sheng D, Wang S, Wang W, Zhu X, Shi X, Wang F, Han W, Yang S 2018 Adv. Mater. 30 1804541
Google Scholar
[155] Panasci S, Schilirò E, Migliore F, Cannas M, Gelardi F, Roccaforte F, Giannazzo F, Agnello S 2021 Appl. Phys. Lett. 119 093103
Google Scholar
[156] Velicky M, Donnelly G E, Hendren W R, McFarland S, Scullion D, DeBenedetti W J, Correa G C, Han Y, Wain A J, Hines M A 2018 ACS Nano 12 10463
Google Scholar
[157] Liu F 2021 Prog. Surf. Sci. 96 100626
Google Scholar
[158] Zou B, Zhou Y, Zhou Y, Wu Y, He Y, Wang X, Yang J, Zhang L, Chen Y, Zhou S, Guo H, Sun H 2022 Nano Res. 15 8470
Google Scholar
[159] Wu J, Liu Y, Liu Y, Cai Y, Zhao Y, Ng H K, Watanabe K, Taniguchi T, Zhang G, Qiu C W 2020 PNAS 117 13929
Google Scholar
[160] Sharma M, Kumar A, Ahluwalia P 2019 Physica E 107 117
Google Scholar
[161] Zheng Y, Slade T J, Hu L, Tan X Y, Luo Y, Luo Z Z, Xu J, Yan Q, Kanatzidis M G 2021 Chem. Soc. Rev. 50 9022
Google Scholar
[162] Yan Z, Yoon M, Kumar S 2018 2 D Mater. 5 031008
[163] Zhao Y, Zheng M, Wu J, Guan X, Suwardi A, Li Y, Lal M, Xie G, Zhang G, Zhang L 2021 Nanoscale 13 11561
Google Scholar
[164] Aiyiti A, Hu S, Wang C, Xi Q, Cheng Z, Xia M, Ma Y, Wu J, Guo J, Wang Q 2018 Nanoscale 10 2727
Google Scholar
[165] Chen J H, Li L, Cullen W G, Williams E D, Fuhrer M S 2011 Nat. Phys. 7 535
Google Scholar
[166] Takahashi H, Okazaki R, Ishiwata S, Taniguchi H, Okutani A, Hagiwara M, Terasaki I 2016 Nat. Commun. 7 12732
Google Scholar
[167] Zhou J, Liao B, Qiu B, Huberman S, Esfarjani K, Dresselhaus M S, Chen G 2015 PNAS 112 14777
Google Scholar
[168] Pan Y, Chen S, Wang P, Li Y, Zheng Q 2019 Ceram. Int. 45 19534
Google Scholar
[169] Lee W, Lim G, Ko S H 2021 Nano Energy 87 106188
Google Scholar
[170] Wu X, Yang N, Luo T 2015 Appl. Phys. Lett. 107 191907
Google Scholar
[171] Rosi F 1968 Solid-State Electron. 11 833
Google Scholar
[172] Guo Y, Dun C, Xu J, Li P, Huang W, Mu J, Hou C, Hewitt C A, Zhang Q, Li Y 2018 ACS Appl. Mater. Interfaces 10 33316
Google Scholar
[173] Ng H K, Abutaha A, Voiry D, Verzhbitskiy I, Cai Y, Zhang G, Liu Y, Wu J, Chhowalla M, Eda G 2019 ACS Appl. Mater. Interfaces 11 12184
Google Scholar
[174] An C J, Kang Y H, Lee C, Cho S Y 2018 Adv. Funct. Mater. 28 1800532
Google Scholar
[175] Xiang D, Han C, Wu J, Zhong S, Liu Y, Lin J, Zhang X A, Ping Hu W, Özyilmaz B, Neto A 2015 Nat. Commun. 6 8949
Google Scholar
[176] Kong S, Wu T, Yuan M, Huang Z, Meng Q L, Jiang Q, Zhuang W, Jiang P, Bao X 2017 J. Mater. Chem. A 5 2004
Google Scholar
[177] Perera M M, Lin M W, Chuang H J, Chamlagain B P, Wang C T, Tan X B, Cheng M M C, Tománek D, Zhou Z X 2013 ACS Nano 7 4449
Google Scholar
[178] Böttner H, Chen G, Venkatasubramanian R 2006 MRS Bull. 31 211
Google Scholar
[179] Venkatasubramanian R, Siivola E, Colpitts T, O'quinn B 2001 Nature 413 597
Google Scholar
[180] Harman T, Taylor P, Walsh M, LaForge B 2002 Science 297 2229
Google Scholar
[181] Harman T, Taylor P, Spears D, Walsh M 2000 J. Electron. Mater. 29 L1
Google Scholar
[182] Hicks L, Harman T, Sun X, Dresselhaus M 1996 Phys. Rev. B 53 R10493
Google Scholar
[183] Ding G, He J, Gao G, Yao K 2018 J. Appl. Phys. 124 165101
Google Scholar
[184] Wan C, Gu X, Dang F, Itoh T, Wang Y, Sasaki H, Kondo M, Koga K, Yabuki K, Snyder G J 2015 Nat. Mater. 14 622
Google Scholar
[185] Wang S, Yang X, Hou L, Cui X, Zheng X, Zheng J 2022 Nat. Commun. 13 4401
Google Scholar
[186] Luckyanova M N, Garg J, Esfarjani K, Jandl A, Bulsara M T, Schmidt A J, Minnich A J, Chen S, Dresselhaus M S, Ren Z 2012 Science 338 936
Google Scholar
[187] Zhang G, Zhang Y W 2015 Mech. Mater. 91 382
Google Scholar
[188] Peng Z, Chen X, Fan Y, Srolovitz D J, Lei D 2020 Light Sci. Appl. 9 190
Google Scholar
[189] Yang S, Chen Y, Jiang C 2021 InfoMat 3 397
Google Scholar
[190] Yan Y, Ding S, Wu X, Zhu J, Feng D, Yang X, Li F 2020 RSC Adv. 10 39455
Google Scholar
[191] Manzeli S, Allain A, Ghadimi A, Kis A 2015 Nano Lett. 15 5330
Google Scholar
[192] Meng L, Zhang Y, Hu S, Wang X, Liu C, Guo Y, Wang X, Yan X 2016 Appl. Phys. Lett. 108 263104
Google Scholar
[193] Castellanos-Gomez A, Roldán R, Cappelluti E, Buscema M, Guinea F, van der Zant H S, Steele G A 2013 Nano Lett. 13 5361
Google Scholar
[194] Zhu C, Wang G, Liu B, Marie X, Qiao X, Zhang X, Wu X, Fan H, Tan P, Amand T 2013 Phys. Rev. B 88 121301
Google Scholar
[195] Ng H K, Xiang D, Suwardi A, Hu G, Yang K, Zhao Y, Liu T, Cao Z, Liu H, Li S 2022 Nat. Electron. 5 489
Google Scholar
[196] Jiang J W, Park H S, Rabczuk T 2013 J. Appl. Phys. 114 064307
Google Scholar
[197] Conley H J, Wang B, Ziegler J I, Haglund Jr R F, Pantelides S T, Bolotin K I 2013 Nano Lett. 13 3626
Google Scholar
[198] Desai S B, Seol G, Kang J S, Fang H, Battaglia C, Kapadia R, Ager J W, Guo J, Javey A 2014 Nano Lett. 14 4592
Google Scholar
[199] Hoat D, Naseri M, Binh N T, Vu T V, Rivas-Silva J, Obeid M M, Cocoletzi G H 2021 Phys. B:Condens. Matter 603 412757
Google Scholar
[200] Qin G, Yan Q B, Qin Z, Yue S Y, Cui H J, Zheng Q R, Su G 2014 Sci. Rep. 4 6946
Google Scholar
[201] Bera J, Sahu S 2019 RSC Adv. 9 25216
Google Scholar
[202] Qin D, Ge X J, Ding G Q, Gao G Y, Lü J T 2017 RSC Adv. 7 47243
Google Scholar
计量
- 文章访问数: 10698
- PDF下载量: 461
- 被引次数: 0