搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金纳米双球系统的高灵敏光学传感与其消光系数及局域场增强之关联

夏文飞 陈剑锋 龙利 李志远

引用本文:
Citation:

金纳米双球系统的高灵敏光学传感与其消光系数及局域场增强之关联

夏文飞, 陈剑锋, 龙利, 李志远

Correlation of optical sensing with extinction coefficient and local field enhancement in gold nanosphere dimer

Xia Wen-Fei, Chen Jian-Feng, Long Li, Li Zhi-Yuan
PDF
HTML
导出引用
  • 系统地研究了最基本的单/双金纳米球系统的共振峰移动、局域场增强和消光谱等光学响应行为. 发现在双金纳米球系统中, 入射光除了能激发每个金纳米球的局域表面等离激元共振模式外, 调整金纳米球间隙可使共振模式间产生强烈耦合, 使系统局域场增强因子进一步提升, 并增强光学传感能力和消光系数. 有趣的是, 受限于有限的局域场增强体积, 具有高局域场增强因子的间隙为2 nm的双金纳米球系统的消光系数大幅降低, 其消光系数和光学传感能力均低于5 nm间隙的系统. 研究表明, 双金纳米球系统的光学传感灵敏度不是由局域场增强幅度直接决定的, 而与系统消光系数有相似的变化行为. 这些结果可指导金纳米双颗粒和多颗粒系统的设计, 为表面拉曼散射增强和光学传感等方面的应用提供创新性思路和方案.
    In this paper we systematically study the optical extinction, local field enhancement, and resonance peak shift of basic single/double gold nanosphere system. We find that in the double gold nanosphere system, the incident light can excite the coupled resonance modes when the two gold nanospheres are approaching to each other, leading the local field to be enhanced greatly. Interestingly, limited by the scant volume of local field, the extinction coefficient of the double gold nanosphere system of 2 nm gap with a high local field enhancement factor is greatly reduced, so that its optical sensing sensitivity and extinction coefficient are smaller than the 5 nm gap system’s. Studies show that the optical sensing sensitivity of the double gold nanosphere system is not directly determined by the local field enhancement amplitude, but has a similar change behavior to the extinction coefficient of the system. These results can offer us a useful route and hint for designing the gold nanoparticle systems used in the surface Raman scattering enhancement and high performance optical sensing.
      通信作者: 李志远, phzyli@scut.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2018YFA0306200)、国家自然科学基金(批准号: 11974119)、中央高校基本科研业务费(批准号: 2019ZD50)、广东引进创新创业研究团队计划(批准号: 2016ZT06C594)、广东重点研发项目(批准号: 2020B010190001)和东莞领军人才计划资助的课题
      Corresponding author: Li Zhi-Yuan, phzyli@scut.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2018YFA0306200), the National Natural Science Foundation of China (Grant No. 11974119), the Fundamental Research Fund for the Central Universities, China (Grant No. 2019ZD50), the Innovative and Entrepreneurial Research Team Program of Guangdong Province, China (Grant No. 2016ZT06C594), the Research and Development Projects in Key Areas of Guangdong Province, China (Grant No. 2020B010190001), and the Dongguan Introduction Program of Leading Innovative and Entrepreneurial Talents, China.
    [1]

    虞华康, 刘伯东, 吴婉玲, 李志远 2019 物理学报 68 149101Google Scholar

    Yu H K, Liu B D, Wu W L, Li Z Y 2019 Acta Phys. Sin. 68 149101Google Scholar

    [2]

    Yu H K, Peng Y S, Yang Y, Li Z Y 2019 npj Comput. Mater. 5 45Google Scholar

    [3]

    Hao E, Schatz G C 2004 J. Chem. Phys. 120 357Google Scholar

    [4]

    Zhou F, Li Z Y, Liu Y, Xia Y N 2008 J. Phys. Chem. C 112 20233Google Scholar

    [5]

    Liu S Y, Huang L, Li J F, Wang C, Li Q, Xu H X, Guo H L, Meng Z M, Shi Z, Li Z Y 2013 J. Phys. Chem. C 117 10636Google Scholar

    [6]

    Kneipp K, Wang Y, Kneipp H, Perelman L T, Itzkan I, Dasari R R, Feld M S 1997 Phys. Rev. Lett. 78 1667Google Scholar

    [7]

    Nie S, Emory S R 1997 Science 275 1102Google Scholar

    [8]

    Xu H, Bjerneld E J, Käll M, Börjesson L 1999 Phys. Rev. Lett. 83 4357Google Scholar

    [9]

    Hsieh Y H, Hsu B W, Peng K N, Lee K W, Chu C W, Chang S W, Lin H W, Yen T J, Lu Y J 2020 ACS Nano 14 11670Google Scholar

    [10]

    Park S M, Lee K S, Kim J H, Yeon G J, Shin H H, Park S, Kim Z H 2020 J. Phys. Chem. Lett. 11 9313Google Scholar

    [11]

    Luo Y, Wang Y C, Liu M Q, Zhu H, Chen O, Zou S L, Zhao J 2020 J. Phys. Chem. Lett. 11 2449Google Scholar

    [12]

    Rastogi R, Arianfard H, Moss D, Juodkazis S, Adam P M, Krishnamoorthy S 2021 ACS Appl. Mater. Interfaces 13 9113Google Scholar

    [13]

    Li Z Y 2018 Adv. Opt. Mater. 6 1701097Google Scholar

    [14]

    Yu Y, Xiao T H, Wu Y Z, Li W J, Zeng Q G, Long L, Li Z Y 2020 Adv. Photonics 2 014002Google Scholar

    [15]

    Mi X H, Wang Y Y, Li R, Sun M T, Zhang Z L, Zheng H R 2019 Nanophotonics 8 487Google Scholar

    [16]

    Kim K H, Choe S H 2017 Plasmonics 12 855Google Scholar

    [17]

    Oulton R F, Sorger V J, Zentgraf T, Ma R M, Gladden C, Dai L, Bartal G, Zhang X 2009 Nature 461 629Google Scholar

    [18]

    Huo Y Y, Jia T Q, Zhang Y, Zhao H, Zhang S A, Feng D F, Sun Z R 2014 Appl. Phys. Lett. 104 113104Google Scholar

    [19]

    Zhong X L, Li Z Y 2013 Phys. Rev. B 88 085101Google Scholar

    [20]

    Li W, Ma C, Zhang L, Chen B, Chen L Y, Zeng H P 2019 Nanomaterials 9 251Google Scholar

    [21]

    Yuan P, Ding X, Yang Y, Xu Q 2018 Adv. Healthc. Mater. 7 1701392Google Scholar

    [22]

    Azharuddin M, Zhu G H, Das D, Ozgur E, Uzun L, Turner A P F, Patra H K 2019 Chem. Commun. 55 6964Google Scholar

    [23]

    Ma X M, He S, Qiu B, Luo F, Guo L H, Lin Z Y 2019 ACS Sens. 4 782Google Scholar

    [24]

    Chen H J, Kou X S, Yang Z, Ni W H, Wang J F 2008 Langmuir 24 5233Google Scholar

    [25]

    Wang H Q, Rao H H, Luo M Y, Xue X, Xue Z H, Lu X Q 2019 Coord. Chem. Rev. 398 113003Google Scholar

    [26]

    Kailasa S K, Koduru J R, Desai M L, Park T J, Singhal R K, Basu H 2018 TrAc, Trends Anal. Chem. 105 106Google Scholar

    [27]

    Mayer K M, Hafner J H 2011 Chem. Rev. 111 3828Google Scholar

    [28]

    Willets K A, Van Duyne R P 2007 Annu. Rev. Phys. Chem. 58 267Google Scholar

    [29]

    Ctyroky J, Homola J, Lambeck P V, Musa S, Hoekstra H J W M, Harris R D, Wilkinson J S, Usievich B, Lyndin N M 1999 Sens. Actuator, B 54 66Google Scholar

    [30]

    Fan Z K, Fang S B, Li S G, Wei Z Y 2019 Chin. Phys. B 28 094209Google Scholar

    [31]

    Sobhani F, Heidarzadeh H, Bahador H 2020 Chin. Phys. B 29 068401Google Scholar

    [32]

    Zhou J, Zhang J S, Xian G Y, Qi Q, Gu S Z, Shen C M, Cheng Z H, He S T, Yang H T 2019 Chin. Phys. B 28 083301Google Scholar

    [33]

    Yang Y T, Zhang C H, Su C H, Ding Z N, Song Y, Chen Y G 2018 Chin. Phys. Lett. 35 096102Google Scholar

    [34]

    Wiley B J, Im S H, Li Z Y, McLellan J, Siekkinen A, Xia Y N 2006 J. Phys. Chem. B 110 15666Google Scholar

    [35]

    Medeghini F, Hettich M, Rouxel R, Santos S D S, Hermelin S, Pertreux E, Dias A T, Legrand F, Maioli P, Crut A, Vallee F, Miguel A S, Fatti N D 2018 ACS Nano 12 10310Google Scholar

    [36]

    Roopak S, Pathak N K, Sharma R, Ji A, Pathak H, Sharma R P 2016 Plasmonics 11 1603Google Scholar

    [37]

    Xu J X, Siriwardana K, Zhou Y D, Zou S L, Zhang D M 2018 Anal. Chem. 90 785Google Scholar

    [38]

    Zheng P, Tang H B, Liu B T, Kasani S, Huang L, Wu N Q 2019 Nano Res. 12 63Google Scholar

    [39]

    Li Z, Liu L, Fernandez-Dominguez A, Shi J, Gu C, Garcia-Vidal F, Luo Y 2019 Adv. Opt. Mater. 7 1900118Google Scholar

    [40]

    Link S, EI-Sayed M 1999 J. Phys. Chem. B 103 8410Google Scholar

    [41]

    Jeon H B, Tsalu P V, Ha J W 2019 Sci. Rep. 9 13635Google Scholar

    [42]

    Zhou F, Liu Y, Li Z Y 2011 Chin. Phys. B 20 037303Google Scholar

    [43]

    Zhang C, Chen B Q, Li Z Y, Xia Y N, Chen Y G 2015 J. Phys. Chem. C 119 16836Google Scholar

    [44]

    Yeshchenko O A, Kozachenko V V, Naumenko A P, Berezovska N I, Kutsevol N V, Chumachenko V A, Haftel M, Pinchuk A O 2018 Photonics Nanostruct. 29 1Google Scholar

    [45]

    Luk’yanchuk B, Zheludev N I, Maier S A, Halas N J, Nordlander P, Giessen H, Chong C T 2010 Nat. Mater. 9 707Google Scholar

    [46]

    Lovera A, Gallinet B, Nordlander P, et al. 2013 ACS Nano 7 4527Google Scholar

    [47]

    Movseyan A, Baudrion A L, Adam P M 2018 Opt. Express 26 6439Google Scholar

    [48]

    Johnson P B, Christy R W 1972 Phys. Rev. B 6 4370Google Scholar

    [49]

    周飞 2011 博士学位论文 (北京: 中国科学院物理研究所)

    Zhou F 2011 Ph. D. Dissertation (Beijing: Institute of Physics, Chinese Academy of Sciences) (in Chinese)

    [50]

    Maier S A 2007 Plasmonics: Fundamentals and Applications (Springer: Berlin) p11

    [51]

    Prodan E, Radloff C, Halas N J, Nordlander P 2003 Science 302 419Google Scholar

    [52]

    Zhu W Q, Esteban R, Borisov A G, et al. 2016 Nat. Commun. 7 11495Google Scholar

  • 图 1  单/双金纳米球系统结构示意图和入射光波矢及其偏振方向 (a)单金纳米球; (b)双金纳米球

    Fig. 1.  Schematic diagram of the structure of the single/ double metal nanosphere system and the incident light wave vector and its polarization direction: (a) Single gold nanosphere; (b) double gold nanosphere.

    图 2  单金纳米球系统的消光谱、共振波长和电场分布 (a)不同背景折射率下的消光谱; (b)共振波长与背景折射率的关系; (c) n = 1.0时电场分布; (d) n = 1.3时电场分布

    Fig. 2.  Extinction spectrum, resonance wavelength and electric field distribution of the single metal nanosphere system: (a) Extinction spectrum for different n; (b) relation between resonance wavelength and n; (c) electric field for n = 1.0; (d) electric field for n = 1.3.

    图 3  不同间距双金纳米球系统在不同背景折射率下的消光谱 (a) w = 2 nm; (b) w = 5 nm; (c) w = 10 nm; (d) w = 20 nm

    Fig. 3.  Extinction spectrum of the bimetallic nanosphere system with different spacing under different n: (a) w = 2 nm; (b) w = 5 nm; (c) w = 10 nm; (d) w = 20 nm.

    图 4  空气中双金纳米球系统在共振频率处的近场分布 (a) w = 2 nm (λp = 616 nm); (b) w = 5 nm (λp = 634 nm); (c) w =10 nm (λp = 594 nm); (d) w = 20 nm (λp = 571 nm)

    Fig. 4.  Near-field distribution of the bimetallic nanosphere system in the air at the resonance frequency: (a) w = 2 nm (λp = 616 nm); (b) w = 5 nm (λp = 634 nm); (c) w = 10 nm (λp = 594 nm); (d) w = 20 nm (λp = 571 nm).

    图 5  不同间隙的双金纳米球系统 (a) LSPR共振波长λp与背景折射率n的关系; (b)消光谱; (c)共振峰处的最大场增强因子γ; (d)共振峰处的消光系数

    Fig. 5.  Bimetallic gold nanosphere system with different w: (a) Relationship between λp and background index n; (b) extinction spectrum; (c) maximum field enhancement for resonance peak; (d) extinction for resonance peak.

  • [1]

    虞华康, 刘伯东, 吴婉玲, 李志远 2019 物理学报 68 149101Google Scholar

    Yu H K, Liu B D, Wu W L, Li Z Y 2019 Acta Phys. Sin. 68 149101Google Scholar

    [2]

    Yu H K, Peng Y S, Yang Y, Li Z Y 2019 npj Comput. Mater. 5 45Google Scholar

    [3]

    Hao E, Schatz G C 2004 J. Chem. Phys. 120 357Google Scholar

    [4]

    Zhou F, Li Z Y, Liu Y, Xia Y N 2008 J. Phys. Chem. C 112 20233Google Scholar

    [5]

    Liu S Y, Huang L, Li J F, Wang C, Li Q, Xu H X, Guo H L, Meng Z M, Shi Z, Li Z Y 2013 J. Phys. Chem. C 117 10636Google Scholar

    [6]

    Kneipp K, Wang Y, Kneipp H, Perelman L T, Itzkan I, Dasari R R, Feld M S 1997 Phys. Rev. Lett. 78 1667Google Scholar

    [7]

    Nie S, Emory S R 1997 Science 275 1102Google Scholar

    [8]

    Xu H, Bjerneld E J, Käll M, Börjesson L 1999 Phys. Rev. Lett. 83 4357Google Scholar

    [9]

    Hsieh Y H, Hsu B W, Peng K N, Lee K W, Chu C W, Chang S W, Lin H W, Yen T J, Lu Y J 2020 ACS Nano 14 11670Google Scholar

    [10]

    Park S M, Lee K S, Kim J H, Yeon G J, Shin H H, Park S, Kim Z H 2020 J. Phys. Chem. Lett. 11 9313Google Scholar

    [11]

    Luo Y, Wang Y C, Liu M Q, Zhu H, Chen O, Zou S L, Zhao J 2020 J. Phys. Chem. Lett. 11 2449Google Scholar

    [12]

    Rastogi R, Arianfard H, Moss D, Juodkazis S, Adam P M, Krishnamoorthy S 2021 ACS Appl. Mater. Interfaces 13 9113Google Scholar

    [13]

    Li Z Y 2018 Adv. Opt. Mater. 6 1701097Google Scholar

    [14]

    Yu Y, Xiao T H, Wu Y Z, Li W J, Zeng Q G, Long L, Li Z Y 2020 Adv. Photonics 2 014002Google Scholar

    [15]

    Mi X H, Wang Y Y, Li R, Sun M T, Zhang Z L, Zheng H R 2019 Nanophotonics 8 487Google Scholar

    [16]

    Kim K H, Choe S H 2017 Plasmonics 12 855Google Scholar

    [17]

    Oulton R F, Sorger V J, Zentgraf T, Ma R M, Gladden C, Dai L, Bartal G, Zhang X 2009 Nature 461 629Google Scholar

    [18]

    Huo Y Y, Jia T Q, Zhang Y, Zhao H, Zhang S A, Feng D F, Sun Z R 2014 Appl. Phys. Lett. 104 113104Google Scholar

    [19]

    Zhong X L, Li Z Y 2013 Phys. Rev. B 88 085101Google Scholar

    [20]

    Li W, Ma C, Zhang L, Chen B, Chen L Y, Zeng H P 2019 Nanomaterials 9 251Google Scholar

    [21]

    Yuan P, Ding X, Yang Y, Xu Q 2018 Adv. Healthc. Mater. 7 1701392Google Scholar

    [22]

    Azharuddin M, Zhu G H, Das D, Ozgur E, Uzun L, Turner A P F, Patra H K 2019 Chem. Commun. 55 6964Google Scholar

    [23]

    Ma X M, He S, Qiu B, Luo F, Guo L H, Lin Z Y 2019 ACS Sens. 4 782Google Scholar

    [24]

    Chen H J, Kou X S, Yang Z, Ni W H, Wang J F 2008 Langmuir 24 5233Google Scholar

    [25]

    Wang H Q, Rao H H, Luo M Y, Xue X, Xue Z H, Lu X Q 2019 Coord. Chem. Rev. 398 113003Google Scholar

    [26]

    Kailasa S K, Koduru J R, Desai M L, Park T J, Singhal R K, Basu H 2018 TrAc, Trends Anal. Chem. 105 106Google Scholar

    [27]

    Mayer K M, Hafner J H 2011 Chem. Rev. 111 3828Google Scholar

    [28]

    Willets K A, Van Duyne R P 2007 Annu. Rev. Phys. Chem. 58 267Google Scholar

    [29]

    Ctyroky J, Homola J, Lambeck P V, Musa S, Hoekstra H J W M, Harris R D, Wilkinson J S, Usievich B, Lyndin N M 1999 Sens. Actuator, B 54 66Google Scholar

    [30]

    Fan Z K, Fang S B, Li S G, Wei Z Y 2019 Chin. Phys. B 28 094209Google Scholar

    [31]

    Sobhani F, Heidarzadeh H, Bahador H 2020 Chin. Phys. B 29 068401Google Scholar

    [32]

    Zhou J, Zhang J S, Xian G Y, Qi Q, Gu S Z, Shen C M, Cheng Z H, He S T, Yang H T 2019 Chin. Phys. B 28 083301Google Scholar

    [33]

    Yang Y T, Zhang C H, Su C H, Ding Z N, Song Y, Chen Y G 2018 Chin. Phys. Lett. 35 096102Google Scholar

    [34]

    Wiley B J, Im S H, Li Z Y, McLellan J, Siekkinen A, Xia Y N 2006 J. Phys. Chem. B 110 15666Google Scholar

    [35]

    Medeghini F, Hettich M, Rouxel R, Santos S D S, Hermelin S, Pertreux E, Dias A T, Legrand F, Maioli P, Crut A, Vallee F, Miguel A S, Fatti N D 2018 ACS Nano 12 10310Google Scholar

    [36]

    Roopak S, Pathak N K, Sharma R, Ji A, Pathak H, Sharma R P 2016 Plasmonics 11 1603Google Scholar

    [37]

    Xu J X, Siriwardana K, Zhou Y D, Zou S L, Zhang D M 2018 Anal. Chem. 90 785Google Scholar

    [38]

    Zheng P, Tang H B, Liu B T, Kasani S, Huang L, Wu N Q 2019 Nano Res. 12 63Google Scholar

    [39]

    Li Z, Liu L, Fernandez-Dominguez A, Shi J, Gu C, Garcia-Vidal F, Luo Y 2019 Adv. Opt. Mater. 7 1900118Google Scholar

    [40]

    Link S, EI-Sayed M 1999 J. Phys. Chem. B 103 8410Google Scholar

    [41]

    Jeon H B, Tsalu P V, Ha J W 2019 Sci. Rep. 9 13635Google Scholar

    [42]

    Zhou F, Liu Y, Li Z Y 2011 Chin. Phys. B 20 037303Google Scholar

    [43]

    Zhang C, Chen B Q, Li Z Y, Xia Y N, Chen Y G 2015 J. Phys. Chem. C 119 16836Google Scholar

    [44]

    Yeshchenko O A, Kozachenko V V, Naumenko A P, Berezovska N I, Kutsevol N V, Chumachenko V A, Haftel M, Pinchuk A O 2018 Photonics Nanostruct. 29 1Google Scholar

    [45]

    Luk’yanchuk B, Zheludev N I, Maier S A, Halas N J, Nordlander P, Giessen H, Chong C T 2010 Nat. Mater. 9 707Google Scholar

    [46]

    Lovera A, Gallinet B, Nordlander P, et al. 2013 ACS Nano 7 4527Google Scholar

    [47]

    Movseyan A, Baudrion A L, Adam P M 2018 Opt. Express 26 6439Google Scholar

    [48]

    Johnson P B, Christy R W 1972 Phys. Rev. B 6 4370Google Scholar

    [49]

    周飞 2011 博士学位论文 (北京: 中国科学院物理研究所)

    Zhou F 2011 Ph. D. Dissertation (Beijing: Institute of Physics, Chinese Academy of Sciences) (in Chinese)

    [50]

    Maier S A 2007 Plasmonics: Fundamentals and Applications (Springer: Berlin) p11

    [51]

    Prodan E, Radloff C, Halas N J, Nordlander P 2003 Science 302 419Google Scholar

    [52]

    Zhu W Q, Esteban R, Borisov A G, et al. 2016 Nat. Commun. 7 11495Google Scholar

  • [1] 陈钇成, 张成龙, 张丽超, 祁志美. 光栅耦合的InSb基太赫兹表面等离激元共振传感方法. 物理学报, 2024, 73(9): 098701. doi: 10.7498/aps.73.20231904
    [2] 王悦, 王伦, 孙柏逊, 郎鹏, 徐洋, 赵振龙, 宋晓伟, 季博宇, 林景全. 表面等离激元与入射光共同作用下的金纳米结构近场调控. 物理学报, 2023, 72(17): 175202. doi: 10.7498/aps.72.20230514
    [3] 张炼, 王化雨, 王宁, 陶灿, 翟学琳, 马平准, 钟莹, 刘海涛. 金属基底上光学偶极纳米天线的自发辐射宽带增强: 表面等离激元直观模型. 物理学报, 2022, 71(11): 118101. doi: 10.7498/aps.70.20212290
    [4] 张炼, 王化雨, 王宁, 陶灿, 翟学琳, 马平准, 钟莹, 刘海涛. 金属基底上光学偶极纳米天线的自发辐射宽带增强:表面等离激元直观模型. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20212290
    [5] 刘姿, 张恒, 吴昊, 刘昌. Al纳米颗粒表面等离激元对ZnO光致发光增强的研究. 物理学报, 2019, 68(10): 107301. doi: 10.7498/aps.68.20190062
    [6] 李盼. 表面等离激元纳米聚焦研究进展. 物理学报, 2019, 68(14): 146201. doi: 10.7498/aps.68.20190564
    [7] 王文慧, 张孬. 银纳米线表面等离激元波导的能量损耗. 物理学报, 2018, 67(24): 247302. doi: 10.7498/aps.67.20182085
    [8] 马平平, 张杰, 刘焕焕, 张静, 徐永刚, 王江, 张梦桥, 李永放. 金纳米棒三聚体中的等离激元诱导透明. 物理学报, 2016, 65(21): 217801. doi: 10.7498/aps.65.217801
    [9] 张永元, 罗李娜, 张中月. 十字结构银纳米线的表面等离极化激元分束特性. 物理学报, 2015, 64(9): 097303. doi: 10.7498/aps.64.097303
    [10] 盛世威, 李康, 孔繁敏, 岳庆炀, 庄华伟, 赵佳. 基于石墨烯纳米带的齿形表面等离激元滤波器的研究. 物理学报, 2015, 64(10): 108402. doi: 10.7498/aps.64.108402
    [11] 张文平, 马忠元, 徐骏, 徐岭, 李伟, 陈坤基, 黄信凡, 冯端. 纳米银六角阵列在掺氧氮化硅中的局域表面等离激元共振特性仿真. 物理学报, 2015, 64(17): 177301. doi: 10.7498/aps.64.177301
    [12] 杨旻昱, 宋建军, 张静, 唐召唤, 张鹤鸣, 胡辉勇. 氮化硅膜致小尺寸金属氧化物半导体晶体管沟道单轴应变物理机理. 物理学报, 2015, 64(23): 238502. doi: 10.7498/aps.64.238502
    [13] 房营光. 颗粒介质尺度效应的抗剪试验及物理机理分析. 物理学报, 2014, 63(3): 034502. doi: 10.7498/aps.63.034502
    [14] 张兴坊, 闫昕. 金纳米球壳表面等离激元共振波长调谐特性研究. 物理学报, 2013, 62(3): 037805. doi: 10.7498/aps.62.037805
    [15] 丛超, 吴大建, 刘晓峻, 李勃. 金银三层纳米管局域表面等离激元共振特性研究. 物理学报, 2012, 61(3): 037301. doi: 10.7498/aps.61.037301
    [16] 丛超, 吴大建, 刘晓峻. 椭圆截面金纳米管近场增强特性的研究. 物理学报, 2012, 61(4): 047802. doi: 10.7498/aps.61.047802
    [17] 邹伟博, 周骏, 金理, 张昊鹏. 金纳米球壳对的局域表面等离激元共振特性分析. 物理学报, 2012, 61(9): 097805. doi: 10.7498/aps.61.097805
    [18] 王垒, 蔡卫, 谭信辉, 向吟啸, 张心正, 许京军. 截面形状对快电子激发纳米双线表面等离激元的影响. 物理学报, 2011, 60(6): 067305. doi: 10.7498/aps.60.067305
    [19] 丛超, 吴大建, 刘晓峻. 椭圆截面金纳米管的局域表面等离激元共振特性研究. 物理学报, 2011, 60(4): 046102. doi: 10.7498/aps.60.046102
    [20] 吴大建, 刘晓峻. 金纳米球壳光学吸收的Mie理论分析. 物理学报, 2008, 57(8): 5138-5142. doi: 10.7498/aps.57.5138
计量
  • 文章访问数:  4575
  • PDF下载量:  112
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-30
  • 修回日期:  2021-03-04
  • 上网日期:  2021-04-26
  • 刊出日期:  2021-05-05

/

返回文章
返回