搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于N型纳米晶硅氧电子注入层的钙钛矿发光二极管

黄伟 李跃龙 任慧志 王鹏阳 魏长春 侯国付 张德坤 许盛之 王广才 赵颖 袁明鉴 张晓丹

引用本文:
Citation:

基于N型纳米晶硅氧电子注入层的钙钛矿发光二极管

黄伟, 李跃龙, 任慧志, 王鹏阳, 魏长春, 侯国付, 张德坤, 许盛之, 王广才, 赵颖, 袁明鉴, 张晓丹

Perovskite light-emitting diodes based on n-type nanocrystalline silicon oxide electron injection layer

Huang Wei, Li Yue-Long, Ren Hui-Zhi, Wang Peng-Yang, Wei Chang-Chun, Hou Guo-Fu, Zhang De-Kun, Xu Sheng-Zhi, Wang Guang-Cai, Zhao Ying, Yuan Ming-Jian, Zhang Xiao-Dan
PDF
HTML
导出引用
  • 钙钛矿材料由于其禁带宽度可调、光致发光量子产率高、色纯高等优点, 使得其在发光器件上具有巨大的应用潜力. 电子注入材料是钙钛矿发光器件中的重要组成部分, 特别是n-i-p型发光器件, 其直接影响后面钙钛矿的生长情况. 本文通过向钙钛矿发光二极管中引入一种新型电子注入材料, n型纳米晶硅氧(n-nc-SiOx:H). 借助于n-nc-SiOx:H薄膜平滑的表面, 有效地提高了沉积钙钛矿薄膜的结晶质量, 同时其能带结构更加匹配, 有效地降低了电子的注入势垒. 为了进一步提升器件性能, 向钙钛矿材料中引入合适比例的甲基溴化胺(MABr)、氯苯反溶剂中引入一定量的苯甲胺(PMA), 通过MABr和PMA的协同作用提高了钙钛矿薄膜的覆盖率, 降低了钙钛矿薄膜表面的缺陷密度, 抑制了钙钛矿薄膜退火过程中的发光猝灭, 最终获得了最大电流效率为7.93 cd·A-1、最大外量子效率为2.13%的n-i-p型钙钛矿发光二极管.
    Organometal halide perovskites featuring solution-processable characteristics, high photoluminescence quantum yield (PLQY), and color purity, are an emerging class of semiconductor with considerable potential applications in optoelectronic devices. Electron injection layer is an important component of perovskite light-emitting device, which determines the growth of perovskite film directly. In this paper, the perovskite light-emitting diodes (PeLEDs) based on n-type nanocrystalline silicon oxide (n-nc-SiOx:H) electron injection layer are designed and realized. This novel electron injecting material is prepared by the plasma enhanced chemical vapor deposition (PECVD), and its smooth surface and matched energy band result in superior perovskite crystallinity and low electron injection barrier from the electron injecting layer to the emissive layer, respectively. However, the external quantum efficiency (EQE) of PeLED is as low as 0.43%, which relates to defects and leakage current due to the incomplete surface coverage of perovskite film. The fast exciton emission decay (< 10 ns) stems from strong non-radiative energy transfer to the trap states, and represents a big challenge in fabricating high-efficiency PeLEDs. In order to obtain desirable perovskite film morphology, an excessive proportion of methylammonium bromide (MABr) is incorporated into the perovskite solution, and a volume of benzylamine (PMA) is added into the chlorobenzene antisolvent. The perovskite films suffer low PLQY and short PL lifetime if only MABr or PMA is introduced. When the molar ratio of MABr is higher than 60%, the luminescence quenching arising from Joule heating is depressed by employing PMA, contributing to a higher PLQY (> 30%) and a longer carrier lifetime. The synergistic effect of MABr and PMA increase the coverage and reduce the trap density of perovskite film, inhibit the luminescence quenching in the annealing process, and thus facilitating the perovskite film with higher quality. Finally, the n-i-p PeLED exhibits green-light emission with a maximum current efficiency of 7.93 cd·A-1 and a maximum EQE up to 2.13% is obtained. These facts provide a novel electron injecting material and a feasible process for implementing the PeLEDs. With further optimizing the perovskite layer and device configuration, the performance of n-i-p type PeLEDs will be improved significantly on the basis of this electron injection material.
      通信作者: 袁明鉴, yuanmj@nankai.edu.cn ; 张晓丹, xdzhang@nankai.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2018YFB1500103)、国家自然科学基金(批准号: 61674084)、高等学校学科创新引智计划(111 计划)(批准号: B16027)、天津市科技计划项目(批准号: 18ZXJMTG00220)和中央高校基本科研业务费资助的课题.
      Corresponding author: Yuan Ming-Jian, yuanmj@nankai.edu.cn ; Zhang Xiao-Dan, xdzhang@nankai.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2018YFB1500103), the National Natural Science Foundation of China (Grant No. 61674084), the Overseas Expertise Introduction Project for Discipline Innovation of Higher Education of China (Grant No. B16027), Tianjin Science and Technology Project, China (Grant No. 18ZXJMTG00220), and the Fundamental Research Funds for the Central Universities, Nankai University, China (Grant Nos. 63191736, ZB19500204).
    [1]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [2]

    Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341Google Scholar

    [3]

    Jeon N J, Noh J H, Yang W S, Kim Y C, Ryu S, Seo J, Seok S I 2015 Nature 517 476Google Scholar

    [4]

    Tan H, Jain A, Voznyy O, Lan X, DeArquer F P G, Fan J Z, Bermudez R Q, Yuan M, Zhang B, Zhao Y, Fan F, Li P, Quan L N, Zhao Y, Lu Z, Yang Z, Hoogland S, Sargent E H 2017 Science 355 722Google Scholar

    [5]

    姚鑫, 丁艳丽, 张晓丹, 赵颖 2015 物理学报 64 038805Google Scholar

    Yao X, Ding Y L, Zhang X D, Zhao Y 2015 Acta Phys. Sin. 64 038805Google Scholar

    [6]

    Protesescu L, Yakunin S, Bodnarchuk M I, Krieg F, Caputo R, Hendon C H, Yang R X, Walsh A, Kovalenko M V 2015 Nano Lett. 15 3692Google Scholar

    [7]

    Chondroudis K, Mitzi D B 1999 Chem. Mater. 11 3028Google Scholar

    [8]

    Tan Z K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M, Credgington D, Hanusch F, Bein T, Snaith H J, Friend R H 2014 Nat. Nanotechnol. 9 687Google Scholar

    [9]

    Song J, Li J, Xu L, Li J, Zhang F, Han B, Shan Q, Zeng H 2018 Adv. Mater. 30 1800764Google Scholar

    [10]

    Xiao Z, Kerner R A, Zhao L, Tran N L, Lee K M, Koh T W, Scholes G D, Rand B P 2017 Nat. Photon. 11 108Google Scholar

    [11]

    Yang X, Zhang X, Deng J, Chu Z, Jiang Q, Meng J, Wang P, Zhang L, Yin Z, You J 2018 Nat. Commun. 9 570Google Scholar

    [12]

    Lu M, Zhang X, Bai X, Wu H, Shen X, Zhang Y, Zhang W, Zheng W, Song H, Yu W W, Rogach A L 2018 ACS Energy Lett. 3 1571Google Scholar

    [13]

    Chiba T, Hoshi K, Pu Y J, Takeda Y, Hayashi Y, Ohisa S, Kawata S, Kido J 2017 ACS Appl. Mater. Interfaces 9 18054Google Scholar

    [14]

    Lee J W, Choi Y J, Yang J M, Ham S, Jeon S K, Lee J Y, Song Y H, Ji E K, Yoon D H, Seo S, Shin H, Han G S, Jung H S, Kim D, Park N G 2017 ACS Nano 11 3311Google Scholar

    [15]

    Yu J C, Kim D B, Baek G, Lee B R, Jung E D, Lee S, Chu J H, Lee D K, Choi K J, Cho S, Song M H 2015 Adv. Mater. 27 3492Google Scholar

    [16]

    Wang J, Wang N, Jin Y, Si J, Tan Z K, Du H, Cheng L, Dai X, Bai S, He H, Ye Z, Lai M L, Friend R H, Huang W 2015 Adv. Mater. 27 2311Google Scholar

    [17]

    Zhou Y, Fuentes-Hernandez C, Shim J, Meyer J, Giordano A J, Li H, Winget P, Papadopoulos T, Cheun H, Kim J, Fenoll M, Dindar A, Haske W, Najafabadi E, Khan T M, Sojoudi H, Barlow S, Graham S, Bredas J L, Marder S R, Kahn A, Kippelen B 2012 Science 336 327Google Scholar

    [18]

    Wang N, Cheng L, Si J, Jin Y, Wang J, Huang W 2016 Appl. Phys. Lett. 108 141102Google Scholar

    [19]

    Shi Z, Li Y, Zhang Y, Chen Y, Li X, Wu D, Xu T, Shan C, Du G 2017 Nano Lett. 17 313

    [20]

    Zhang L, Yang X, Jiang Q, Wang P, Yin Z, Zhang X, Tan H, Yang Y M, Wei M, Sutherland B R, Sargent E H, You J 2017 Nat. Commun. 8 15640Google Scholar

    [21]

    Chiba T, Hayashi Y, Ebe H, Hoshi K, Sato J, Sato S, Pu Y J, Ohisa S, Kido J 2018 Nat. Photon. 12 681Google Scholar

    [22]

    Saliba M, Matsui T, Domanski K, Seo J Y, Ummadisingu A, Zakeeruddin S M, Correa-Baena J P, Tress W R, Abate A, Hagfeldt A, Grätzel M 2016 Science 354 206Google Scholar

    [23]

    Zou Y, Ban M, Yang Y, Bai S, Wu C, Han Y, Wu T, Tan Y, Huang Q, Gao X, Song T, Zhang Q, Sun B 2018 ACS Appl. Mater. Interfaces 10 24320Google Scholar

    [24]

    丁雄傑, 倪露, 马圣博, 马英壮, 肖立新, 陈志坚 2015 物理学报 64 038802Google Scholar

    Ding X J, Ni L, Ma S B, Ma Y Z, Xiao L X, Chen Z J 2015 Acta Phys. Sin. 64 038802Google Scholar

    [25]

    Yang J, Siempelkamp B D, Mosconi E, de Angelis F, Kelly T 2015 Chem. Mater. 27 4229Google Scholar

    [26]

    Savenije T J, Huijser A, Vermeulen M J, Katoh R 2008 Chem. Phys. Lett. 461 93Google Scholar

    [27]

    Jiang Q, Zhang L, Wang H, Yang X, Meng J, Liu H, Yin Z, Wu J, Zhang X, You J 2016 Nat. Energy 2 16177

    [28]

    Simmons J G 1965 Phys. Rev. Lett. 15 967Google Scholar

    [29]

    Wu I W, Chen Y H, Wang P S, Wang C G, Hsu S H, Wu C I 2010 Appl. Phys. Lett. 96 013301Google Scholar

    [30]

    Ma D H, Zhang W J, Jiang Z Y, Ma Q, Ma X B, Fan Z Q, Song D Y, Zhang L 2017 Sol. Energy 144 808Google Scholar

    [31]

    Ren Q, Li S, Zhu S, Ren H, Yao X, Wei C, Yan B, Zhao Y, Zhao X 2018 Sol. Energy Mater. Sol. Cells 185 124Google Scholar

    [32]

    Stoumpos C C, Malliakas C D, Peters J A, Liu Z, Sebastian M, Im J, Chasapis T C, Wibowo A C, Chung D Y, Freeman A J, Wessels B W, Kanatzidis M G 2013 Cryst. Growth Des. 13 2722Google Scholar

    [33]

    Lee S, Park J H, Nam Y S, Lee B R, Zhao B, Nuzzo D D, Jung E D, Jeon H, Kim J Y, Jeong H Y, Friend R H, Song M H 2018 ACS Nano 12 3417Google Scholar

    [34]

    Zhao L, Lee K M, Roh K, Khan S U Z, Rand B P 2019 Adv. Mater. 31 1805836

    [35]

    Shi H, Du M H 2014 Phys. Rev. B 90 174103Google Scholar

    [36]

    Lin K, Xing J, Quan L N, de Arquer F P G, Gong X, Lu J, Xie L, Zhao W, Zhang D, Yan C, Li W, Liu X, Lu Y, Kirman J, Sargent E H, Xiong Q, Wei Z 2018 Nature 562 245Google Scholar

    [37]

    Zou W, Li R, Zhang S, Liu Y, Wang N, Cao Y, Miao Y, Xu M, Guo Q, Di D, Zhang L, Yi C, Gao F, Friend R H, Wang J, Huang W 2018 Nat. Commun. 9 608Google Scholar

  • 图 1  能级结构与器件结构 (a) PeLEDs器件各层材料的能级结构图; (b) PeLEDs器件结构图

    Fig. 1.  Energy-level diagram and device structure: (a) band alignment of each functional layer; (b) structure diagram of PeLEDs device.

    图 2  不同衬底对钙钛矿薄膜的影响 (a)不同衬底表面的原子力显微镜图; (b)不同衬底上生长的钙钛矿薄膜X射线衍射图; (c)不同衬底上生长的钙钛矿薄膜PL光谱图

    Fig. 2.  Influence of different substrates on perovskite films: (a) Atomic force microscopy images of different substrate surfaces; (b) X-ray diffraction patterns of perovskite films on different substrates; (c) photoluminescence spectra of perovskite films on different substrates.

    图 3  钙钛矿成膜工艺 (a)三种钙钛矿薄膜制备工艺及对应的原子力显微镜图和实物图; (b)三种工艺下钙钛矿薄膜表面的扫描电子显微镜图

    Fig. 3.  Synthesis of perovskite film: (a) Different fabrication processes of perovskite films and the corresponding atomic force microscopy images and photographs; (b) planar scanning electron microscopy images of the perovskite films based on different fabrication processes.

    图 4  钙钛矿薄膜的光学性能表征 (a)不同浓度的MABr下, 退火前后钙钛矿薄膜的PLQY变化; (b)钙钛矿薄膜的吸收度; (c)归一化的PL谱

    Fig. 4.  Optical characterization of perovskite films: (a) PLQY of perovskite films before and after annealing at different concentrations of MABr; (b) absorbance spectra of perovskite films; (c) normalized PL spectra of perovskite films.

    图 5  钙钛矿薄膜在n-nc-SiOx:H基底下的TRPL图 (a)不加PMA时, 不同MABr浓度下钙钛矿TRPL图; (b)加入PMA时, 不同MABr浓度下钙钛矿TRPL图

    Fig. 5.  TRPL spectra of perovskite films on n-nc-SiOx:H: (a) TRPL spectra of perovskite films at different MABr concentrations without PMA additive; (b) TRPL spectra of perovskite films at different MABr concentrations with PMA additive.

    图 6  PeLEDs的电致发光表现 (a)器件的电流密度、光强随电压的变化; (b)器件的EQE随电流密度的变化; (c)器件的EQE随电压的变化; (d)器件发光对应的CIE坐标

    Fig. 6.  Electroluminescence of PeLEDs: (a) Current density and luminance of the device as a function of voltage; (b) EQE of the device as a function of current density; (c) EQE of the device as a function of voltage; (d) the corresponding CIE coordinate.

    表 1  基于两种不同电子注入层的PeLEDs器件性能的比较

    Table 1.  Performance of PeLEDs based on different electron injection layers.

    电子注入层Lmax/cd·m–2CE/cd·A–1EQE/%
    n-nc-Si:H6500.40.1
    n-nc-SiOx:H21001.370.43
    下载: 导出CSV
  • [1]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [2]

    Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341Google Scholar

    [3]

    Jeon N J, Noh J H, Yang W S, Kim Y C, Ryu S, Seo J, Seok S I 2015 Nature 517 476Google Scholar

    [4]

    Tan H, Jain A, Voznyy O, Lan X, DeArquer F P G, Fan J Z, Bermudez R Q, Yuan M, Zhang B, Zhao Y, Fan F, Li P, Quan L N, Zhao Y, Lu Z, Yang Z, Hoogland S, Sargent E H 2017 Science 355 722Google Scholar

    [5]

    姚鑫, 丁艳丽, 张晓丹, 赵颖 2015 物理学报 64 038805Google Scholar

    Yao X, Ding Y L, Zhang X D, Zhao Y 2015 Acta Phys. Sin. 64 038805Google Scholar

    [6]

    Protesescu L, Yakunin S, Bodnarchuk M I, Krieg F, Caputo R, Hendon C H, Yang R X, Walsh A, Kovalenko M V 2015 Nano Lett. 15 3692Google Scholar

    [7]

    Chondroudis K, Mitzi D B 1999 Chem. Mater. 11 3028Google Scholar

    [8]

    Tan Z K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M, Credgington D, Hanusch F, Bein T, Snaith H J, Friend R H 2014 Nat. Nanotechnol. 9 687Google Scholar

    [9]

    Song J, Li J, Xu L, Li J, Zhang F, Han B, Shan Q, Zeng H 2018 Adv. Mater. 30 1800764Google Scholar

    [10]

    Xiao Z, Kerner R A, Zhao L, Tran N L, Lee K M, Koh T W, Scholes G D, Rand B P 2017 Nat. Photon. 11 108Google Scholar

    [11]

    Yang X, Zhang X, Deng J, Chu Z, Jiang Q, Meng J, Wang P, Zhang L, Yin Z, You J 2018 Nat. Commun. 9 570Google Scholar

    [12]

    Lu M, Zhang X, Bai X, Wu H, Shen X, Zhang Y, Zhang W, Zheng W, Song H, Yu W W, Rogach A L 2018 ACS Energy Lett. 3 1571Google Scholar

    [13]

    Chiba T, Hoshi K, Pu Y J, Takeda Y, Hayashi Y, Ohisa S, Kawata S, Kido J 2017 ACS Appl. Mater. Interfaces 9 18054Google Scholar

    [14]

    Lee J W, Choi Y J, Yang J M, Ham S, Jeon S K, Lee J Y, Song Y H, Ji E K, Yoon D H, Seo S, Shin H, Han G S, Jung H S, Kim D, Park N G 2017 ACS Nano 11 3311Google Scholar

    [15]

    Yu J C, Kim D B, Baek G, Lee B R, Jung E D, Lee S, Chu J H, Lee D K, Choi K J, Cho S, Song M H 2015 Adv. Mater. 27 3492Google Scholar

    [16]

    Wang J, Wang N, Jin Y, Si J, Tan Z K, Du H, Cheng L, Dai X, Bai S, He H, Ye Z, Lai M L, Friend R H, Huang W 2015 Adv. Mater. 27 2311Google Scholar

    [17]

    Zhou Y, Fuentes-Hernandez C, Shim J, Meyer J, Giordano A J, Li H, Winget P, Papadopoulos T, Cheun H, Kim J, Fenoll M, Dindar A, Haske W, Najafabadi E, Khan T M, Sojoudi H, Barlow S, Graham S, Bredas J L, Marder S R, Kahn A, Kippelen B 2012 Science 336 327Google Scholar

    [18]

    Wang N, Cheng L, Si J, Jin Y, Wang J, Huang W 2016 Appl. Phys. Lett. 108 141102Google Scholar

    [19]

    Shi Z, Li Y, Zhang Y, Chen Y, Li X, Wu D, Xu T, Shan C, Du G 2017 Nano Lett. 17 313

    [20]

    Zhang L, Yang X, Jiang Q, Wang P, Yin Z, Zhang X, Tan H, Yang Y M, Wei M, Sutherland B R, Sargent E H, You J 2017 Nat. Commun. 8 15640Google Scholar

    [21]

    Chiba T, Hayashi Y, Ebe H, Hoshi K, Sato J, Sato S, Pu Y J, Ohisa S, Kido J 2018 Nat. Photon. 12 681Google Scholar

    [22]

    Saliba M, Matsui T, Domanski K, Seo J Y, Ummadisingu A, Zakeeruddin S M, Correa-Baena J P, Tress W R, Abate A, Hagfeldt A, Grätzel M 2016 Science 354 206Google Scholar

    [23]

    Zou Y, Ban M, Yang Y, Bai S, Wu C, Han Y, Wu T, Tan Y, Huang Q, Gao X, Song T, Zhang Q, Sun B 2018 ACS Appl. Mater. Interfaces 10 24320Google Scholar

    [24]

    丁雄傑, 倪露, 马圣博, 马英壮, 肖立新, 陈志坚 2015 物理学报 64 038802Google Scholar

    Ding X J, Ni L, Ma S B, Ma Y Z, Xiao L X, Chen Z J 2015 Acta Phys. Sin. 64 038802Google Scholar

    [25]

    Yang J, Siempelkamp B D, Mosconi E, de Angelis F, Kelly T 2015 Chem. Mater. 27 4229Google Scholar

    [26]

    Savenije T J, Huijser A, Vermeulen M J, Katoh R 2008 Chem. Phys. Lett. 461 93Google Scholar

    [27]

    Jiang Q, Zhang L, Wang H, Yang X, Meng J, Liu H, Yin Z, Wu J, Zhang X, You J 2016 Nat. Energy 2 16177

    [28]

    Simmons J G 1965 Phys. Rev. Lett. 15 967Google Scholar

    [29]

    Wu I W, Chen Y H, Wang P S, Wang C G, Hsu S H, Wu C I 2010 Appl. Phys. Lett. 96 013301Google Scholar

    [30]

    Ma D H, Zhang W J, Jiang Z Y, Ma Q, Ma X B, Fan Z Q, Song D Y, Zhang L 2017 Sol. Energy 144 808Google Scholar

    [31]

    Ren Q, Li S, Zhu S, Ren H, Yao X, Wei C, Yan B, Zhao Y, Zhao X 2018 Sol. Energy Mater. Sol. Cells 185 124Google Scholar

    [32]

    Stoumpos C C, Malliakas C D, Peters J A, Liu Z, Sebastian M, Im J, Chasapis T C, Wibowo A C, Chung D Y, Freeman A J, Wessels B W, Kanatzidis M G 2013 Cryst. Growth Des. 13 2722Google Scholar

    [33]

    Lee S, Park J H, Nam Y S, Lee B R, Zhao B, Nuzzo D D, Jung E D, Jeon H, Kim J Y, Jeong H Y, Friend R H, Song M H 2018 ACS Nano 12 3417Google Scholar

    [34]

    Zhao L, Lee K M, Roh K, Khan S U Z, Rand B P 2019 Adv. Mater. 31 1805836

    [35]

    Shi H, Du M H 2014 Phys. Rev. B 90 174103Google Scholar

    [36]

    Lin K, Xing J, Quan L N, de Arquer F P G, Gong X, Lu J, Xie L, Zhao W, Zhang D, Yan C, Li W, Liu X, Lu Y, Kirman J, Sargent E H, Xiong Q, Wei Z 2018 Nature 562 245Google Scholar

    [37]

    Zou W, Li R, Zhang S, Liu Y, Wang N, Cao Y, Miao Y, Xu M, Guo Q, Di D, Zhang L, Yi C, Gao F, Friend R H, Wang J, Huang W 2018 Nat. Commun. 9 608Google Scholar

  • [1] 赵建铖, 吴朝兴, 郭太良. 无注入型发光二极管的载流子输运模型研究. 物理学报, 2023, 72(4): 048503. doi: 10.7498/aps.72.20221831
    [2] 余毅, 安治东, 蔡晓艺, 郭明磊, 敬承斌, 李艳青. 锡基钙钛矿的研究进展及其在发光二极管中的应用. 物理学报, 2021, 70(4): 048503. doi: 10.7498/aps.70.20201284
    [3] 李雪, 曹宝龙, 王明昊, 冯增勤, 陈淑芬. 基于改性空穴注入层与复合发光层的高效钙钛矿发光二极管. 物理学报, 2021, 70(4): 048502. doi: 10.7498/aps.70.20201379
    [4] 吴家龙, 窦永江, 张建凤, 王浩然, 杨绪勇. 溶液法制备的金属掺杂氧化镍空穴注入层在钙钛矿发光二极管上的应用. 物理学报, 2020, 69(1): 018101. doi: 10.7498/aps.69.20191269
    [5] 樊钦华, 祖延清, 李璐, 代锦飞, 吴朝新. 发光铅卤钙钛矿纳米晶稳定性的研究进展. 物理学报, 2020, 69(11): 118501. doi: 10.7498/aps.69.20191767
    [6] 吴海妍, 唐建新, 李艳青. 基于缺陷态钝化的高效稳定蓝光钙钛矿发光二极管. 物理学报, 2020, 69(13): 138502. doi: 10.7498/aps.69.20200566
    [7] 陈佳楣, 苏杭, 李婉, 张立来, 索鑫磊, 钦敬, 朱坤, 李国龙. 钙钛矿发光二极管光提取性能增强的研究进展. 物理学报, 2020, 69(21): 218501. doi: 10.7498/aps.69.20200755
    [8] 黎振超, 陈梓铭, 邹广锐兴, 叶轩立, 曹镛. 有机添加剂在金属卤化钙钛矿发光二极管中的应用. 物理学报, 2019, 68(15): 158505. doi: 10.7498/aps.68.20190307
    [9] 瞿子涵, 储泽马, 张兴旺, 游经碧. 高效绿光钙钛矿发光二极管研究进展. 物理学报, 2019, 68(15): 158504. doi: 10.7498/aps.68.20190647
    [10] 时强, 李路平, 张勇辉, 张紫辉, 毕文刚. GaN/InxGa1-xN型最后一个量子势垒对发光二极管内量子效率的影响. 物理学报, 2017, 66(15): 158501. doi: 10.7498/aps.66.158501
    [11] 封波, 邓彪, 刘乐功, 李增成, 冯美鑫, 赵汉民, 孙钱. 等离子体表面处理对硅衬底GaN基蓝光发光二极管内置n型欧姆接触的影响. 物理学报, 2017, 66(4): 047801. doi: 10.7498/aps.66.047801
    [12] 贾博仑, 邓玲玲, 陈若曦, 张雅男, 房旭民. 利用Ag@SiO2纳米粒子等离子体共振增强发光二极管辐射功率的数值研究. 物理学报, 2017, 66(23): 237801. doi: 10.7498/aps.66.237801
    [13] 张超宇, 熊传兵, 汤英文, 黄斌斌, 黄基锋, 王光绪, 刘军林, 江风益. 图形硅衬底GaN基发光二极管薄膜去除衬底及AlN缓冲层后单个图形内微区发光及 应力变化的研究. 物理学报, 2015, 64(18): 187801. doi: 10.7498/aps.64.187801
    [14] 陈湛旭, 万巍, 何影记, 陈耿炎, 陈泳竹. 利用单层密排的纳米球提高发光二极管的出光效率. 物理学报, 2015, 64(14): 148502. doi: 10.7498/aps.64.148502
    [15] 毛清华, 刘军林, 全知觉, 吴小明, 张萌, 江风益. p型层结构与掺杂对GaInN发光二极管正向电压温度特性的影响. 物理学报, 2015, 64(10): 107801. doi: 10.7498/aps.64.107801
    [16] 陈焕庭, 吕毅军, 高玉琳, 陈忠, 庄榕榕, 周小方, 周海光. 功率型GaN基发光二极管芯片表面温度及亮度分布的物理特性研究. 物理学报, 2012, 61(16): 167104. doi: 10.7498/aps.61.167104
    [17] 李水清, 汪莱, 韩彦军, 罗毅, 邓和清, 丘建生, 张洁. 氮化镓基发光二极管结构中粗化 p型氮化镓层的新型生长方法. 物理学报, 2011, 60(9): 098107. doi: 10.7498/aps.60.098107
    [18] 王光绪, 陶喜霞, 熊传兵, 刘军林, 封飞飞, 张萌, 江风益. 牺牲Ni退火对硅衬底GaN基发光二极管p型接触影响的研究. 物理学报, 2011, 60(7): 078503. doi: 10.7498/aps.60.078503
    [19] 熊传兵, 江风益, 王 立, 方文卿, 莫春兰. 硅衬底垂直结构InGaAlN多量子阱发光二极管电致发光谱的干涉现象研究. 物理学报, 2008, 57(12): 7860-7864. doi: 10.7498/aps.57.7860
    [20] 刘乃鑫, 王怀兵, 刘建平, 牛南辉, 韩 军, 沈光地. p型氮化镓的低温生长及发光二极管器件的研究. 物理学报, 2006, 55(3): 1424-1429. doi: 10.7498/aps.55.1424
计量
  • 文章访问数:  10266
  • PDF下载量:  118
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-26
  • 修回日期:  2019-04-08
  • 上网日期:  2019-06-06
  • 刊出日期:  2019-06-20

/

返回文章
返回