搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

永磁体辅助下单畴GdBCO超导体和永磁体之间的磁悬浮力研究

马俊 杨万民 李国政 程晓芳 郭晓丹

引用本文:
Citation:

永磁体辅助下单畴GdBCO超导体和永磁体之间的磁悬浮力研究

马俊, 杨万民, 李国政, 程晓芳, 郭晓丹

Effects of additional permanent magnet on the levitation force of single domain GdBCO bulk superconductor

Ma Jun, Yang Wan-Min, Li Guo-Zheng, Cheng Xiao-Fang, Guo Xiao-Dan
PDF
导出引用
  • 通过对永磁体辅助下单畴GdBCO超导体和圆柱形永磁体在液氮温度、零场冷、轴对称情况下磁悬浮力的测量,研究了两种不同组态下辅助永磁体对超导体磁悬浮力特性的影响.实验结果表明,当长方体辅助永磁体水平磁化、且磁极N指向超导体时,超导体的最大磁悬浮力从没有引入辅助永磁体的29.8 N增加到61.5 N,增加为没有引入辅助永磁体时的206%.当长方体辅助永磁体的N极与圆柱形永磁体的N极反平行时,超导体的最大磁悬浮力从没有引入辅助永磁体的29.8 N减小到19.6 N,减小为无辅助永磁体时的65.8%.这些研究结果说明,通过科学合理地设计超导体和永磁体的组合方式,能有效地提高超导体的磁悬浮力.该研究结果对促进超导体的应用具有重要的指导意义.
    Effects of additional permanent magnet on the levitation force of a single domain GdBCO bulk superconductor have been investigated with a cylindrical permanent magnet in their coaxial configuration under zero field cooled state at liquid nitrogen temperature. The magnetic polarity N of cylindrical permanent magnet is pointed to the GdBCO bulk superconductor, and the two additional permanent magnet of rectangular parallelepiped shape are fixed on two sides of the GdBCO bulk superconductor in different arrangments. It was found that the levitation force can be improved to about 61.5 N, which is more than 2 times higher than that (29.8 N) of the system without the additional permanent magnet, when the magnetic polarity N of two additional permanent magnets points to the GdBCO bulk superconductor in horizontal direction. The levitation force is reduced to 19.6N, which is about 65.8% of the levitation force 29.8N of the system without the additional permanent magnets, when the magnetic polarity N of two additional permanent magnet are antiparallel to the magnetic polarity N of the cylindrical permanent magnet. The results indicate that the levitation force of high temperature bulk superconductors can be effectively improved by introducing additional permanent magnet based on reasonably designing the system configuration, which is very important during the practical design and applications of superconducting magnetic levitation systems.
    • 基金项目: 国家自然科学基金(批准号:50872079)、国家高技术研究发展计划(批准号:2007AA03Z241)和中央高校基本科研业务费专项资金(批准号:GK200901017)资助的课题.
    [1]

    John R H, Shaul H,Tomotake M 2005 Supercond Sci. Tech. 18 S1

    [2]

    Werfel F N, Floegel-Delor U,Rothfeld R 2005 Supercond Sci. Tech. 18 S19

    [3]

    Miyagawa Y, Kameno H, Takahata R 1999 IEEE Trans. Appl. Supercond. 9 996

    [4]

    Ohashi S, Tamura S, Hirane Y 1999 IEEE Trans. Appl. Supercond. 9 988

    [5]

    Nuria D V, Alvaro S, Carles N 2008 Appl.Phys.Lett. 92 042505

    [6]

    Wang J S, Wang S Y 2002 Physica C 378—381 809

    [7]

    Sha J J, Yao Z W 2000 Acta Phys.Sin. 49 1356 (in Chinese)[沙建军、姚仲文 2000 物理学报 49 1356]

    [8]

    Feng Y, Zhou L,Yang W M, Zhang C P 2000 Acta Phys.Sin. 49 146 (in Chinese) [冯 勇、周 廉、杨万民、张翠萍 2000 物理学报 49 146]

    [9]

    Li G Z,Yang W M 2010 Acta Phys.Sin.59 5028(in Chinese) [李国政、杨万民 2010 物理学报 59 5028]

    [10]

    Yang W M, Zhou L, Feng Y 1999 Chin. Phys. 8 533

    [11]

    Zhu M, Ren Z Y, Wang S Y 2002 Chin. J. Low Temp. Phys. 24 213[朱 敏、任仲友、王素玉 2002 低温物理学报24 213]

    [12]

    Hu L F, Zhou L, Zhang P X 2001 Acta Phys.Sin. 50 1359 (in Chinese)[胡立发、周 廉、张平祥 2001 物理学报 50 1359]

    [13]

    He G L, He Y W, Zhao Z G, Liu M 2006 Acta Phys.Sin. 55 839 (in Chinese) [何国良、贺延文、赵志刚、刘 楣 2006 物理学报 55 839]

    [14]

    Liu M X 2011 Acta Phys.Sin. 60 017401(in Chinese) [刘敏霞2011 物理学报 60 017401]

    [15]

    Carles N, Alvaro S 2001 Phys.Rev.B 64 214507

    [16]

    Zhang F Y, Huang S L, Cao X W 1989 Acta Phys.Sin. 38 830 (in Chinese)[张凤英、黄孙利、曹效文 1989 物理学报38 830]

    [17]

    Nuria D V, Alvaro S, Enric P 2007 Appl. Phys.Lett. 90 042503

    [18]

    Alvaro S, Carles N 2001 Phys.Rev.B 64 214506

    [19]

    Wang F, Sun G Q, Kong X M 2001 Acta Phys.Sin. 50 1590 (in Chinese)[王 峰、孙国庆、孔祥木 2001 物理学报50 1590]

    [20]

    Yang W M, Zhu S H, Wu X L 2009 Cryogenics 49 299

    [21]

    Ren Z Y, Oliver de Hass, Wang X R 2003 Chin. J. Low Temp. Phys.25(suppl)182 [任仲友、Oliver de Hass、王晓融 2003 低温物理学报 25(增)182]

    [22]

    Yang W M, Zhou L, Feng Y 2002 Brazilian Journal of Physics 32 763

    [23]

    Yang W M, Zhou L, Feng Y 2001 Physics C 354 5

    [24]

    Zhang X Y, Zhou J, Zhou Y H 2009 Supercond Sci Tech. 22 1

    [25]

    Deng Z, Zheng J, Song H 2007 IEEE Trans. Appl. Supercond. 17 2071

    [26]

    He Q Y, Wang J S, Wang S Y 2009 Physica C 469 91

    [27]

    Tsuda M, Kawasaki T, Yagai T 2008 J. Phys. 97 1

    [28]

    Cheng X F, Yang W M, Li G Z 2010 Chin. J. Low Temp. Phys. 32 150 [程晓芳、杨万民、李国政2010低温物理学报32 150]

    [29]

    Yang W M, Chao X X, Shu Z B 2006 Physica C 445—448 347

  • [1]

    John R H, Shaul H,Tomotake M 2005 Supercond Sci. Tech. 18 S1

    [2]

    Werfel F N, Floegel-Delor U,Rothfeld R 2005 Supercond Sci. Tech. 18 S19

    [3]

    Miyagawa Y, Kameno H, Takahata R 1999 IEEE Trans. Appl. Supercond. 9 996

    [4]

    Ohashi S, Tamura S, Hirane Y 1999 IEEE Trans. Appl. Supercond. 9 988

    [5]

    Nuria D V, Alvaro S, Carles N 2008 Appl.Phys.Lett. 92 042505

    [6]

    Wang J S, Wang S Y 2002 Physica C 378—381 809

    [7]

    Sha J J, Yao Z W 2000 Acta Phys.Sin. 49 1356 (in Chinese)[沙建军、姚仲文 2000 物理学报 49 1356]

    [8]

    Feng Y, Zhou L,Yang W M, Zhang C P 2000 Acta Phys.Sin. 49 146 (in Chinese) [冯 勇、周 廉、杨万民、张翠萍 2000 物理学报 49 146]

    [9]

    Li G Z,Yang W M 2010 Acta Phys.Sin.59 5028(in Chinese) [李国政、杨万民 2010 物理学报 59 5028]

    [10]

    Yang W M, Zhou L, Feng Y 1999 Chin. Phys. 8 533

    [11]

    Zhu M, Ren Z Y, Wang S Y 2002 Chin. J. Low Temp. Phys. 24 213[朱 敏、任仲友、王素玉 2002 低温物理学报24 213]

    [12]

    Hu L F, Zhou L, Zhang P X 2001 Acta Phys.Sin. 50 1359 (in Chinese)[胡立发、周 廉、张平祥 2001 物理学报 50 1359]

    [13]

    He G L, He Y W, Zhao Z G, Liu M 2006 Acta Phys.Sin. 55 839 (in Chinese) [何国良、贺延文、赵志刚、刘 楣 2006 物理学报 55 839]

    [14]

    Liu M X 2011 Acta Phys.Sin. 60 017401(in Chinese) [刘敏霞2011 物理学报 60 017401]

    [15]

    Carles N, Alvaro S 2001 Phys.Rev.B 64 214507

    [16]

    Zhang F Y, Huang S L, Cao X W 1989 Acta Phys.Sin. 38 830 (in Chinese)[张凤英、黄孙利、曹效文 1989 物理学报38 830]

    [17]

    Nuria D V, Alvaro S, Enric P 2007 Appl. Phys.Lett. 90 042503

    [18]

    Alvaro S, Carles N 2001 Phys.Rev.B 64 214506

    [19]

    Wang F, Sun G Q, Kong X M 2001 Acta Phys.Sin. 50 1590 (in Chinese)[王 峰、孙国庆、孔祥木 2001 物理学报50 1590]

    [20]

    Yang W M, Zhu S H, Wu X L 2009 Cryogenics 49 299

    [21]

    Ren Z Y, Oliver de Hass, Wang X R 2003 Chin. J. Low Temp. Phys.25(suppl)182 [任仲友、Oliver de Hass、王晓融 2003 低温物理学报 25(增)182]

    [22]

    Yang W M, Zhou L, Feng Y 2002 Brazilian Journal of Physics 32 763

    [23]

    Yang W M, Zhou L, Feng Y 2001 Physics C 354 5

    [24]

    Zhang X Y, Zhou J, Zhou Y H 2009 Supercond Sci Tech. 22 1

    [25]

    Deng Z, Zheng J, Song H 2007 IEEE Trans. Appl. Supercond. 17 2071

    [26]

    He Q Y, Wang J S, Wang S Y 2009 Physica C 469 91

    [27]

    Tsuda M, Kawasaki T, Yagai T 2008 J. Phys. 97 1

    [28]

    Cheng X F, Yang W M, Li G Z 2010 Chin. J. Low Temp. Phys. 32 150 [程晓芳、杨万民、李国政2010低温物理学报32 150]

    [29]

    Yang W M, Chao X X, Shu Z B 2006 Physica C 445—448 347

  • [1] 邓晨华, 于忠海, 王宇涛, 孔森, 周超, 杨森. Ti掺杂Nd2Fe14B/α-Fe纳米双相复合永磁体晶化动力学. 物理学报, 2023, 72(2): 027501. doi: 10.7498/aps.72.20221479
    [2] 苏徐昆, 冷永刚, 张雨阳, 范胜波. 单面双极性磁铁空间磁感应强度模型. 物理学报, 2021, 70(16): 167501. doi: 10.7498/aps.70.20210448
    [3] 崔勇, 吴明, 宋晓, 黄玉平, 贾琦, 陶云飞, 王琛. 小型低频发射天线的研究进展. 物理学报, 2020, 69(20): 208401. doi: 10.7498/aps.69.20200792
    [4] 李子亮, 师振莲, 王鹏军. 采用永磁铁的钠原子二维磁光阱的设计和研究. 物理学报, 2020, 69(12): 126701. doi: 10.7498/aps.69.20200266
    [5] 施伟, 周强, 刘斌. 基于旋转永磁体的超低频机械天线电磁特性分析. 物理学报, 2019, 68(18): 188401. doi: 10.7498/aps.68.20190339
    [6] 李柱柏, 李赟, 秦渊, 张雪峰, 沈保根. 稀土永磁体及复合磁体反磁化过程和矫顽力. 物理学报, 2019, 68(17): 177501. doi: 10.7498/aps.68.20190364
    [7] 马俊, 陈章龙, 县涛, 魏学刚, 杨万民, 陈森林, 李佳伟. 空心圆柱形永磁体内径对单畴GdBCO超导块材磁悬浮力的影响. 物理学报, 2018, 67(7): 077401. doi: 10.7498/aps.67.20172418
    [8] 邓东阁, 武新军, 左苏. 基于永磁恒定磁场激励的起始磁化曲线测量. 物理学报, 2016, 65(14): 148101. doi: 10.7498/aps.65.148101
    [9] 王妙, 杨万民, 杨芃焘, 王小梅, 张明, 胡成西. BaO掺杂对单畴GdBCO超导块材性能的影响. 物理学报, 2016, 65(22): 227401. doi: 10.7498/aps.65.227401
    [10] 何永周. 永磁体外部磁场的不均匀性研究. 物理学报, 2013, 62(8): 084105. doi: 10.7498/aps.62.084105
    [11] 马俊, 杨万民, 王妙, 陈森林, 冯忠岭. 辅助永磁体磁化方式对单畴GdBCO超导块材捕获磁场分布及其磁悬浮力的影响. 物理学报, 2013, 62(22): 227401. doi: 10.7498/aps.62.227401
    [12] 王妙, 杨万民, 张晓菊, 唐艳妮, 王高峰. 不同粒径纳米Y2Ba4CuBiOy 相掺杂对TSIG法单畴YBCO超导块材性能的影响. 物理学报, 2012, 61(19): 196102. doi: 10.7498/aps.61.196102
    [13] 马俊, 杨万民, 李佳伟, 王妙, 陈森林. 辅助永磁体的引入方式对单畴GdBCO超导块材磁场分布及其磁悬浮力的影响. 物理学报, 2012, 61(13): 137401. doi: 10.7498/aps.61.137401
    [14] 李国政, 杨万民. 单畴GdBCO超导块材制备方法的改进及超导特性研究. 物理学报, 2011, 60(4): 047401. doi: 10.7498/aps.60.047401
    [15] 马俊, 杨万民. 条状永磁体的组合形式及间距对单畴GdBCO超导体磁悬浮力的影响. 物理学报, 2011, 60(7): 077401. doi: 10.7498/aps.60.077401
    [16] 刘桂雄, 徐晨, 张沛强, 吴庭万. 永磁体在磁流体中的磁力学建模及自悬浮位置可控性. 物理学报, 2009, 58(3): 2005-2010. doi: 10.7498/aps.58.2005
    [17] 张 然, 刘 颖, 高升吉, 谢 治, 涂铭旌. 添加Dy在快淬NdFeB永磁体中的作用. 物理学报, 2008, 57(1): 526-530. doi: 10.7498/aps.57.526
    [18] 张 然, 刘 颖, 李 军, 马毅龙, 高升吉, 涂铭旌. 添加Nb在快淬NdFeB永磁体中的作用研究. 物理学报, 2007, 56(1): 518-521. doi: 10.7498/aps.56.518
    [19] 成问好, 李卫, 李传健. Nb含量对烧结NbFeB永磁体磁性能及显微结构的影响. 物理学报, 2001, 50(1): 139-143. doi: 10.7498/aps.50.139
    [20] 新材料室. 液相烧结SmCo5永磁体磁滞回线与温度的关系. 物理学报, 1976, 25(6): 536-540. doi: 10.7498/aps.25.536
计量
  • 文章访问数:  8520
  • PDF下载量:  765
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-05-11
  • 修回日期:  2010-06-04
  • 刊出日期:  2011-01-05

/

返回文章
返回