搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

准经典轨线法研究交换反应H(D)+SH/SD的动力学性质

徐国亮 刘培 刘彦磊 张琳 刘玉芳

引用本文:
Citation:

准经典轨线法研究交换反应H(D)+SH/SD的动力学性质

徐国亮, 刘培, 刘彦磊, 张琳, 刘玉芳

A study of dynamic properties of exchange reaction H(D)+SH/SD by quasi-classical trajectory method

Xu Guo-Liang, Liu Pei, Liu Yan-Lei, Zhang Lin, Liu Yu-Fang
PDF
导出引用
  • 硫在氢气中的燃烧反应在气象化学、燃烧反应和大气污染中都扮演着重要的角色, 近年来一直受到广泛关注, 其逆反应也渐渐成为人们的研究对象. 以L 等得到的精确势能面(L S J, Zhang P Y, Han K L, He G Z 2012 J. Chem. Phys. 136 94308) 为基础, 用准经典轨线法对交换反应H(D)+SH/SD的动力学性质进行了研究. 计算了包括反应截面、速率常数、不透明函数、产物振动和转动分布等在内 的标量性质和包括产物散射方向、转动角动量定向和取向性质在内的矢量性质. 详细分析了碰撞能量和同位素效应对反应H(D)+SH/SD 的动力学性质的影响. 结果表明, 随着碰撞能量的增加, 反应截面逐渐增大, 产物的后向散射逐渐减弱, 产物转动角动量的取向和定向性质逐渐增强; 另外, 同位素效应对反应的动力学性质也有明显的影响. 以反应动力学性质和势能面为基础, 详细讨论了反应H(D)+SH/SD 的反应机制.
    Sulfur in hydrogen combustion reaction chemistry, which plays an important role in meteorology, combustion reactions, and atmospheric pollution, has been extensively investigated recently. And its reverse reaction has also been a research object gradually. The research in this paper is based on the exact potential energy surface (L S J, Zhang P Y, Han K L, He G Z 2012 J. Chem. Phys. 136 094308), with using the method of quasi-classical trajectory on the exchange reaction of H (D)+SH/SD dynamic properties. In this paper, the scalar properties are calculated, including the cross section, rate constant, opacity function, product vibrational, rotational distributions, product scattering direction, rotational angular momentum orientation, and alignment properties. In this paper, how the collision energy and the isotope affect the reaction H (D)+SH/SD kinetic properties is analyzed in detail. The results show that as collision energy increases, the reaction cross section increases, product backscatter weakens gradually while the product rotational angular momentum alignment and orientation nature strengthen gradually. In addition, the isotope effect has a significant influence on the reaction kinetics. The reaction mechanism which is shown in the title and based on the reaction kinetics and the potential energy surface, is also discussed in this paper.
    • 基金项目: 国家自然科学基金(批准号: 11274095)、河南省基础与前沿技术研究计划 (批准号: 122300410109)、河南省教育厅基础研究计划(批准号: 13A140550)、河南师范大学国家级科研项目培育基金(批准号: 2010PL02)和河南省高等学校科技创新团队支持计划(批准号: 13IRTSTHN016)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11274095), the Basic and Advanced Technology Research Program of Henan Province, China (Grant No. 122300410109), the Basic Research Program of the Education Bureau of Henan Province, China (Grant No. 13A140550), the Cultivating Foundation for National Level Program of Henan Normal University, China (Grant No. 2010PL02), and the Science and Technology Innovation Team Support Program of Institution of Higher Education of Henan Province, China (Grant No. 13IRTSTHN016).
    [1]

    Maiti B, Schatz G C, Lendvay G 2004 J. Chem. Phys. A 108 8772

    [2]

    Kłos J A, Dagdigian P J, Alexander M H 2007 J. Chem. Phys. 127 154321

    [3]

    Lara M, Jambrina P G, Varandas A, Launay J M, Aoiz F J 2011 J. Chem. Phys. 135 134313

    [4]

    Berteloite C, Lara M, Bergeat A, Le Picard S D, Dayou F, Hickson K M, Canosa A, Naulin C, Launay J M, Sims I R, Costes M 2010 Phys. Rev. Lett. 105 203201

    [5]

    Lee S H, Liu K 1998 Chem. Phys. Lett. 290 323

    [6]

    Martin R L 1983 J. Phys. Chem. 87 750

    [7]

    L S J, Zhang P Y, Han K L, He G Z 2012 J. Chem. Phys. 136 94308

    [8]

    Bai M M, Ge M H, Yang H, Zheng Y J 2012 Chin. Phys. B 21 123401

    [9]

    L S J, Zhang P Y, He G Z 2012 Chin. Phys. Lett. 29 073401

    [10]

    L S J, Zhang P Y, He G Z 2012 Chin. J. Chem. Phys. 25 291

    [11]

    Guo Y H, Zhang F Y, Ma H Z 2013 Commun. Comput. Chem. 1 99

    [12]

    Guo Y H, Zhang F Y, Ma H Z 2013 Chin. Phys. B 22 053402

    [13]

    Li Y M, Sun P 2011 Chem. Phys. 389 116

    [14]

    Braunstein M, Adler Golden S, Maiti B, Schatz G 2004 J. Chem. Phys. 120 4316

    [15]

    Zhang W Q, Cong S L, Zhang C H, Xu X S, Chen M D 2009 J. Phys. Chem. A 113 4192

    [16]

    Brando J, Rio C 2007 Mol. Phys. 105 359

    [17]

    Hou C Y, Li Y M 2009 Chem. Phys. 364 64

    [18]

    Jorfi M, Honvault P 2011 Phys. Chem. Chem. Phys. 13 8414

    [19]

    Kong H, Liu X G, Xu W W, Liang J J, Zhang Q G 2009 Acta Phys. Sin. 58 6926 (in Chinese) [孔浩, 刘新国, 许文武, 梁景娟, 张庆刚 2009 物理学报 58 6926]

    [20]

    Xia W Z, Yu Y J, Yang C L 2012 Acta Phys. Sin. 61 223401 (in Chinese) [夏文泽, 于永江, 杨传路 2012物理学报 61 223401]

    [21]

    Wang M L, Han K L, He G Z 1998 J. Phys. Chem. A 102 10204

    [22]

    Wang M L, Han K L, He G Z 1998 J. Chem. Phys. 109 5446

    [23]

    Chu T S, Han K L 2008 Phys. Chem. Chem. Phys. 10 2431

    [24]

    Li H, Zheng B, Meng Q T 2012 Acta Phys. Sin. 61 153401 (in Chinese) [李红, 郑斌, 孟庆田 2012 物理学报 61 153401]

    [25]

    Liu Y F, He X H, Shi D H, Sun J F 2011 Chin. Phys. B 20 078201

    [26]

    Chen T Y, Zhang W P, Wang X Q, Zhao G J 2009 Chem. Phys. 365 158

    [27]

    Wang W, Rosa C, Brandao J 2006 Chem. Phys. Lett. 418 250

    [28]

    Varandas A J C, Poveda L 2006 Theor. Chim. Acta 116 404

    [29]

    Aoiz F J, Brouard M, Enriquez P A 1996 J. Chem. Phys. 105 4964

    [30]

    Xu Z H, Zong F J 2011 Chin. Phys. B 20 063104

    [31]

    Liu Y F, Liu Y L, Liang B 2012 Chin. Phys. B 21 098201

  • [1]

    Maiti B, Schatz G C, Lendvay G 2004 J. Chem. Phys. A 108 8772

    [2]

    Kłos J A, Dagdigian P J, Alexander M H 2007 J. Chem. Phys. 127 154321

    [3]

    Lara M, Jambrina P G, Varandas A, Launay J M, Aoiz F J 2011 J. Chem. Phys. 135 134313

    [4]

    Berteloite C, Lara M, Bergeat A, Le Picard S D, Dayou F, Hickson K M, Canosa A, Naulin C, Launay J M, Sims I R, Costes M 2010 Phys. Rev. Lett. 105 203201

    [5]

    Lee S H, Liu K 1998 Chem. Phys. Lett. 290 323

    [6]

    Martin R L 1983 J. Phys. Chem. 87 750

    [7]

    L S J, Zhang P Y, Han K L, He G Z 2012 J. Chem. Phys. 136 94308

    [8]

    Bai M M, Ge M H, Yang H, Zheng Y J 2012 Chin. Phys. B 21 123401

    [9]

    L S J, Zhang P Y, He G Z 2012 Chin. Phys. Lett. 29 073401

    [10]

    L S J, Zhang P Y, He G Z 2012 Chin. J. Chem. Phys. 25 291

    [11]

    Guo Y H, Zhang F Y, Ma H Z 2013 Commun. Comput. Chem. 1 99

    [12]

    Guo Y H, Zhang F Y, Ma H Z 2013 Chin. Phys. B 22 053402

    [13]

    Li Y M, Sun P 2011 Chem. Phys. 389 116

    [14]

    Braunstein M, Adler Golden S, Maiti B, Schatz G 2004 J. Chem. Phys. 120 4316

    [15]

    Zhang W Q, Cong S L, Zhang C H, Xu X S, Chen M D 2009 J. Phys. Chem. A 113 4192

    [16]

    Brando J, Rio C 2007 Mol. Phys. 105 359

    [17]

    Hou C Y, Li Y M 2009 Chem. Phys. 364 64

    [18]

    Jorfi M, Honvault P 2011 Phys. Chem. Chem. Phys. 13 8414

    [19]

    Kong H, Liu X G, Xu W W, Liang J J, Zhang Q G 2009 Acta Phys. Sin. 58 6926 (in Chinese) [孔浩, 刘新国, 许文武, 梁景娟, 张庆刚 2009 物理学报 58 6926]

    [20]

    Xia W Z, Yu Y J, Yang C L 2012 Acta Phys. Sin. 61 223401 (in Chinese) [夏文泽, 于永江, 杨传路 2012物理学报 61 223401]

    [21]

    Wang M L, Han K L, He G Z 1998 J. Phys. Chem. A 102 10204

    [22]

    Wang M L, Han K L, He G Z 1998 J. Chem. Phys. 109 5446

    [23]

    Chu T S, Han K L 2008 Phys. Chem. Chem. Phys. 10 2431

    [24]

    Li H, Zheng B, Meng Q T 2012 Acta Phys. Sin. 61 153401 (in Chinese) [李红, 郑斌, 孟庆田 2012 物理学报 61 153401]

    [25]

    Liu Y F, He X H, Shi D H, Sun J F 2011 Chin. Phys. B 20 078201

    [26]

    Chen T Y, Zhang W P, Wang X Q, Zhao G J 2009 Chem. Phys. 365 158

    [27]

    Wang W, Rosa C, Brandao J 2006 Chem. Phys. Lett. 418 250

    [28]

    Varandas A J C, Poveda L 2006 Theor. Chim. Acta 116 404

    [29]

    Aoiz F J, Brouard M, Enriquez P A 1996 J. Chem. Phys. 105 4964

    [30]

    Xu Z H, Zong F J 2011 Chin. Phys. B 20 063104

    [31]

    Liu Y F, Liu Y L, Liang B 2012 Chin. Phys. B 21 098201

计量
  • 文章访问数:  2363
  • PDF下载量:  366
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-18
  • 修回日期:  2013-08-19
  • 刊出日期:  2013-11-05

准经典轨线法研究交换反应H(D)+SH/SD的动力学性质

  • 1. 河南师范大学物理与电子工程学院, 新乡 453007
    基金项目: 国家自然科学基金(批准号: 11274095)、河南省基础与前沿技术研究计划 (批准号: 122300410109)、河南省教育厅基础研究计划(批准号: 13A140550)、河南师范大学国家级科研项目培育基金(批准号: 2010PL02)和河南省高等学校科技创新团队支持计划(批准号: 13IRTSTHN016)资助的课题.

摘要: 硫在氢气中的燃烧反应在气象化学、燃烧反应和大气污染中都扮演着重要的角色, 近年来一直受到广泛关注, 其逆反应也渐渐成为人们的研究对象. 以L 等得到的精确势能面(L S J, Zhang P Y, Han K L, He G Z 2012 J. Chem. Phys. 136 94308) 为基础, 用准经典轨线法对交换反应H(D)+SH/SD的动力学性质进行了研究. 计算了包括反应截面、速率常数、不透明函数、产物振动和转动分布等在内 的标量性质和包括产物散射方向、转动角动量定向和取向性质在内的矢量性质. 详细分析了碰撞能量和同位素效应对反应H(D)+SH/SD 的动力学性质的影响. 结果表明, 随着碰撞能量的增加, 反应截面逐渐增大, 产物的后向散射逐渐减弱, 产物转动角动量的取向和定向性质逐渐增强; 另外, 同位素效应对反应的动力学性质也有明显的影响. 以反应动力学性质和势能面为基础, 详细讨论了反应H(D)+SH/SD 的反应机制.

English Abstract

参考文献 (31)

目录

    /

    返回文章
    返回