搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

航空发动机喷流起电机理建模与试验研究

朱利 刘尚合 郑会志 魏明 胡小锋 索罗金·安德烈

引用本文:
Citation:

航空发动机喷流起电机理建模与试验研究

朱利, 刘尚合, 郑会志, 魏明, 胡小锋, 索罗金·安德烈

Modeling and experimental study of the mechanism of electrification from aero-engine jet

Zhu Li, Liu Shang-He, Zheng Hui-Zhi, Wei Ming, Hu Xiao-Feng, Sorokin Andrey
PDF
导出引用
  • 以研究航空发动机喷流起电的机理以及喷流起电对飞行器整体带电特性的影响为目的, 对起电机理进行了建模和实验验证. 首先以流体运动方程为基础, 建立了航空发动机带电粒子浓度的动态仿真模型, 仿真得到发动机燃烧过程中的各类粒子浓度变化情况. 其次, 设计了用于发动机喷流起电探测的静电感应传感器, 对装配涡扇发动机的某型飞行器进行了地面试验测试, 得到了发动机启动、稳定运行、加速、减速、停止等状态的动态电位. 仿真及实验结果详细地描述了发动机喷流起电的机理, 以及喷流起电会使飞行器带负电的结论, 为进一步分析飞行器飞行过程中整体带电特性提供了指导.
    To investigate the mechanism of electrification from aero-engine jet and the electrification effect on the overall charging characteristics of vehicle, a simulation model of concentration of charged particles in aero-engine is build based on the equations of fluid motion. And concentration changes of various particles are simulated. To verify the simulation result, a special electrostatic induction sensor for detecting the electrification of engine jet is designed, according to the principle of the Faraday cup, to measure the dynamic potential when the turbofan engine starts, operates steadily, accelerates, decelerates and stops. The simulation and experimental results show that the aircraft is negatively charged by the electrification from aero-engine jet and the mechanism of electrification from aero-engine jet is described specifically. The research may provide a guidance to the further study on analyzing the overall charging characteristics of vehicle during the flight.
    • 基金项目: 国家自然科学基金(批准号: 61172035)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61172035).
    [1]

    Cao H F, Liu S H, Sun Y W, Yuan Q Y 2013 Acta Phys. Sin. 62 149402 (in Chinese) [曹鹤飞, 刘尚合, 孙永卫, 原青云 2013 物理学报 62 149402]

    [2]

    Cao H F, Liu S H, Sun Y W, Yuan Q Y 2013 Acta Phys. Sin. 62 119401 (in Chinese) [曹鹤飞, 刘尚合, 孙永卫, 原青云 2013 物理学报 62 119401]

    [3]

    Huang J G, Han J W 2010 Acta Phys. Sin. 59 2907 (in Chinese) [黄建国, 韩建伟 2010 物理学报 59 2907]

    [4]

    Tanner R L 1953 Radio Interference from Corona Discharges (California: Stanford Electronics Labs) pp3–23

    [5]

    Tanner R L, Nanevicz J E 1961 Precipitation Charging and Corona-generated Interference in Aircraft (California: Staford Electronics Labs) pp7–32

    [6]

    Tanner R L, Nanevicz J E 1964 P. IEEE 52 44

    [7]

    Nanevicz J E 1982 IEEE T. Electromagn. C. 2 203

    [8]

    Trichel G W 1938 Phys. Rev. 54 1078

    [9]

    Li Y L 2000 M. S. Dissertation (Beijing: Beijing Institute of Technology) (in Chinese) [李银林 2000 硕士学位论文 (北京: 北京理工大学)]

    [10]

    Nanevicz J E 1975 Conference on Lightning and Static Electricity (London: Royal Aeronautical Soc) p14

    [11]

    Yi M, Wang C 2007 High Voltage Eng. 33 115 (in Chinese) [易鸣, 王春 2007 高电压技术 33 115]

    [12]

    Trinks H, Haseborg J L T 1982 IEEE Trans. Aero. Elect. Syst. 3 268

    [13]

    Penner J, Lister D, Griggs D 1999 Aviation and the Global Atmosphere (Cambridge: The Press Syndicate of the University of Cambridge) pp15–29

    [14]

    Xu M Y, Zhang J P, Mi J C, Nathan G J, Kalt P A M 2013 Chin. Phys. B 22 034701

    [15]

    Vatazhin A B, Starik A M, Kholshchevnikova E K 2004 Fluid Dynamics 39 384

    [16]

    Guo H, Tang P 2013 Chin. Phys. B 22 054204

    [17]

    Li Y X, Chen X, Cui Z Z 2009 Trans. Beijing I. Technol. 27 1 (in Chinese) [李彦旭, 陈曦, 崔占忠 2009 北京理工大学学报 27 1]

    [18]

    Li Y H, Zuo H F, Wen Z H 2009 Acta Aeronaut. Et Astronaut. Sin. 30 604 (in Chinese) [李耀华, 左洪福, 文振华 2009 航空学报 30 604]

    [19]

    Powrie H, Smiths Aerosp, Hampshire, Novis A 2006 Aerospace Conference (Big Sky, MT: IEEE) p8

    [20]

    Gerhardt P, Homann K H 1990 Berichte der Bunsengesellschaft fr Physikalische Chemie 94 1086

    [21]

    Guo J, Goodings J M 2000 Chem. Phys. Lett. 329 393

    [22]

    Mätzing H 1991 Adv. Chem. Phys. 80 315

    [23]

    Sorokin A, Vancassel X, Mirabel P 2003 Atmos. Chem. Phys. 3 325

    [24]

    Liu S H, Wei G H, Liu Z C, Wu Z C, Li H J 1999 Electrostatic Theory and Protection (Beijing: Weapon Industry Press) p365 (in Chinese) [刘尚合, 魏光辉, 刘直承, 武占成, 李宏建 1999 静电理论与防护(北京: 兵器工业出版社)第365页]

    [25]

    Liu S H 1990 P. R. C. Patent CN90203259.3 (in Chinese) [刘尚合 1990 专利 CN90203259.3]

  • [1]

    Cao H F, Liu S H, Sun Y W, Yuan Q Y 2013 Acta Phys. Sin. 62 149402 (in Chinese) [曹鹤飞, 刘尚合, 孙永卫, 原青云 2013 物理学报 62 149402]

    [2]

    Cao H F, Liu S H, Sun Y W, Yuan Q Y 2013 Acta Phys. Sin. 62 119401 (in Chinese) [曹鹤飞, 刘尚合, 孙永卫, 原青云 2013 物理学报 62 119401]

    [3]

    Huang J G, Han J W 2010 Acta Phys. Sin. 59 2907 (in Chinese) [黄建国, 韩建伟 2010 物理学报 59 2907]

    [4]

    Tanner R L 1953 Radio Interference from Corona Discharges (California: Stanford Electronics Labs) pp3–23

    [5]

    Tanner R L, Nanevicz J E 1961 Precipitation Charging and Corona-generated Interference in Aircraft (California: Staford Electronics Labs) pp7–32

    [6]

    Tanner R L, Nanevicz J E 1964 P. IEEE 52 44

    [7]

    Nanevicz J E 1982 IEEE T. Electromagn. C. 2 203

    [8]

    Trichel G W 1938 Phys. Rev. 54 1078

    [9]

    Li Y L 2000 M. S. Dissertation (Beijing: Beijing Institute of Technology) (in Chinese) [李银林 2000 硕士学位论文 (北京: 北京理工大学)]

    [10]

    Nanevicz J E 1975 Conference on Lightning and Static Electricity (London: Royal Aeronautical Soc) p14

    [11]

    Yi M, Wang C 2007 High Voltage Eng. 33 115 (in Chinese) [易鸣, 王春 2007 高电压技术 33 115]

    [12]

    Trinks H, Haseborg J L T 1982 IEEE Trans. Aero. Elect. Syst. 3 268

    [13]

    Penner J, Lister D, Griggs D 1999 Aviation and the Global Atmosphere (Cambridge: The Press Syndicate of the University of Cambridge) pp15–29

    [14]

    Xu M Y, Zhang J P, Mi J C, Nathan G J, Kalt P A M 2013 Chin. Phys. B 22 034701

    [15]

    Vatazhin A B, Starik A M, Kholshchevnikova E K 2004 Fluid Dynamics 39 384

    [16]

    Guo H, Tang P 2013 Chin. Phys. B 22 054204

    [17]

    Li Y X, Chen X, Cui Z Z 2009 Trans. Beijing I. Technol. 27 1 (in Chinese) [李彦旭, 陈曦, 崔占忠 2009 北京理工大学学报 27 1]

    [18]

    Li Y H, Zuo H F, Wen Z H 2009 Acta Aeronaut. Et Astronaut. Sin. 30 604 (in Chinese) [李耀华, 左洪福, 文振华 2009 航空学报 30 604]

    [19]

    Powrie H, Smiths Aerosp, Hampshire, Novis A 2006 Aerospace Conference (Big Sky, MT: IEEE) p8

    [20]

    Gerhardt P, Homann K H 1990 Berichte der Bunsengesellschaft fr Physikalische Chemie 94 1086

    [21]

    Guo J, Goodings J M 2000 Chem. Phys. Lett. 329 393

    [22]

    Mätzing H 1991 Adv. Chem. Phys. 80 315

    [23]

    Sorokin A, Vancassel X, Mirabel P 2003 Atmos. Chem. Phys. 3 325

    [24]

    Liu S H, Wei G H, Liu Z C, Wu Z C, Li H J 1999 Electrostatic Theory and Protection (Beijing: Weapon Industry Press) p365 (in Chinese) [刘尚合, 魏光辉, 刘直承, 武占成, 李宏建 1999 静电理论与防护(北京: 兵器工业出版社)第365页]

    [25]

    Liu S H 1990 P. R. C. Patent CN90203259.3 (in Chinese) [刘尚合 1990 专利 CN90203259.3]

计量
  • 文章访问数:  2780
  • PDF下载量:  541
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-06
  • 修回日期:  2013-07-26
  • 刊出日期:  2013-11-05

航空发动机喷流起电机理建模与试验研究

  • 1. 军械工程学院静电与电磁防护研究所, 石家庄 050003;
  • 2. 中国人民解放军95927部队, 沧州 061000;
  • 3. 俄罗斯中央发动机研究所, 莫斯科 111116
    基金项目: 国家自然科学基金(批准号: 61172035)资助的课题.

摘要: 以研究航空发动机喷流起电的机理以及喷流起电对飞行器整体带电特性的影响为目的, 对起电机理进行了建模和实验验证. 首先以流体运动方程为基础, 建立了航空发动机带电粒子浓度的动态仿真模型, 仿真得到发动机燃烧过程中的各类粒子浓度变化情况. 其次, 设计了用于发动机喷流起电探测的静电感应传感器, 对装配涡扇发动机的某型飞行器进行了地面试验测试, 得到了发动机启动、稳定运行、加速、减速、停止等状态的动态电位. 仿真及实验结果详细地描述了发动机喷流起电的机理, 以及喷流起电会使飞行器带负电的结论, 为进一步分析飞行器飞行过程中整体带电特性提供了指导.

English Abstract

参考文献 (25)

目录

    /

    返回文章
    返回