搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

InAs(001)表面脱氧动力学分析

魏文喆 郭祥 刘珂 王一 罗子江 周清 王继红 丁召

引用本文:
Citation:

InAs(001)表面脱氧动力学分析

魏文喆, 郭祥, 刘珂, 王一, 罗子江, 周清, 王继红, 丁召

Thermodynamic study on two-step desorption of oxides on InAs(001) surface

Wei Wen-Zhe, Guo Xiang, Liu Ke, Wang Yi, Luo Zi-Jiang, Zhou Qing, Wang Ji-Hong, Ding Zhao
PDF
导出引用
  • 利用反射式高能电子衍射(RHEED)实时监控对InAs衬底进行两步完全脱氧的过程, 对比了有低(高)砷等效束流压强保护下采用两步法对InAs衬底缓慢长时间的高温脱氧过程. InAs衬底两步完全脱氧法的第一步为传统的缓慢升温脱氧方法, 第二步为高温In束流辅助脱氧方法. 衬底高温脱氧的RHEED衍射图样说明了高温In束流辅助脱氧最终完全清除传统的缓慢升温法无法去掉的残留氧化物, 通过脱氧完成同质外延生长后的扫描隧道显微镜图像, 说明高砷等效束流压强保护下的脱氧方法是可行的; 分析了高温In束流能完全清除衬底表面残余In氧化物的原理.
    Reflection high energy electron diffraction (RHEED) is used to monitor the two-step desorption of oxides on InAs(001) surface in the vacuum chamber, and the high temperature indium-assisted desorption processes of surface oxides under high arsenic pressure and low arsenic pressure are compared. The first step of two-step deoxidation method for InAs substrate is to heat the substrate slowly at high temperature. The second step is high temperature indium beam-assisted desorption of surface oxides. The RHEED patterns of sample at high temperature desorption of oxides show that the high temperature indium beam-assisted desorption of InAs surface oxide method could eventually clear residual oxide that the traditional slow heating method cannot remove. The scanning tunneling microscope images of sample after homogeneous epitaxial growth prove the viability of high-heat indium beam-assisted desorption of InAs surface oxide under high arsenic pressure. Finally, we analyse the mechanism of high-heat indium beam assisted desorption of surface oxides of substrate.
    • 基金项目: 国家自然科学基金(批准号: 60866001)和教育部博士点基金(批准号: 20105201110003)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 60866001) and the Specialties Doctor Degree Foundation of Ministry of Education of China (Grant No. 20105201110003).
    [1]

    Zhao F A, Zhang C L, Wang Z G 2004 Physics 33 249 (in Chinese) [赵凤瑷, 张春玲, 王占国 2004 物理 33 249]

    [2]

    Wang Z G 1998 World Sci-tech R D 20 51 (in Chinese) [王占国 1998 世界科技研究与发展 20 51]

    [3]

    L F, Wang Y B, Zhang W C, Zhao Q 2009 Semicond. Technol. 34 745 (in Chinese) [吕菲, 王云彪, 张伟才, 赵权 2009 半导体技术 34 745]

    [4]

    Liu B, Fang G Z, Zhang J M, Ma X Y, Xiao J W 2003 Laser J. 24 22 (in Chinese) [刘斌, 方高瞻, 张敬明, 马晓宇, 肖建伟 2003 激光杂志 24 22]

    [5]

    Schäfer M, Naumann W, Finnberg T, Hannss M, Dutschke A, Anton R 2000 Appl. Surf. Sci. 158 147

    [6]

    Zhou X, Luo Z J, Guo X, Zhang B C, Shang L T, Zhou Q, Deng C Y, Ding Z 2012 Chin. Phys. B 21 046103

    [7]

    Zhou X, Yang Z R, Luo Z J, He Y Q, He H, Wei J, Deng C Y, Ding Z 2011 Acta Phys. Sin. 60 016109 (in Chinese) [周勋, 杨再荣, 罗子江, 贺业全, 何浩, 韦俊, 邓朝勇, 丁召 2011 物理学报 60 016109]

    [8]

    Hollinger G, Skheyta-Kabbani R, Gendry M 1994 Phys. Rev. B 49 11159

    [9]

    Hu W J, Zhao Y W, Duan M L, Wang Y L, Wang J 2010 J. Synth. Cryst. 39 878 (in Chinese) [胡炜杰, 赵有文, 段满龙, 王应利, 王俊 2010 人工晶体学报 39 878]

    [10]

    Dean J A 1999 Lange’s Handbook of Chemistry (15th Ed) (New York: McGraw-Hill, Inc.) Section 4 4.45–4.47

    [11]

    Li L H, Linfield E H, Sharma R, Davies A G 2011 Appl. Phys. Lett. 99 061910

    [12]

    Mei L M, Chen L X 1984 J. Shandong Univ. (Natural Science) 1 28 (in Chinese) [梅良模, 陈立信 1984 山东大学学报(自然科学版) 1 28]

    [13]

    Valderrama-N J, Jacob K T 1977 Thermochimica Acta 21 215

    [14]

    LaBella V P, Ding Z, Bullock D W, Emery C, Thibado P M 2001 Int. J. Mod. Phys. B 15 2301

    [15]

    Shen J, Melitz W, Feldwinn D L, Lee S, Droopad R, Kummel A C 2010 ECS Trans. 33 105

    [16]

    Luo Z J, Zhou X, Wang J H, Guo X, Zhang B C, Zhou Q, Liu K, Ding Z 2013 Acta Phys. Sin. 62 036802 (in Chinese) [罗子江, 周勋, 王继红, 郭祥, 张毕禅, 周清, 刘珂, 丁召 2013 物理学报 62 036802]

  • [1]

    Zhao F A, Zhang C L, Wang Z G 2004 Physics 33 249 (in Chinese) [赵凤瑷, 张春玲, 王占国 2004 物理 33 249]

    [2]

    Wang Z G 1998 World Sci-tech R D 20 51 (in Chinese) [王占国 1998 世界科技研究与发展 20 51]

    [3]

    L F, Wang Y B, Zhang W C, Zhao Q 2009 Semicond. Technol. 34 745 (in Chinese) [吕菲, 王云彪, 张伟才, 赵权 2009 半导体技术 34 745]

    [4]

    Liu B, Fang G Z, Zhang J M, Ma X Y, Xiao J W 2003 Laser J. 24 22 (in Chinese) [刘斌, 方高瞻, 张敬明, 马晓宇, 肖建伟 2003 激光杂志 24 22]

    [5]

    Schäfer M, Naumann W, Finnberg T, Hannss M, Dutschke A, Anton R 2000 Appl. Surf. Sci. 158 147

    [6]

    Zhou X, Luo Z J, Guo X, Zhang B C, Shang L T, Zhou Q, Deng C Y, Ding Z 2012 Chin. Phys. B 21 046103

    [7]

    Zhou X, Yang Z R, Luo Z J, He Y Q, He H, Wei J, Deng C Y, Ding Z 2011 Acta Phys. Sin. 60 016109 (in Chinese) [周勋, 杨再荣, 罗子江, 贺业全, 何浩, 韦俊, 邓朝勇, 丁召 2011 物理学报 60 016109]

    [8]

    Hollinger G, Skheyta-Kabbani R, Gendry M 1994 Phys. Rev. B 49 11159

    [9]

    Hu W J, Zhao Y W, Duan M L, Wang Y L, Wang J 2010 J. Synth. Cryst. 39 878 (in Chinese) [胡炜杰, 赵有文, 段满龙, 王应利, 王俊 2010 人工晶体学报 39 878]

    [10]

    Dean J A 1999 Lange’s Handbook of Chemistry (15th Ed) (New York: McGraw-Hill, Inc.) Section 4 4.45–4.47

    [11]

    Li L H, Linfield E H, Sharma R, Davies A G 2011 Appl. Phys. Lett. 99 061910

    [12]

    Mei L M, Chen L X 1984 J. Shandong Univ. (Natural Science) 1 28 (in Chinese) [梅良模, 陈立信 1984 山东大学学报(自然科学版) 1 28]

    [13]

    Valderrama-N J, Jacob K T 1977 Thermochimica Acta 21 215

    [14]

    LaBella V P, Ding Z, Bullock D W, Emery C, Thibado P M 2001 Int. J. Mod. Phys. B 15 2301

    [15]

    Shen J, Melitz W, Feldwinn D L, Lee S, Droopad R, Kummel A C 2010 ECS Trans. 33 105

    [16]

    Luo Z J, Zhou X, Wang J H, Guo X, Zhang B C, Zhou Q, Liu K, Ding Z 2013 Acta Phys. Sin. 62 036802 (in Chinese) [罗子江, 周勋, 王继红, 郭祥, 张毕禅, 周清, 刘珂, 丁召 2013 物理学报 62 036802]

计量
  • 文章访问数:  2792
  • PDF下载量:  688
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-13
  • 修回日期:  2013-07-30
  • 刊出日期:  2013-11-05

InAs(001)表面脱氧动力学分析

  • 1. 贵州大学理学院, 贵阳 550025;
  • 2. 贵州财经学院教育管理学院, 贵阳 550004
    基金项目: 国家自然科学基金(批准号: 60866001)和教育部博士点基金(批准号: 20105201110003)资助的课题.

摘要: 利用反射式高能电子衍射(RHEED)实时监控对InAs衬底进行两步完全脱氧的过程, 对比了有低(高)砷等效束流压强保护下采用两步法对InAs衬底缓慢长时间的高温脱氧过程. InAs衬底两步完全脱氧法的第一步为传统的缓慢升温脱氧方法, 第二步为高温In束流辅助脱氧方法. 衬底高温脱氧的RHEED衍射图样说明了高温In束流辅助脱氧最终完全清除传统的缓慢升温法无法去掉的残留氧化物, 通过脱氧完成同质外延生长后的扫描隧道显微镜图像, 说明高砷等效束流压强保护下的脱氧方法是可行的; 分析了高温In束流能完全清除衬底表面残余In氧化物的原理.

English Abstract

参考文献 (16)

目录

    /

    返回文章
    返回