搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

(Sr1-1.5xYx)TiO3模拟固化90Y的稳定性研究

牟婉君 谢翔 李兴亮 余钱红 张锐 吕开 唐惠 周官宏 魏洪源

引用本文:
Citation:

(Sr1-1.5xYx)TiO3模拟固化90Y的稳定性研究

牟婉君, 谢翔, 李兴亮, 余钱红, 张锐, 吕开, 唐惠, 周官宏, 魏洪源

Stability of simulated wasted forms (Sr1-1.5xYx) TiO3 immobilizing 90Y

Mu Wan-Jun, Xie Xiang, Li Xing-Liang, Yu Qian-Hong, Zhang Rui, Lü Kai, Tang Hui, Zhou Guan-Hong, Wei Hong-Yuan
PDF
导出引用
  • 为了研究钙钛矿结构的SrTiO3固化Y3+(90Y的模拟物)的化学稳定性,以Sr(NO3)2,TiO2及Y2O3粉体作为原料,按照化学计量比Sr1-1.5xYxTiO3(0≤x≤0.12)设计配方,采用高温固相法制备一系列固化体. 利用X射线衍射、扫描电镜和Raman对制备固化体的物相、结构和微观形貌进行分析表征,并对其抗浸出性能进行了研究. 结果表明:当xx≥0.08时,固化体中出现部分烧绿石相;固化体中的Sr2+,Y3+的浸出浓度随浸泡时间延长而增大,在浸泡42d时,Sr2+的最大浸出浓度为0.004μ·mL-1,Y3+的最大浸出浓度为0.02μ·mL-1.
    In order to study the stability of perovskite-type SrTiO3 used for immobilizing Y3+, Sr (NO3)2, TiO2 and Y2O3 are used as starting materials. The synthesized Y2O3-doped SrTiO3 can be generally represented as Sr1-1.5xYxTiO3 (0≤ x≤0.12) with the high temperature solid reaction. The phases, structures and microcosmic shapes of synthetic condensates are characterized by the X-ray diffraction, Raman and scanning electron microscopy, and long-term chemical stability is studied at 90 ℃. The results indicate that the phases of compounds change from perovskite to pyrocholre phase when the value of x is more than 0.08. The leaching rates of Sr2+ and Y3+ in waste form increase with the increase of immersion time. The highest leaching concentrations of Sr2+ and Y3+ for 42-day immersion are no more than 0.004 and 0.02 μg·mL-1, respectively.
    • 基金项目: 中国工程物理研究院科学基金(批准号:2012cx03)资助的课题.
    • Funds: Project supported by the Science Foundation of China Academy of Engineering Physics, China (Grant No. 2012cx03).
    [1]

    Ojovan M I, Lee W E 2005 Netherlands (Amsterdam: Elsevier Science Publishers) pp213-215

    [2]

    Yang J W, Luo S G, Li B J 2001 At. Enegy. Sci. Technol. 35 (suppl) 104 (in Chinese)[杨建文, 罗上庚, 李宝军 2001 原子能科学与技术(增刊) 35 104]

    [3]

    Ewing R C 1999 National Academy of Science Colloquium 3 3432

    [4]

    Jaffe J E, Renee M, Jiang W L 2012 Computat. Mater. Sci. 53 153

    [5]

    Rao K R 2001 Current Sci. 12 1543

    [6]

    Donald I W, Metcalfe B L, Taylor R N 1997 J. Mater. Sci. 32 5851

    [7]

    Duan T, Lu X R, Liu X N 2012 Acta Phys. Sin. 61 212801(in Chinese)[段涛, 卢喜瑞, 刘晓楠 2012 物理学报 61 212801]

    [8]

    Lu X R, Dong F Q, Hu S 2012 Acta Phys. Sin. 61 152401(in Chinese)[卢喜瑞, 董发勤, 胡淞 2012 物理学报 61 152401]

    [9]

    van Ginhoven R M, Kovarik L, Jaffe J E, Arey B W 2012 J. Phys. Chem. C 116 16709

    [10]

    Sassi M, Uberuaga B P, Stanek C R, Marks N A 2012 Phys. Rev. B 85 094104

    [11]

    Stanek C R, Uberuag B P, Scott B L, Feller R K, Marks N A 2012 Current Opinion in Solid State and Materials Science 16 126

    [12]

    Ewing R C 1999 Proc. Nat. Acad. Sci. USA 96 3432

    [13]

    Ian Farnan, Herman Cho, William J W 2007 Nature 44 5190

    [14]

    Das S, Poddar A, Roy B 2003 Journal of Alloys and Compounds 358 17

    [15]

    Ewing R C, William J, Lian J 2004 J. Phys. Chem. 11 5950

    [16]

    Vance E R 1994 Mater. Res. Soc. Bull. 19 28

    [17]

    Ringwood A E 1988 North Holland (Armsterdam: Elsevier Science Publishers) pp 233-234

    [18]

    Zhang R Z, Guo Z M, Jia G Y 2005 J. Chin. Ceramic Society. 33 1048(in Chinese)[张瑞珠, 郭志猛, 贾光耀 2005 硅酸盐学报 33 1048]

    [19]

    Zhang R Z, Tong Y P, Yang L 2009 J. Nucl. Radiochemistry 31 237(in Chinese)[张瑞珠, 仝玉萍, 杨丽 2009 核化学与放射化学 31 237]

    [20]

    Jaffe J E, van Ginhoven R M, Jiang W L 2012 Computation Materials Science 53 153

    [21]

    ASTM C 1285-02 2002 ASTM International (United States: West Conshohocken) pp122-124

    [22]

    Liu X C, Gao F, Deng J P 2008 J. Inorg. Mater. 23 811(in Chinese)[刘向春, 高峰, 邓军平 2008 无机材料学报 23 811]

    [23]

    Shen Z Y, Li J F 2010 J. Chin. Ceram. Soc. 38 512(in Chinese)[沈宗洋, 李敬锋 2010 硅酸盐学报 38 512]

    [24]

    Wu X W, Liu X J 2008 Acta. Phys. Sin. 57 5500(in Chinese)[吴雪炜, 刘晓峻 2008 物理学报 57 5500]

    [25]

    Weber W H, Hass K C, Mcbrlde J R 1993 Phys. Rev. B 48 178

    [26]

    Chen M J, Cui C L, Lu X R, Duan X R, Yang K, Zhang D 2011 At. Enegy. Sci. Technol. 45 14(in Chinese)[陈梦君, 崔春龙, 卢喜瑞, 段涛, 杨岩凯, 张东 2011 原子能科学与技术 45 14]

  • [1]

    Ojovan M I, Lee W E 2005 Netherlands (Amsterdam: Elsevier Science Publishers) pp213-215

    [2]

    Yang J W, Luo S G, Li B J 2001 At. Enegy. Sci. Technol. 35 (suppl) 104 (in Chinese)[杨建文, 罗上庚, 李宝军 2001 原子能科学与技术(增刊) 35 104]

    [3]

    Ewing R C 1999 National Academy of Science Colloquium 3 3432

    [4]

    Jaffe J E, Renee M, Jiang W L 2012 Computat. Mater. Sci. 53 153

    [5]

    Rao K R 2001 Current Sci. 12 1543

    [6]

    Donald I W, Metcalfe B L, Taylor R N 1997 J. Mater. Sci. 32 5851

    [7]

    Duan T, Lu X R, Liu X N 2012 Acta Phys. Sin. 61 212801(in Chinese)[段涛, 卢喜瑞, 刘晓楠 2012 物理学报 61 212801]

    [8]

    Lu X R, Dong F Q, Hu S 2012 Acta Phys. Sin. 61 152401(in Chinese)[卢喜瑞, 董发勤, 胡淞 2012 物理学报 61 152401]

    [9]

    van Ginhoven R M, Kovarik L, Jaffe J E, Arey B W 2012 J. Phys. Chem. C 116 16709

    [10]

    Sassi M, Uberuaga B P, Stanek C R, Marks N A 2012 Phys. Rev. B 85 094104

    [11]

    Stanek C R, Uberuag B P, Scott B L, Feller R K, Marks N A 2012 Current Opinion in Solid State and Materials Science 16 126

    [12]

    Ewing R C 1999 Proc. Nat. Acad. Sci. USA 96 3432

    [13]

    Ian Farnan, Herman Cho, William J W 2007 Nature 44 5190

    [14]

    Das S, Poddar A, Roy B 2003 Journal of Alloys and Compounds 358 17

    [15]

    Ewing R C, William J, Lian J 2004 J. Phys. Chem. 11 5950

    [16]

    Vance E R 1994 Mater. Res. Soc. Bull. 19 28

    [17]

    Ringwood A E 1988 North Holland (Armsterdam: Elsevier Science Publishers) pp 233-234

    [18]

    Zhang R Z, Guo Z M, Jia G Y 2005 J. Chin. Ceramic Society. 33 1048(in Chinese)[张瑞珠, 郭志猛, 贾光耀 2005 硅酸盐学报 33 1048]

    [19]

    Zhang R Z, Tong Y P, Yang L 2009 J. Nucl. Radiochemistry 31 237(in Chinese)[张瑞珠, 仝玉萍, 杨丽 2009 核化学与放射化学 31 237]

    [20]

    Jaffe J E, van Ginhoven R M, Jiang W L 2012 Computation Materials Science 53 153

    [21]

    ASTM C 1285-02 2002 ASTM International (United States: West Conshohocken) pp122-124

    [22]

    Liu X C, Gao F, Deng J P 2008 J. Inorg. Mater. 23 811(in Chinese)[刘向春, 高峰, 邓军平 2008 无机材料学报 23 811]

    [23]

    Shen Z Y, Li J F 2010 J. Chin. Ceram. Soc. 38 512(in Chinese)[沈宗洋, 李敬锋 2010 硅酸盐学报 38 512]

    [24]

    Wu X W, Liu X J 2008 Acta. Phys. Sin. 57 5500(in Chinese)[吴雪炜, 刘晓峻 2008 物理学报 57 5500]

    [25]

    Weber W H, Hass K C, Mcbrlde J R 1993 Phys. Rev. B 48 178

    [26]

    Chen M J, Cui C L, Lu X R, Duan X R, Yang K, Zhang D 2011 At. Enegy. Sci. Technol. 45 14(in Chinese)[陈梦君, 崔春龙, 卢喜瑞, 段涛, 杨岩凯, 张东 2011 原子能科学与技术 45 14]

  • [1] 隽珽, 邢家赫, 曾凡聪, 郑鑫, 徐琳. 基于SnO2:DPEPO混合电子传输层的钙钛矿太阳能电池性能研究. 物理学报, 2024, 73(19): 198401. doi: 10.7498/aps.73.20240827
    [2] 李斌, 苗向阳. 单个CsPbBr3钙钛矿量子点的荧光闪烁特性. 物理学报, 2021, 70(20): 207802. doi: 10.7498/aps.70.20210908
    [3] 赵辛未, 吕俊鹏, 倪振华. 铅卤钙钛矿法布里-珀罗谐振腔激光器. 物理学报, 2021, 70(5): 054205. doi: 10.7498/aps.70.20201302
    [4] 李家森, 梁春军, 姬超, 宫宏康, 宋奇, 张慧敏, 刘宁. 在空穴传输层聚(3-己基噻吩)中添加1, 8-二碘辛烷改善碳基钙钛矿太阳能电池的性能. 物理学报, 2021, 70(19): 198403. doi: 10.7498/aps.70.20210586
    [5] 郤育莺, 韩悦, 李国辉, 翟爱平, 冀婷, 郝玉英, 崔艳霞. 异质结构在光伏型卤化物钙钛矿光电转换器件中的应用. 物理学报, 2020, 69(16): 167804. doi: 10.7498/aps.69.20200591
    [6] 吴海妍, 唐建新, 李艳青. 基于缺陷态钝化的高效稳定蓝光钙钛矿发光二极管. 物理学报, 2020, 69(13): 138502. doi: 10.7498/aps.69.20200566
    [7] 樊钦华, 祖延清, 李璐, 代锦飞, 吴朝新. 发光铅卤钙钛矿纳米晶稳定性的研究进展. 物理学报, 2020, 69(11): 118501. doi: 10.7498/aps.69.20191767
    [8] 陈佳楣, 苏杭, 李婉, 张立来, 索鑫磊, 钦敬, 朱坤, 李国龙. 钙钛矿发光二极管光提取性能增强的研究进展. 物理学报, 2020, 69(21): 218501. doi: 10.7498/aps.69.20200755
    [9] 魏应强, 徐磊, 彭其明, 王建浦. 钙钛矿的Rashba效应及其对载流子复合的影响. 物理学报, 2019, 68(15): 158506. doi: 10.7498/aps.68.20190675
    [10] 瞿子涵, 储泽马, 张兴旺, 游经碧. 高效绿光钙钛矿发光二极管研究进展. 物理学报, 2019, 68(15): 158504. doi: 10.7498/aps.68.20190647
    [11] 杨自欣, 高章然, 孙晓帆, 蔡宏灵, 张凤鸣, 吴小山. 铅基钙钛矿铁电晶体高临界转变温度的机器学习研究. 物理学报, 2019, 68(21): 210502. doi: 10.7498/aps.68.20190942
    [12] 夏俊民, 梁超, 邢贵川. 喷墨打印钙钛矿太阳能电池研究进展与展望. 物理学报, 2019, 68(15): 158807. doi: 10.7498/aps.68.20190302
    [13] 宋蕊, 冯凯, 林上金, 何曼丽, 仝亮. 钙钛矿NaFeF3结构物性的理论研究及应力和掺杂调控. 物理学报, 2019, 68(14): 147101. doi: 10.7498/aps.68.20190573
    [14] 赵国栋, 杨亚利, 任伟. 钙钛矿型氧化物非常规铁电研究进展. 物理学报, 2018, 67(15): 157504. doi: 10.7498/aps.67.20180936
    [15] 叶红军, 王大威, 姜志军, 成晟, 魏晓勇. 钙钛矿结构SnTiO3铁电相变的第一性原理研究. 物理学报, 2016, 65(23): 237101. doi: 10.7498/aps.65.237101
    [16] 杨旭东, 陈汉, 毕恩兵, 韩礼元. 高效率钙钛矿太阳电池发展中的关键问题. 物理学报, 2015, 64(3): 038404. doi: 10.7498/aps.64.038404
    [17] 吴迪, 赵纪军, 田华. Fe2+取代对MgSiO3钙钛矿高温高压物性的影响. 物理学报, 2013, 62(4): 049101. doi: 10.7498/aps.62.049101
    [18] 段涛, 卢喜瑞, 刘小楠, 竹文坤, 黄叶菊. Gd2-xNdxZr2O7(Nd=An(Ⅲ), 0≤ x ≤ 2.0)模拟固化体固溶量与其物相、密度、硬度之间的关系. 物理学报, 2012, 61(21): 212801. doi: 10.7498/aps.61.212801
    [19] 卢喜瑞, 董发勤, 胡淞, 王晓丽, 吴彦霖. 模拟核素固化体Gd2Zr2-xCexO7(0≤ x≤ 2.0)的物相及化学稳定性研究. 物理学报, 2012, 61(15): 152401. doi: 10.7498/aps.61.152401
    [20] 向 军, 李莉萍, 苏文辉. 钙钛矿型氧离子导体KNb1-xMgxO3-δ的制备和表征. 物理学报, 2003, 52(6): 1474-1478. doi: 10.7498/aps.52.1474
计量
  • 文章访问数:  5573
  • PDF下载量:  333
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-02-25
  • 修回日期:  2014-05-06
  • 刊出日期:  2014-09-05

/

返回文章
返回