-
本文以钼酸钠、硫代乙酰胺为前驱体, 硅钨酸为添加剂, 成功用水热法合成高纯度纳米花状二硫化钼. 产物特性用X射线衍射(XRD)、能量色散谱(EDS)、扫描电子显微镜(SEM)进行表征. XRD和EDS图显示实验产物为二硫化钼, 且其结晶度和层状堆垛良好. SEM图谱则表明二硫化钼为纳米花状结构, 颗粒直径300 nm左右, 由几十上百片花瓣组成, 每片花瓣厚度十个纳米左右. 通过以硅钨酸为变量的梯度实验, 研究发现, 硅钨酸对于纳米花状MoS2的形成具有重要作用, 不添加硅钨酸, 无法形成纳米花状MoS2, 此外, 硅钨酸的剂量会影响合成MoS2的大小和形貌. 本文还对纳米花状二硫化钼的形成机理做了初步的讨论.High-purity flower-like MoS2 microspheres have been successfully synthesized by hydrothermal method using Na2MoO4 and CH3CSNH2 as precursors, and H4O40SiW12 as an additive. Samples are characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive spectrometer (EDS). XRD and EDS patterns show that the as-prepared samples are MoS2, which have good crystallinity with a well-stacked layered structure. SEM images show that the as-prepared MoS2 are composed of flower-like microspheres with a mean diameter about 300 nm, the structures of which are constructed from dozens of hundreds of MoS2 nano-sheet with a thickness of several nanometers. It is also found that the silicotungstic acid plays an important role in the formation of the flower-like MoS2 microspheres, which could affect the size and morphology of the MoS2. Flower-like MoS2 is not found in the as-prepared product without adding silicotungstic acid. A formation mechanism of MoS2 microspheres is tentatively given.
-
Keywords:
- MoS2 /
- nanoflower /
- hydrothermal method
[1] Guo S B, Kang Q P, Cai C B, Qu X H 2012 Rare Metals. 31 368
[2] Guo H H, Yang T, Tao P, Zhang Z D 2014 Chin. Phys. B 23 017201
[3] Zhou W, Yin Z Y, Du Y P, Huang X, Zeng Z Y, Fan Z X, Liu H, Wang J Y, Zhang H 2013 Small 9 140
[4] Rapoport L, N Fleischer, R Tenne 2005 Journal of Materials Chemistry 15 1782
[5] Whittingham M S 2004 Chemical Reviews 104 4271
[6] Cheng F Y, Chen J 2006 Journal of Materials Research. 21 2744
[7] Li Y G, Wang H L, Xie L M, Liang Y Y, Hong G S, Dai H J 2011 Journal of the American Chemical Society 133 7296
[8] Frindt R F, Arrott, A S, Curzon A E, Heinrich B, Morrison S R, Templeton T L, Divigalpitiya R, Gee M A, Joensen P, Schurer P J 1991 Journal of Applied Physics 70 6224
[9] Dong H H 2013 Acta Phys. Sin. 62 206101 (in Chinese) [董海明 2013 物理学报 62 206101]
[10] Liu J, Liang P, Shu H B, Shen T, Xing S, Wu Q 2014 Acta Phys. Sin. 63 117101 (in Chinese) [刘俊, 梁培, 舒海波, 沈涛, 邢凇, 吴琼 2014 物理学报 63 117101]
[11] Zhang Z J, Zhang J, Xue Q J 1994 Journal of Physical Chemistry. 98 12973
[12] Li X M, Long M Q, Cui L L, Xiao J, Xu H 2014 Chin. Phys. B 23 047307
[13] Li H, Yin Z Y, He Q Y, Li H, Huang X, Lu G, Fam Derrick, Wen H, Tok, Alfred I Y, Zhang Q, Zhang H 2012 Small 8 63
[14] Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nature Nanotechnology. 6 147
[15] Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A, Kis A 2013 Nature Nanotechnology. 8 497
[16] Xiang Q J, Yu J G, Jaroniec M 2012 Journal of the American Chemical Society 134 6575
[17] Liu Y, Yu Y X, Zhang W D 2013 Journal of Physical Chemistry C 117 12949
[18] Margulis L, Salitra G, Tenne R, Tallanker M 1993 Nature 365 113
[19] Li W J, Shi E W, Ko J M, Chen Z Z, Ogino H, Fukuda T 2003 Journal of Crystal Growth. 250 418
[20] Li Q, Walter E C, Van der Veer W E, Murray B J, Newberg J T, Bohannan E W, Switzer J A, Hemminger J C, Penner R M 2005 The Journal of Physical Chemistry B 109 3169
[21] Chen J, Li S L, Xu Q, Tanaka K 2002 Chemical Communications. 16 1722
[22] Albiter MA, Huirache-Acuna R, Paraguay-Delgado F, Rico JL, Alonso-Nunez G 2006 Nanotechnology. 17 3473
[23] Dhas N A, Suslick K S 2005 Journal of the American Chemical Society. 127 2368
[24] Li Y, Bando Y, Golberg D 2003 Applied Physics Letters. 82 1962
[25] Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK 2005 Proceedings of the National Academy of Sciences of the United States of America. 102 10451
[26] Coleman J N, Lotya M, O'Neill A, Bergin S D, King P J, Khan U, Young K, Gaucher A, De S, Smith R J 2011 Science. 331 568
[27] Castellanos-Gomez A, Barkelid M, Goossens AM, Calado V E, Van der Zant, H SJ 2012 Nano Letters. 12 3187
[28] Helveg S, Lauritsen J V, Lægsgaard E, Stensgaard I, Nørskov J K, Clausen BS, Topsøe H, Besenbacher F 2000 Physical Review Letters 84 951
[29] Najmaei S, Liu Z, Zhou W, Zou X L, Shi G, Lei S D, Yakobson B I, Idrobo J C, Ajayan P M, Lou J 2013 Nature Materials. 12 754
[30] Chang K, Chen W 2011 ACS Nano. 5 4720
[31] Yuan H J, Chen Y Q, Yu F, Peng Y H, He X W, Zhao D, Tang D S 2011 Chin. Phys. B 20 036103
[32] Cundy C S, Cox P A 2003 Chemical Reviews 103 663
[33] Tang G G, Sun J R, Wei C, Wu K Q, Ji X R, Liu S S, Tang H, Li C S 2012 Materials Letters 86 9
[34] Yang J, Li C X, Quan Z W, Zhang C, Yang P, Li Y, Yu C, Lin J 2008 The Journal of Physical Chemistry C 112 12777
-
[1] Guo S B, Kang Q P, Cai C B, Qu X H 2012 Rare Metals. 31 368
[2] Guo H H, Yang T, Tao P, Zhang Z D 2014 Chin. Phys. B 23 017201
[3] Zhou W, Yin Z Y, Du Y P, Huang X, Zeng Z Y, Fan Z X, Liu H, Wang J Y, Zhang H 2013 Small 9 140
[4] Rapoport L, N Fleischer, R Tenne 2005 Journal of Materials Chemistry 15 1782
[5] Whittingham M S 2004 Chemical Reviews 104 4271
[6] Cheng F Y, Chen J 2006 Journal of Materials Research. 21 2744
[7] Li Y G, Wang H L, Xie L M, Liang Y Y, Hong G S, Dai H J 2011 Journal of the American Chemical Society 133 7296
[8] Frindt R F, Arrott, A S, Curzon A E, Heinrich B, Morrison S R, Templeton T L, Divigalpitiya R, Gee M A, Joensen P, Schurer P J 1991 Journal of Applied Physics 70 6224
[9] Dong H H 2013 Acta Phys. Sin. 62 206101 (in Chinese) [董海明 2013 物理学报 62 206101]
[10] Liu J, Liang P, Shu H B, Shen T, Xing S, Wu Q 2014 Acta Phys. Sin. 63 117101 (in Chinese) [刘俊, 梁培, 舒海波, 沈涛, 邢凇, 吴琼 2014 物理学报 63 117101]
[11] Zhang Z J, Zhang J, Xue Q J 1994 Journal of Physical Chemistry. 98 12973
[12] Li X M, Long M Q, Cui L L, Xiao J, Xu H 2014 Chin. Phys. B 23 047307
[13] Li H, Yin Z Y, He Q Y, Li H, Huang X, Lu G, Fam Derrick, Wen H, Tok, Alfred I Y, Zhang Q, Zhang H 2012 Small 8 63
[14] Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nature Nanotechnology. 6 147
[15] Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A, Kis A 2013 Nature Nanotechnology. 8 497
[16] Xiang Q J, Yu J G, Jaroniec M 2012 Journal of the American Chemical Society 134 6575
[17] Liu Y, Yu Y X, Zhang W D 2013 Journal of Physical Chemistry C 117 12949
[18] Margulis L, Salitra G, Tenne R, Tallanker M 1993 Nature 365 113
[19] Li W J, Shi E W, Ko J M, Chen Z Z, Ogino H, Fukuda T 2003 Journal of Crystal Growth. 250 418
[20] Li Q, Walter E C, Van der Veer W E, Murray B J, Newberg J T, Bohannan E W, Switzer J A, Hemminger J C, Penner R M 2005 The Journal of Physical Chemistry B 109 3169
[21] Chen J, Li S L, Xu Q, Tanaka K 2002 Chemical Communications. 16 1722
[22] Albiter MA, Huirache-Acuna R, Paraguay-Delgado F, Rico JL, Alonso-Nunez G 2006 Nanotechnology. 17 3473
[23] Dhas N A, Suslick K S 2005 Journal of the American Chemical Society. 127 2368
[24] Li Y, Bando Y, Golberg D 2003 Applied Physics Letters. 82 1962
[25] Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK 2005 Proceedings of the National Academy of Sciences of the United States of America. 102 10451
[26] Coleman J N, Lotya M, O'Neill A, Bergin S D, King P J, Khan U, Young K, Gaucher A, De S, Smith R J 2011 Science. 331 568
[27] Castellanos-Gomez A, Barkelid M, Goossens AM, Calado V E, Van der Zant, H SJ 2012 Nano Letters. 12 3187
[28] Helveg S, Lauritsen J V, Lægsgaard E, Stensgaard I, Nørskov J K, Clausen BS, Topsøe H, Besenbacher F 2000 Physical Review Letters 84 951
[29] Najmaei S, Liu Z, Zhou W, Zou X L, Shi G, Lei S D, Yakobson B I, Idrobo J C, Ajayan P M, Lou J 2013 Nature Materials. 12 754
[30] Chang K, Chen W 2011 ACS Nano. 5 4720
[31] Yuan H J, Chen Y Q, Yu F, Peng Y H, He X W, Zhao D, Tang D S 2011 Chin. Phys. B 20 036103
[32] Cundy C S, Cox P A 2003 Chemical Reviews 103 663
[33] Tang G G, Sun J R, Wei C, Wu K Q, Ji X R, Liu S S, Tang H, Li C S 2012 Materials Letters 86 9
[34] Yang J, Li C X, Quan Z W, Zhang C, Yang P, Li Y, Yu C, Lin J 2008 The Journal of Physical Chemistry C 112 12777
计量
- 文章访问数: 11991
- PDF下载量: 2249
- 被引次数: 0