搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水热法合成纳米花状二硫化钼及其微观结构表征

傅重源 邢淞 沈涛 邰博 董前民 舒海波 梁培

引用本文:
Citation:

水热法合成纳米花状二硫化钼及其微观结构表征

傅重源, 邢淞, 沈涛, 邰博, 董前民, 舒海波, 梁培

Synthesis and characterization of flower-like MoS2 microspheres by hydrothermal method

Fu Chong-Yuan, Xing Song, Shen Tao, Tai Bo, Dong Qian-Min, Shu Hai-Bo, Liang Pei
PDF
导出引用
  • 本文以钼酸钠、硫代乙酰胺为前驱体, 硅钨酸为添加剂, 成功用水热法合成高纯度纳米花状二硫化钼. 产物特性用X射线衍射(XRD)、能量色散谱(EDS)、扫描电子显微镜(SEM)进行表征. XRD和EDS图显示实验产物为二硫化钼, 且其结晶度和层状堆垛良好. SEM图谱则表明二硫化钼为纳米花状结构, 颗粒直径300 nm左右, 由几十上百片花瓣组成, 每片花瓣厚度十个纳米左右. 通过以硅钨酸为变量的梯度实验, 研究发现, 硅钨酸对于纳米花状MoS2的形成具有重要作用, 不添加硅钨酸, 无法形成纳米花状MoS2, 此外, 硅钨酸的剂量会影响合成MoS2的大小和形貌. 本文还对纳米花状二硫化钼的形成机理做了初步的讨论.
    High-purity flower-like MoS2 microspheres have been successfully synthesized by hydrothermal method using Na2MoO4 and CH3CSNH2 as precursors, and H4O40SiW12 as an additive. Samples are characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive spectrometer (EDS). XRD and EDS patterns show that the as-prepared samples are MoS2, which have good crystallinity with a well-stacked layered structure. SEM images show that the as-prepared MoS2 are composed of flower-like microspheres with a mean diameter about 300 nm, the structures of which are constructed from dozens of hundreds of MoS2 nano-sheet with a thickness of several nanometers. It is also found that the silicotungstic acid plays an important role in the formation of the flower-like MoS2 microspheres, which could affect the size and morphology of the MoS2. Flower-like MoS2 is not found in the as-prepared product without adding silicotungstic acid. A formation mechanism of MoS2 microspheres is tentatively given.
    • 基金项目: 国家自然科学基金(批准号: 61006051, 61177050)、浙江省大学生科技创新活动计划(批准号: 2013R409016)和浙江省科技厅公益技术应用研究(批准号: 2013C31068)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61006051, 61177050), the College students in Zhejiang Province Science and Technology Innovation Activities Plan, China (Grant No. 2013R409016), and the Science and Technology Department of Zhejiang Province Public Interest Research Technology, China (Grant No. 2013C31068).
    [1]

    Guo S B, Kang Q P, Cai C B, Qu X H 2012 Rare Metals. 31 368

    [2]

    Guo H H, Yang T, Tao P, Zhang Z D 2014 Chin. Phys. B 23 017201

    [3]

    Zhou W, Yin Z Y, Du Y P, Huang X, Zeng Z Y, Fan Z X, Liu H, Wang J Y, Zhang H 2013 Small 9 140

    [4]

    Rapoport L, N Fleischer, R Tenne 2005 Journal of Materials Chemistry 15 1782

    [5]

    Whittingham M S 2004 Chemical Reviews 104 4271

    [6]

    Cheng F Y, Chen J 2006 Journal of Materials Research. 21 2744

    [7]

    Li Y G, Wang H L, Xie L M, Liang Y Y, Hong G S, Dai H J 2011 Journal of the American Chemical Society 133 7296

    [8]

    Frindt R F, Arrott, A S, Curzon A E, Heinrich B, Morrison S R, Templeton T L, Divigalpitiya R, Gee M A, Joensen P, Schurer P J 1991 Journal of Applied Physics 70 6224

    [9]

    Dong H H 2013 Acta Phys. Sin. 62 206101 (in Chinese) [董海明 2013 物理学报 62 206101]

    [10]

    Liu J, Liang P, Shu H B, Shen T, Xing S, Wu Q 2014 Acta Phys. Sin. 63 117101 (in Chinese) [刘俊, 梁培, 舒海波, 沈涛, 邢凇, 吴琼 2014 物理学报 63 117101]

    [11]

    Zhang Z J, Zhang J, Xue Q J 1994 Journal of Physical Chemistry. 98 12973

    [12]

    Li X M, Long M Q, Cui L L, Xiao J, Xu H 2014 Chin. Phys. B 23 047307

    [13]

    Li H, Yin Z Y, He Q Y, Li H, Huang X, Lu G, Fam Derrick, Wen H, Tok, Alfred I Y, Zhang Q, Zhang H 2012 Small 8 63

    [14]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nature Nanotechnology. 6 147

    [15]

    Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A, Kis A 2013 Nature Nanotechnology. 8 497

    [16]

    Xiang Q J, Yu J G, Jaroniec M 2012 Journal of the American Chemical Society 134 6575

    [17]

    Liu Y, Yu Y X, Zhang W D 2013 Journal of Physical Chemistry C 117 12949

    [18]

    Margulis L, Salitra G, Tenne R, Tallanker M 1993 Nature 365 113

    [19]

    Li W J, Shi E W, Ko J M, Chen Z Z, Ogino H, Fukuda T 2003 Journal of Crystal Growth. 250 418

    [20]

    Li Q, Walter E C, Van der Veer W E, Murray B J, Newberg J T, Bohannan E W, Switzer J A, Hemminger J C, Penner R M 2005 The Journal of Physical Chemistry B 109 3169

    [21]

    Chen J, Li S L, Xu Q, Tanaka K 2002 Chemical Communications. 16 1722

    [22]

    Albiter MA, Huirache-Acuna R, Paraguay-Delgado F, Rico JL, Alonso-Nunez G 2006 Nanotechnology. 17 3473

    [23]

    Dhas N A, Suslick K S 2005 Journal of the American Chemical Society. 127 2368

    [24]

    Li Y, Bando Y, Golberg D 2003 Applied Physics Letters. 82 1962

    [25]

    Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK 2005 Proceedings of the National Academy of Sciences of the United States of America. 102 10451

    [26]

    Coleman J N, Lotya M, O'Neill A, Bergin S D, King P J, Khan U, Young K, Gaucher A, De S, Smith R J 2011 Science. 331 568

    [27]

    Castellanos-Gomez A, Barkelid M, Goossens AM, Calado V E, Van der Zant, H SJ 2012 Nano Letters. 12 3187

    [28]

    Helveg S, Lauritsen J V, Lægsgaard E, Stensgaard I, Nørskov J K, Clausen BS, Topsøe H, Besenbacher F 2000 Physical Review Letters 84 951

    [29]

    Najmaei S, Liu Z, Zhou W, Zou X L, Shi G, Lei S D, Yakobson B I, Idrobo J C, Ajayan P M, Lou J 2013 Nature Materials. 12 754

    [30]

    Chang K, Chen W 2011 ACS Nano. 5 4720

    [31]

    Yuan H J, Chen Y Q, Yu F, Peng Y H, He X W, Zhao D, Tang D S 2011 Chin. Phys. B 20 036103

    [32]

    Cundy C S, Cox P A 2003 Chemical Reviews 103 663

    [33]

    Tang G G, Sun J R, Wei C, Wu K Q, Ji X R, Liu S S, Tang H, Li C S 2012 Materials Letters 86 9

    [34]

    Yang J, Li C X, Quan Z W, Zhang C, Yang P, Li Y, Yu C, Lin J 2008 The Journal of Physical Chemistry C 112 12777

  • [1]

    Guo S B, Kang Q P, Cai C B, Qu X H 2012 Rare Metals. 31 368

    [2]

    Guo H H, Yang T, Tao P, Zhang Z D 2014 Chin. Phys. B 23 017201

    [3]

    Zhou W, Yin Z Y, Du Y P, Huang X, Zeng Z Y, Fan Z X, Liu H, Wang J Y, Zhang H 2013 Small 9 140

    [4]

    Rapoport L, N Fleischer, R Tenne 2005 Journal of Materials Chemistry 15 1782

    [5]

    Whittingham M S 2004 Chemical Reviews 104 4271

    [6]

    Cheng F Y, Chen J 2006 Journal of Materials Research. 21 2744

    [7]

    Li Y G, Wang H L, Xie L M, Liang Y Y, Hong G S, Dai H J 2011 Journal of the American Chemical Society 133 7296

    [8]

    Frindt R F, Arrott, A S, Curzon A E, Heinrich B, Morrison S R, Templeton T L, Divigalpitiya R, Gee M A, Joensen P, Schurer P J 1991 Journal of Applied Physics 70 6224

    [9]

    Dong H H 2013 Acta Phys. Sin. 62 206101 (in Chinese) [董海明 2013 物理学报 62 206101]

    [10]

    Liu J, Liang P, Shu H B, Shen T, Xing S, Wu Q 2014 Acta Phys. Sin. 63 117101 (in Chinese) [刘俊, 梁培, 舒海波, 沈涛, 邢凇, 吴琼 2014 物理学报 63 117101]

    [11]

    Zhang Z J, Zhang J, Xue Q J 1994 Journal of Physical Chemistry. 98 12973

    [12]

    Li X M, Long M Q, Cui L L, Xiao J, Xu H 2014 Chin. Phys. B 23 047307

    [13]

    Li H, Yin Z Y, He Q Y, Li H, Huang X, Lu G, Fam Derrick, Wen H, Tok, Alfred I Y, Zhang Q, Zhang H 2012 Small 8 63

    [14]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nature Nanotechnology. 6 147

    [15]

    Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A, Kis A 2013 Nature Nanotechnology. 8 497

    [16]

    Xiang Q J, Yu J G, Jaroniec M 2012 Journal of the American Chemical Society 134 6575

    [17]

    Liu Y, Yu Y X, Zhang W D 2013 Journal of Physical Chemistry C 117 12949

    [18]

    Margulis L, Salitra G, Tenne R, Tallanker M 1993 Nature 365 113

    [19]

    Li W J, Shi E W, Ko J M, Chen Z Z, Ogino H, Fukuda T 2003 Journal of Crystal Growth. 250 418

    [20]

    Li Q, Walter E C, Van der Veer W E, Murray B J, Newberg J T, Bohannan E W, Switzer J A, Hemminger J C, Penner R M 2005 The Journal of Physical Chemistry B 109 3169

    [21]

    Chen J, Li S L, Xu Q, Tanaka K 2002 Chemical Communications. 16 1722

    [22]

    Albiter MA, Huirache-Acuna R, Paraguay-Delgado F, Rico JL, Alonso-Nunez G 2006 Nanotechnology. 17 3473

    [23]

    Dhas N A, Suslick K S 2005 Journal of the American Chemical Society. 127 2368

    [24]

    Li Y, Bando Y, Golberg D 2003 Applied Physics Letters. 82 1962

    [25]

    Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK 2005 Proceedings of the National Academy of Sciences of the United States of America. 102 10451

    [26]

    Coleman J N, Lotya M, O'Neill A, Bergin S D, King P J, Khan U, Young K, Gaucher A, De S, Smith R J 2011 Science. 331 568

    [27]

    Castellanos-Gomez A, Barkelid M, Goossens AM, Calado V E, Van der Zant, H SJ 2012 Nano Letters. 12 3187

    [28]

    Helveg S, Lauritsen J V, Lægsgaard E, Stensgaard I, Nørskov J K, Clausen BS, Topsøe H, Besenbacher F 2000 Physical Review Letters 84 951

    [29]

    Najmaei S, Liu Z, Zhou W, Zou X L, Shi G, Lei S D, Yakobson B I, Idrobo J C, Ajayan P M, Lou J 2013 Nature Materials. 12 754

    [30]

    Chang K, Chen W 2011 ACS Nano. 5 4720

    [31]

    Yuan H J, Chen Y Q, Yu F, Peng Y H, He X W, Zhao D, Tang D S 2011 Chin. Phys. B 20 036103

    [32]

    Cundy C S, Cox P A 2003 Chemical Reviews 103 663

    [33]

    Tang G G, Sun J R, Wei C, Wu K Q, Ji X R, Liu S S, Tang H, Li C S 2012 Materials Letters 86 9

    [34]

    Yang J, Li C X, Quan Z W, Zhang C, Yang P, Li Y, Yu C, Lin J 2008 The Journal of Physical Chemistry C 112 12777

  • [1] 吴帆帆, 季怡汝, 杨威(Wei Yang), 张广宇. 二硫化钼的电子能带结构和低温输运实验进展. 物理学报, 2022, (): . doi: 10.7498/aps.71.20220015
    [2] 蒋黎英, 易颖婷, 易早, 杨华, 李治友, 苏炬, 周自刚, 陈喜芳, 易有根. 基于单层二硫化钼的高品质因子、高品质因数的四波段完美吸收器. 物理学报, 2021, 70(12): 128101. doi: 10.7498/aps.70.20202163
    [3] 刘凯龙, 彭冬生. 拉伸应变对单层二硫化钼光电特性的影响. 物理学报, 2021, 70(21): 217101. doi: 10.7498/aps.70.20210816
    [4] 孟凡, 胡劲华, 王辉, 邹戈胤, 崔建功, 赵乐. 等离子体谐振腔对二硫化钼的荧光增强效应. 物理学报, 2019, 68(23): 237801. doi: 10.7498/aps.68.20191121
    [5] 张新成, 廖文虎, 左敏. 非共振圆偏振光作用下单层二硫化钼电子结构及其自旋/谷输运性质. 物理学报, 2018, 67(10): 107101. doi: 10.7498/aps.67.20180213
    [6] 刘乐, 汤建, 王琴琴, 时东霞, 张广宇. 石墨烯封装单层二硫化钼的热稳定性研究. 物理学报, 2018, 67(22): 226501. doi: 10.7498/aps.67.20181255
    [7] 危阳, 马新国, 祝林, 贺华, 黄楚云. 二硫化钼/石墨烯异质结的界面结合作用及其对带边电位影响的理论研究. 物理学报, 2017, 66(8): 087101. doi: 10.7498/aps.66.087101
    [8] 李明林, 万亚玲, 胡建玥, 王卫东. 单层二硫化钼力学性能温度和手性效应的分子动力学模拟. 物理学报, 2016, 65(17): 176201. doi: 10.7498/aps.65.176201
    [9] 张理勇, 方粮, 彭向阳. 单层二硫化钼多相性质及相变的第一性原理研究. 物理学报, 2016, 65(12): 127101. doi: 10.7498/aps.65.127101
    [10] 张理勇, 方粮, 彭向阳. 金衬底调控单层二硫化钼电子性能的第一性原理研究. 物理学报, 2015, 64(18): 187101. doi: 10.7498/aps.64.187101
    [11] 魏晓旭, 程英, 霍达, 张宇涵, 王军转, 胡勇, 施毅. Au的金属颗粒对二硫化钼发光增强. 物理学报, 2014, 63(21): 217802. doi: 10.7498/aps.63.217802
    [12] 王长远, 杨晓红, 马勇, 冯媛媛, 熊金龙, 王维. 水热合成ZnO:Cd纳米棒的微结构及光致发光特性. 物理学报, 2014, 63(15): 157701. doi: 10.7498/aps.63.157701
    [13] 董海明. 低温下二硫化钼电子迁移率研究. 物理学报, 2013, 62(20): 206101. doi: 10.7498/aps.62.206101
    [14] 陈先梅, 郜小勇, 张飒, 刘红涛. 醋酸锌热解温度对ZnO纳米棒的结构及光学性质的影响. 物理学报, 2013, 62(4): 049102. doi: 10.7498/aps.62.049102
    [15] 李屹同, 沈谅平, 王浩, 汪汉斌. 水基ZnO纳米流体电导和热导性能研究 . 物理学报, 2013, 62(12): 124401. doi: 10.7498/aps.62.124401
    [16] 万步勇, 苑进社, 冯庆, 王奥. K,Na掺杂Cu-S纳米晶的水热合成及对结构、性能的影响. 物理学报, 2013, 62(17): 178102. doi: 10.7498/aps.62.178102
    [17] 陈先梅, 王晓霞, 郜小勇, 赵显伟, 刘红涛, 张飒. 掺银氧化锌纳米棒的水热法制备研究. 物理学报, 2013, 62(5): 056104. doi: 10.7498/aps.62.056104
    [18] 吴木生, 徐波, 刘刚, 欧阳楚英. 应变对单层二硫化钼能带影响的第一性原理研究 . 物理学报, 2012, 61(22): 227102. doi: 10.7498/aps.61.227102
    [19] 刘佳, 徐玲玲, 张海霖, 吕威, 朱琳, 高红, 张喜田. 一步水热法在Al掺杂ZnO纳米盘上可控自组装合成ZnO纳米棒阵列. 物理学报, 2012, 61(2): 027802. doi: 10.7498/aps.61.027802
    [20] 孙 晖, 张琦锋, 吴锦雷. 基于氧化锌纳米线的紫外发光二极管. 物理学报, 2007, 56(6): 3479-3482. doi: 10.7498/aps.56.3479
计量
  • 文章访问数:  6040
  • PDF下载量:  1994
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-06-12
  • 修回日期:  2014-08-20
  • 刊出日期:  2015-01-05

水热法合成纳米花状二硫化钼及其微观结构表征

  • 1. 中国计量学院, 光学与电子科技学院, 杭州 310018
    基金项目: 国家自然科学基金(批准号: 61006051, 61177050)、浙江省大学生科技创新活动计划(批准号: 2013R409016)和浙江省科技厅公益技术应用研究(批准号: 2013C31068)资助的课题.

摘要: 本文以钼酸钠、硫代乙酰胺为前驱体, 硅钨酸为添加剂, 成功用水热法合成高纯度纳米花状二硫化钼. 产物特性用X射线衍射(XRD)、能量色散谱(EDS)、扫描电子显微镜(SEM)进行表征. XRD和EDS图显示实验产物为二硫化钼, 且其结晶度和层状堆垛良好. SEM图谱则表明二硫化钼为纳米花状结构, 颗粒直径300 nm左右, 由几十上百片花瓣组成, 每片花瓣厚度十个纳米左右. 通过以硅钨酸为变量的梯度实验, 研究发现, 硅钨酸对于纳米花状MoS2的形成具有重要作用, 不添加硅钨酸, 无法形成纳米花状MoS2, 此外, 硅钨酸的剂量会影响合成MoS2的大小和形貌. 本文还对纳米花状二硫化钼的形成机理做了初步的讨论.

English Abstract

参考文献 (34)

目录

    /

    返回文章
    返回