搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用推广的量子轨迹蒙特卡罗方法研究强场光电子全息

林呈 张华堂 盛志浩 余显环 刘鹏 徐竟文 宋晓红 胡师林 陈京 杨玮枫

引用本文:
Citation:

用推广的量子轨迹蒙特卡罗方法研究强场光电子全息

林呈, 张华堂, 盛志浩, 余显环, 刘鹏, 徐竟文, 宋晓红, 胡师林, 陈京, 杨玮枫

Strong field photoelectron holography studied by a generalized quantum-trajectory Monte Carlo method

Lin Cheng, Zhang Hua-Tang, Sheng Zhi-Hao, Yu Xian-Huan, Liu Peng, Xu Jing-Wen, Song Xiao-Hong, Hu Shi-Lin, Chen Jing, Yang Wei-Feng
PDF
导出引用
  • 强场光电子全息因其二维光电子动量谱中携带着电子和离子的时空动力学信息,所以在实验中被发现后迅速成为近年来强场超快物理中的一个热点研究领域.本文主要介绍一种推广的量子轨迹蒙特卡罗计算方法.利用这种方法可在更广泛的实验条件下探讨原子分子光电子全息现象背后深层次的物理机理.与含时薛定谔方程的对比发现利用推广的量子轨迹蒙特卡罗方法计算的光电子全息干涉结构的截止能量位置能清楚地反映非绝热隧穿电离效应.而且,我们发现了深隧穿电离条件下一种新颖的圆环干涉结构.这一圆环状干涉结构遮蔽了光电子全息条纹,因此,这一结果表明:深隧穿区并非是形成光电子全息的有利实验条件.在非绝热隧穿区,长程库仑势对于光电子全息的形成起着至关重要的作用.
    Strong-field photoelectron holography encodes detailed temporal and spatial information about both theelectron and ion dynamics. Here, we review a series of numerical studies of strong-field photoelectron holographyin atoms and molecules by a generalized quantum-trajectory Monte Carlo method. By comparingthe generalized quantum-trajectory Monte Carlo simulationwiththe numerical solution of thetime-dependent Schrdinger equation, we demonstrate that, in the nonadiabatic tunneling regime, pronounced nonadiabatic effects occur which manifest in the energy cutoff of the holographic interference structure. Moreover, we found that a profound ring-like pattern can be observed in the deep tunneling ionization regime. Theappearance of the ring-like interference pattern masks the holographic interference structure. In contrast to the tunneling regime, the long-range Coulomb potential is found to play an essential role in the formation of the photoelectron holography in the nonadiabatic tunneling regime.
      Corresponding author: Song Xiao-Hong, songxh@stu.edu.cn;chen_jing@iapcm.ac.cn;wfyang@stu.edu.cn ; Chen Jing, songxh@stu.edu.cn;chen_jing@iapcm.ac.cn;wfyang@stu.edu.cn ; Yang Wei-Feng, songxh@stu.edu.cn;chen_jing@iapcm.ac.cn;wfyang@stu.edu.cn
    • Funds: Project was supported by the National Key Program for ST Research and Development, China (Grant No. 2016YFA0401100), theNationalBasic Research Program of China (Grant No. 2013CB922201), the National Natural Science Foundation of China (Grant Nos. 11374202, 11674209, 11274220, 11274050, 11334009, 11425414), the Major Program of Guangdong Natural Science Foundation (Grant No. 2014A030311019), and the Yang Fan Talent Project of Guangdong Province, China.
    [1]

    AgostiniP, Fabre F, Mainfray G, Petite G, Rahman N K 1979Phys. Rev. Lett. 42 1127

    [2]

    Becker W, Grasbon F, Kopold R, Miloševic D B, Paulus G G, Walther H 2002Adv. At. Mol. Opt. Phys. 48 35

    [3]

    Corkum P B 1993Phys. Rev. Lett. 71 1994

    [4]

    Huismans Y, Rouzée A, Gijsbertsen A, Jungmann J H, Smolkowska A S, Logman P S W M, Lépine F, Cauchy C, Zamith S, Marchenko T, Bakker J M, Berden G, Redlich B, Meer A F G, Muller H G, Vermin W, Schafer K J, Spanner M, Ivanov M Y, Smirnova O, Bauer D, Popruzhenko S V, Vrakking M J J 2011Science 331 61

    [5]

    Hickstein D D, Ranitovic P, Stefan W, Tong X M, Huismans Y, Arpin P, Zhou X B, Keister K E, Hogle C W, Zhang B S, Ding C Y, Johnsson P, Toshima N, Vrakking M J J, Mumane M M, Kapteyn H C 2012Phys. Rev. Lett. 109 073004

    [6]

    Meckel M, Staudte A, Patchkovskii S, Villeneuve D M, Corkum P B, Dörner R, Spanner M 2014Nature Phys. 10 594

    [7]

    Huismans Y, Gijsbertsen A, Smolkowska A S, Jungmann J H, Rouzée A, Logman P S W M, Lépine F, Cauchy C, Zamith S, Marchenko T, Bakker J M, Berden G, Redlich B, Meer A F G, Ivanov M Y, Yan T M, Bauer D, Smirnova O, Vrakking M J J 2012Phys. Rev. Lett. 109 013002

    [8]

    Marchenko T, Huismans Y, Schafer K J, Vrakking M J J 2011Phys. Rev. A 84 053427

    [9]

    Yang W F, Song X H, Chen Z J 2012Opt. Express 20 12067

    [10]

    Yang W F, Song X H, Zeng Z N, Li R X, Xu Z Z 2010Opt. Express 18 2558

    [11]

    Bian X B, Huismans Y, Smimova O, Yuan K J, Vrakking M J J, Bandrauk A D 2011Phys. Rev. A 84 043420

    [12]

    Yang W F, Sheng Z H, Feng X P, Wu M L, Chen Z J, Song X H 2014Opt. Express 22 2519

    [13]

    Haertelt M, Bian X B, Spanner M, Staudte A, Corkum P B 2016Phys. Rev. Lett. 116 133001

    [14]

    Zhou Y M, Tolstikhin O I, Morishita T 2016Phys. Rev. Lett. 116 173001

    [15]

    Keldysh L V 1965Sov. Phys. JETP 20 1307

    [16]

    Yudin G L, Ivanov M Y 2001Phys. Rev. A 64 013409

    [17]

    Ivanov M Y, Spanner M, Smirnova O 2005J. Mod. Opt. 52 165

    [18]

    Eckle P, Pfeiffer A N, Cirelli C, Staudte A, Dörner R, Muller H G, Bttiker M, Keller U 2008Science 322 1525

    [19]

    Boge R, Cirelli C, Landsman A S, Heuser S, Ludwig A, Maurer J, Weger M, Gallmann L, Keller U 2013Phys. Rev. Lett. 111 103003

    [20]

    Gkortsas V M, Bhardwaj S, Lai C J, Hong K H, Filho E L F, Kärter F X 2011Phys. Rev. A 84 013427

    [21]

    Ivanov I A, Kheifets A S 2014Phys. Rev. A 89 021402(R)

    [22]

    Wang C, Lai X Y, Hu Z L, Chen Y J, Quan W, Kang H P, Gong C, Liu X 2014Phys. Rev. A 90 013422

    [23]

    Blaga C I, Catoire F, Colosimo P, Paulus G G, Muller H G, Agostini P, Dimauro L F 2009Nature Phys. 5 335

    [24]

    Quan W, Lin Z, Wu M, Kang H, Liu H, Liu X, Chen J, Liu J, He X T, Chen S G, Xiong H, Guo L, Xu H, Fu Y, Cheng Y, Xu Z Z 2009Phys. Rev. Lett. 103 093001

    [25]

    Wu C Y, Yang Y D, Liu Y Q, Gong Q H, Wu M, Liu X, Hao X L, Li W D, He X T, Chen J 2012Phys. Rev. Lett. 109 043001

    [26]

    Liu C P, Hatsagortsyan K Z 2010Phys. Rev. Lett. 105 113003

    [27]

    Yan T M, Popruzhenko S V, Vrakking M J J, Bauer D 2010Phys. Rev. Lett. 105 253002

    [28]

    Kästner A, Saalmann U, Rost J M 2012Phys. Rev. Lett. 108 033201

    [29]

    Chu W, Wu M Y, Zeng B, Yao J P, Ni J L, Xiong H, Xu H, Lin Z Y, Kang H P, Quan W, Chen J, Liu X, Cheng Y, Xu Z Z 2012Phys. Rev. A 85 021403

    [30]

    Guo L, Han S S, Liu X, Cheng Y, Xu Z Z, Fan J, Chen J, Chen S G, Becker W, Blaga C I, DiChiara A D, Sistrunk E, Agostini P, DiMauro L F 2013Phys. Rev. Lett. 110 013001

    [31]

    Brabec T, Ivanov M Y, Corkum P B 1996Phys. Rev. A 54 R2551

    [32]

    Hu B, Liu J, Chen S 1997Phys. Lett. A 236 533

    [33]

    Chen J, Liu J, Chen S 2000Phys. Rev. A 61 033402

    [34]

    Li M, Geng J W, Liu H, Deng Y, Wu C, Peng L Y, Gong Q, Liu Y 2014Phys. Rev. Lett. 112 113002

    [35]

    Song X H, Lin C, Sheng Z H, Liu P, Chen Z J, Yang W F, Hu S X, Lin C D, Chen J 2016Sci. Rep. 6 28392

    [36]

    Yang W F, Zhang H T, Lin C, Xu J W, Sheng Z H, Song X H, Hu S X, Chen J 2016Phys. Rev. A 94 043419

    [37]

    Perelomov A M, Popov V S, Terentev M V 1966Sov. Phys. JETP 23 924

    [38]

    Salières P, Carrè B, Dèroff L L, Grasbon F, Paulus G G, Walther H, Kopold R, Becker W, Milošević D B, Sanpera A, Lewenstein M 2001Science 292 902

    [39]

    Bondar D I 2008Phys. Rev. A 78 015405

    [40]

    Li M, Geng J W, Han M, Liu M M, Peng L Y, Gong Q H, Liu Y Q 2016Phys. Rev. A 93 013402

    [41]

    Shvetsov-Shilovski N I, Lein M, Madsen L B, Räsänen E, Lemell C, Burgdörfer J, Arbó D G, Tökési K 2016Phys. Rev. A 94 013415

    [42]

    Kopold R, Becker W, Kleber M, Paulus G G 2002J. Phys. B:At. Mol. Opt. Phys. 35 217

    [43]

    Li M, Sun X, Xie X, Shao Y, Deng Y, Wu C, Gong Q, Liu Y 2015Sci. Rep. 5 8519

    [44]

    Liu M M, Li M, Wu C, Gong Q, Staudte A, Liu Y 2016Phys. Rev. Lett. 116 163004

    [45]

    Möller M, Meyer F, Sayler A M, Paulus G G, Kling M F, Schmidt B E, Becker W, Milošević D B 2014Phys. Rev. A 90 023412

  • [1]

    AgostiniP, Fabre F, Mainfray G, Petite G, Rahman N K 1979Phys. Rev. Lett. 42 1127

    [2]

    Becker W, Grasbon F, Kopold R, Miloševic D B, Paulus G G, Walther H 2002Adv. At. Mol. Opt. Phys. 48 35

    [3]

    Corkum P B 1993Phys. Rev. Lett. 71 1994

    [4]

    Huismans Y, Rouzée A, Gijsbertsen A, Jungmann J H, Smolkowska A S, Logman P S W M, Lépine F, Cauchy C, Zamith S, Marchenko T, Bakker J M, Berden G, Redlich B, Meer A F G, Muller H G, Vermin W, Schafer K J, Spanner M, Ivanov M Y, Smirnova O, Bauer D, Popruzhenko S V, Vrakking M J J 2011Science 331 61

    [5]

    Hickstein D D, Ranitovic P, Stefan W, Tong X M, Huismans Y, Arpin P, Zhou X B, Keister K E, Hogle C W, Zhang B S, Ding C Y, Johnsson P, Toshima N, Vrakking M J J, Mumane M M, Kapteyn H C 2012Phys. Rev. Lett. 109 073004

    [6]

    Meckel M, Staudte A, Patchkovskii S, Villeneuve D M, Corkum P B, Dörner R, Spanner M 2014Nature Phys. 10 594

    [7]

    Huismans Y, Gijsbertsen A, Smolkowska A S, Jungmann J H, Rouzée A, Logman P S W M, Lépine F, Cauchy C, Zamith S, Marchenko T, Bakker J M, Berden G, Redlich B, Meer A F G, Ivanov M Y, Yan T M, Bauer D, Smirnova O, Vrakking M J J 2012Phys. Rev. Lett. 109 013002

    [8]

    Marchenko T, Huismans Y, Schafer K J, Vrakking M J J 2011Phys. Rev. A 84 053427

    [9]

    Yang W F, Song X H, Chen Z J 2012Opt. Express 20 12067

    [10]

    Yang W F, Song X H, Zeng Z N, Li R X, Xu Z Z 2010Opt. Express 18 2558

    [11]

    Bian X B, Huismans Y, Smimova O, Yuan K J, Vrakking M J J, Bandrauk A D 2011Phys. Rev. A 84 043420

    [12]

    Yang W F, Sheng Z H, Feng X P, Wu M L, Chen Z J, Song X H 2014Opt. Express 22 2519

    [13]

    Haertelt M, Bian X B, Spanner M, Staudte A, Corkum P B 2016Phys. Rev. Lett. 116 133001

    [14]

    Zhou Y M, Tolstikhin O I, Morishita T 2016Phys. Rev. Lett. 116 173001

    [15]

    Keldysh L V 1965Sov. Phys. JETP 20 1307

    [16]

    Yudin G L, Ivanov M Y 2001Phys. Rev. A 64 013409

    [17]

    Ivanov M Y, Spanner M, Smirnova O 2005J. Mod. Opt. 52 165

    [18]

    Eckle P, Pfeiffer A N, Cirelli C, Staudte A, Dörner R, Muller H G, Bttiker M, Keller U 2008Science 322 1525

    [19]

    Boge R, Cirelli C, Landsman A S, Heuser S, Ludwig A, Maurer J, Weger M, Gallmann L, Keller U 2013Phys. Rev. Lett. 111 103003

    [20]

    Gkortsas V M, Bhardwaj S, Lai C J, Hong K H, Filho E L F, Kärter F X 2011Phys. Rev. A 84 013427

    [21]

    Ivanov I A, Kheifets A S 2014Phys. Rev. A 89 021402(R)

    [22]

    Wang C, Lai X Y, Hu Z L, Chen Y J, Quan W, Kang H P, Gong C, Liu X 2014Phys. Rev. A 90 013422

    [23]

    Blaga C I, Catoire F, Colosimo P, Paulus G G, Muller H G, Agostini P, Dimauro L F 2009Nature Phys. 5 335

    [24]

    Quan W, Lin Z, Wu M, Kang H, Liu H, Liu X, Chen J, Liu J, He X T, Chen S G, Xiong H, Guo L, Xu H, Fu Y, Cheng Y, Xu Z Z 2009Phys. Rev. Lett. 103 093001

    [25]

    Wu C Y, Yang Y D, Liu Y Q, Gong Q H, Wu M, Liu X, Hao X L, Li W D, He X T, Chen J 2012Phys. Rev. Lett. 109 043001

    [26]

    Liu C P, Hatsagortsyan K Z 2010Phys. Rev. Lett. 105 113003

    [27]

    Yan T M, Popruzhenko S V, Vrakking M J J, Bauer D 2010Phys. Rev. Lett. 105 253002

    [28]

    Kästner A, Saalmann U, Rost J M 2012Phys. Rev. Lett. 108 033201

    [29]

    Chu W, Wu M Y, Zeng B, Yao J P, Ni J L, Xiong H, Xu H, Lin Z Y, Kang H P, Quan W, Chen J, Liu X, Cheng Y, Xu Z Z 2012Phys. Rev. A 85 021403

    [30]

    Guo L, Han S S, Liu X, Cheng Y, Xu Z Z, Fan J, Chen J, Chen S G, Becker W, Blaga C I, DiChiara A D, Sistrunk E, Agostini P, DiMauro L F 2013Phys. Rev. Lett. 110 013001

    [31]

    Brabec T, Ivanov M Y, Corkum P B 1996Phys. Rev. A 54 R2551

    [32]

    Hu B, Liu J, Chen S 1997Phys. Lett. A 236 533

    [33]

    Chen J, Liu J, Chen S 2000Phys. Rev. A 61 033402

    [34]

    Li M, Geng J W, Liu H, Deng Y, Wu C, Peng L Y, Gong Q, Liu Y 2014Phys. Rev. Lett. 112 113002

    [35]

    Song X H, Lin C, Sheng Z H, Liu P, Chen Z J, Yang W F, Hu S X, Lin C D, Chen J 2016Sci. Rep. 6 28392

    [36]

    Yang W F, Zhang H T, Lin C, Xu J W, Sheng Z H, Song X H, Hu S X, Chen J 2016Phys. Rev. A 94 043419

    [37]

    Perelomov A M, Popov V S, Terentev M V 1966Sov. Phys. JETP 23 924

    [38]

    Salières P, Carrè B, Dèroff L L, Grasbon F, Paulus G G, Walther H, Kopold R, Becker W, Milošević D B, Sanpera A, Lewenstein M 2001Science 292 902

    [39]

    Bondar D I 2008Phys. Rev. A 78 015405

    [40]

    Li M, Geng J W, Han M, Liu M M, Peng L Y, Gong Q H, Liu Y Q 2016Phys. Rev. A 93 013402

    [41]

    Shvetsov-Shilovski N I, Lein M, Madsen L B, Räsänen E, Lemell C, Burgdörfer J, Arbó D G, Tökési K 2016Phys. Rev. A 94 013415

    [42]

    Kopold R, Becker W, Kleber M, Paulus G G 2002J. Phys. B:At. Mol. Opt. Phys. 35 217

    [43]

    Li M, Sun X, Xie X, Shao Y, Deng Y, Wu C, Gong Q, Liu Y 2015Sci. Rep. 5 8519

    [44]

    Liu M M, Li M, Wu C, Gong Q, Staudte A, Liu Y 2016Phys. Rev. Lett. 116 163004

    [45]

    Möller M, Meyer F, Sayler A M, Paulus G G, Kling M F, Schmidt B E, Becker W, Milošević D B 2014Phys. Rev. A 90 023412

  • [1] 李婷, 汪涛, 王叶兵, 卢本全, 卢晓同, 尹默娟, 常宏. 浅光晶格中量子隧穿现象的实验观测. 物理学报, 2022, 71(7): 073701. doi: 10.7498/aps.71.20212038
    [2] 许霄琰. 强关联电子体系的量子蒙特卡罗计算. 物理学报, 2022, 71(12): 127101. doi: 10.7498/aps.71.20220079
    [3] 赵猛, 全威, 肖智磊, 许松坡, 王志强, 王明辉, 成思进, 吴文卓, 王艳兰, 赖炫扬, 柳晓军. 强激光场驱动Ar原子电离中的隧穿延时. 物理学报, 2022, 71(23): 233203. doi: 10.7498/aps.71.20221295
    [4] 黄雪飞, 苏杰, 廖健颖, 李盈傧, 黄诚. 反向旋转双色椭偏场中原子隧穿电离电子的全息干涉. 物理学报, 2022, 71(9): 093202. doi: 10.7498/aps.71.20212226
    [5] 陶建飞, 夏勤智, 廖临谷, 刘杰, 刘小井. 强激光场原子电离光电子轨迹干涉全息理论及应用. 物理学报, 2022, 71(23): 233206. doi: 10.7498/aps.71.20221296
    [6] 黄文逍, 张逸竹, 阎天民, 江玉海. 超快强场下低能光电子的研究进展解析R矩阵半经典轨迹理论. 物理学报, 2016, 65(22): 223204. doi: 10.7498/aps.65.223204
    [7] 王艳海. 强场隧穿电离模式下的氦原子电离时间问题研究. 物理学报, 2016, 65(15): 153201. doi: 10.7498/aps.65.153201
    [8] 李春雷, 徐燕, 张燕翔, 叶宝生. 双量子阱中光子辅助电子自旋隧穿. 物理学报, 2013, 62(10): 107301. doi: 10.7498/aps.62.107301
    [9] 周青春, 狄尊燕. 声子对隧穿量子点分子辐射场系统量子相位的影响. 物理学报, 2013, 62(13): 134206. doi: 10.7498/aps.62.134206
    [10] 郭福明, 宋阳, 陈基根, 曾思良, 杨玉军. 含时量子蒙特卡罗方法研究两电子原子在强激光作用下电子的动力学行为. 物理学报, 2012, 61(16): 163203. doi: 10.7498/aps.61.163203
    [11] 费宏明, 周飞, 杨毅彪, 梁九卿. 光子晶体双量子阱的共振隧穿. 物理学报, 2011, 60(7): 074225. doi: 10.7498/aps.60.074225
    [12] 周亮, 张靖仪. 带电带磁粒子的量子隧穿辐射. 物理学报, 2010, 59(6): 4380-4384. doi: 10.7498/aps.59.4380
    [13] 魏雅娜, 杨世平. 以两种方法研究强激光场中的非时序双电离现象. 物理学报, 2010, 59(11): 7788-7795. doi: 10.7498/aps.59.7788
    [14] 张靖仪, 赵 峥. 静质量不为零的粒子的量子隧穿辐射. 物理学报, 2006, 55(7): 3796-3798. doi: 10.7498/aps.55.3796
    [15] 唐 霖, 黄建华, 段正路, 张卫平, 周兆英, 冯焱颖, 朱 荣. 冷原子穿越激光束的量子隧穿时间. 物理学报, 2006, 55(12): 6606-6611. doi: 10.7498/aps.55.6606
    [16] 戴 涛, 刘玉资, 张 泽. 电子全息方法测定GaN/AlGaN多量子阱结构的极性. 物理学报, 2006, 55(11): 5829-5834. doi: 10.7498/aps.55.5829
    [17] 吴卓杰, 朱卡的, 袁晓忠, 郑 杭. 电声子相互作用对量子点分子中单电子隧穿的影响. 物理学报, 2005, 54(7): 3346-3350. doi: 10.7498/aps.54.3346
    [18] 郭 永, 顾秉林, 川添良幸. 磁量子结构中二维自旋电子的隧穿输运. 物理学报, 2000, 49(9): 1814-1820. doi: 10.7498/aps.49.1814
    [19] 冯健, 高学彦. 强场自电离光电子谱中峰开关效应的破坏. 物理学报, 1993, 42(6): 886-892. doi: 10.7498/aps.42.886
    [20] 殷鹏程. 非线型场量子化展开的推广. 物理学报, 1977, 26(6): 477-485. doi: 10.7498/aps.26.477
计量
  • 文章访问数:  5070
  • PDF下载量:  439
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-25
  • 修回日期:  2016-10-19
  • 刊出日期:  2016-11-05

/

返回文章
返回