-
为研究中能区带电粒子在绝缘微孔中传输的物理图像,利用MATLAB程序和蒙特卡罗方法建立理论模型,得到入射能量为10 keV,100 keV和1 MeV的质子,以-1倾斜角入射到微孔后,出射粒子角分布、沉积电荷斑分布,以及粒子在微孔内的运动轨迹等传输特性.研究结果表明,在10 keV的低能区,微孔内壁沉积电荷的导向效应是主要的传输机制.在1 MeV的高能区,进入表面以下多次随机非弹性碰撞是主要的输运机制.在100 keV的中能区,无电荷斑时,主要是以进入表面以下的随机二体碰撞为传输机制;在电荷斑累积过程中,增强的库仑排斥力逐渐抑制入射质子在微孔内壁表面发生电子俘获;当达到充放电平衡后,主要传输机制为电荷斑辅助的近表面镜面散射行为.这一特性加深了对中能区质子在微孔中输运行为的认识,有助于对百keV质子微束的控制和应用.In order to clearly understand the physical images of incident ions passing through the insulating nanocapillary, in this work we establish a theoretical model, in which the matlab program is combined with the Monte Carlo method, to estimate the time evolution of transmission features, such as the angular and deposited charge distribution, three-dimensional (3D) trajectories of H+ particles with proton incident energies of 10 keV, 100 keV and 1 MeV at -1 title angle. The simulation results show that the transmission mechanism of 100 keV protons is different from those of 10 keV and 1 MeV protons. After a sufficiently charging and discharging stage, 10 keV H+ particles are guided along the direction of capillary axis, indicating that the guiding force from the surface charge patches is significant, and the small-angle scattering of 1 MeV protons under the capillary inner wall is a physical process that determines the transport of H+ particles through the nanocapillary. However, for 100 keV H+ particles, the centroid angle gradually shifts from the guiding direction to the direction close to the incident beam, which is attributed to the fact that the stochastic inelastic binary collision below the surface is the main transmission mechanism at the beginning. After the charging and discharging reach an equilibrium state, the H+ particles are likely to pass through the nanocapillary, and the main transmission mechanism is the charge-patch-assisted specular scattering. This mechanism deepens the understanding of the transport behavior of protons through the nanocapillary, which will contribute to the control and application of the 100 keV proton beam.
-
Keywords:
- proton /
- insulating nanocapillary /
- transmission mechanism /
- simulation
[1] El-Said A S, Heller R, Meissl W, Ritter R, Facsko S, Lemell C, Solleder B, Gebeshuber I C, Betz G, Toulemonde M, Mller W, Burgdrfer J, Aumayr F 2008 Phys. Rev. Lett. 100 237601
[2] Mo D, Liu J, Duan J L, Yao H J, Chen Y H, Sun Y M, Zhai P F 2012 Mater. Lett. 68 201
[3] Kottmann J P, Martin O J F, Smith D R, Schultz S 2001 Phys. Rev.. 64 235402
[4] Mtfi-Tempfli S, Mtfi-Tempfli M, Piraux L, Juhsz Z, Biri S, Fekete , Ivn I, Gll F, Sulik B, Vkor G, Plinks J, Stolterfoht N 2006 Nanotechnology 17 3915
[5] Rajendra-Kumar R T, Badel X, Vikor G, Linnros J, Schuch R 2005 Nanotechnology 16 1697
[6] Stolterfoht N, Bremer J H, Hoffmann V, Hellhammer R, Fink D, Petrov A, Sulik B 2002 Phys. Rev. Lett. 88 133201
[7] Juhsz Z, Sulik B, Rcz R, Biri S, Bereczky J R, Tksi K, Kvr , Plinks J, Stolterfoht N 2010 Phys. Rev.. 82 062903
[8] Stolterfoht N 2013 Phys. Rev.. 87 032901
[9] Schiessl K, Palfinger W, Lemell C, Burgdrfer J 2005 Nucl. Instrum. Methods Phys. Res.. 232 228
[10] Schiessl K, Palfinger W, Tksi K, Nowotny H, Lemell C, Burgdrfer J 2005 Phys. Rev.. 72 062902
[11] Schiessl K, Palfinger W, Tksi K, Nowotny H, Lemell C, Burgdrfer J 2007 Nucl. Instrum. Methods Phys. Res.. 258 150
[12] Lemell C, Schiessl K, Nowotny H, Burgdrfer J 2007 Nucl. Instrum. Methods Phys. Res.. 256 66
[13] Schiessl K, Lemell C, Tksi K, Burgdrfer J 2009 J. Phys. Conf. Ser. 163 012081
[14] Schiessl K, Lemell C, Tksi K, Burgdrfer J 2009 J. Phys. Conf. Ser. 194 012069
[15] Schweigler T, Lemell C, Burgdrfer J 2011 Nucl. Instrum. Methods Phys. Res.. 269 1253
[16] Nebiki T, Yamamot T, Narusawa T, Breese M B H, Teo E J, Watt F, Vac J 2003 Sci. Tech. A: Vacuum, Surfaces, and Films 21 1671
[17] Nebiki T, Sekiba D, Yonemura H, Wilde M, Ogura S, Yamashita H, Matsumoto M, Fukutani K, Okano T, Kasagi J, Iwamura Y, Itoh T, Kuribayashi S, Matsuzaki H, Narusawa T 2008 Nucl. Instrum. Methods Phys. Res.. 266 1324
[18] Sekiba D, Yonemura H, Nebiki T, Wilde M, Ogura S, Yamashita H, Matsumoto M, Kasagi J, Iwamura Y, Itoh T, Matsuzaki H, Narusawa T, Fukutani K 2008 Nucl. Instrum. Methods Phys. Res.. 266 4027
[19] Hasegawa J, Jaiyen S, Polee C, Chankow N, Oguri Y 2011 J. Appl. Phys. 110 044913
[20] Simon M J, Zhou C L, Dbeli M, Cassimi A, Monnet I, Mry A, Grygiel C, Guillous S, Madi T, Benyagoub A, Lebius H, Mller A M, Shiromaru H, Synal H A 2014 Nucl. Instrum. Methods Phys. Res.. 330 11
[21] Hasegawa J, Jaiyen S, Polee C, Chankow N, Oguri Y 2011 J. Appl. Phys. 110 044913
[22] Wu Y H, Yu D Y, Xue Y L, Chen J, Liu J L, Zhang M W, Wang W, Lu R C, Ruan F F, Du F, Shao C J, Li J Y, Kang L, Cai X H 2014 Nucl. Instrum. Methods Phys. Res.. 334 59
[23] Xue Y L, Yu D Y, Liu J L, Wu Y H, Zhang M W, Chen J, Wang W, Lu R C, Shao C J, Kang L, Li J Y, Cai X H, Stolterfoht N 2015 Nucl. Instrum. Methods Phys. Res.. 359 44
[24] Wang G Y, Shao J X, Song Q, Mo D, Yang A X, Ma X, Zhou W, Cui Y, Li Y, Liu Z L, Chen X M 2015 Sci. Rep. 5 15169
[25] Zhou W, Niu S T, Yan X W, Bai X F, Han C Z, Zhang M X, Zhou L H, Yang A X, Pan P, Shao J X, Chen X M 2016 Acta Phys. Sin. 65 103401(in Chinese) [周旺, 牛书通, 闫学文, 白雄飞, 韩承志, 张鹛枭, 周利华, 杨爱香, 潘鹏, 邵剑雄, 陈熙萌 2016 物理学报 65 103401]
[26] Errea L F, Illescas C, Mndez L, Pons B, Rabadn I, Riera A 2007 Phys. Rev.. 76 040701
[27] Illescas C, Riera A 1999 Phys. Rev.. 60 4546
[28] Lilly Jr A C, McDowell J R 1968 J. Appl. Phys. 39 141
[29] Stolterfoht N, Bremer J H, Hoffmann V, Hellhammer R, Fink D, Petrov A, Sulik B 2002 Phys. Rev. Lett. 88 133201
[30] Stolterfoht N, Hellhammer R, Sulik B, Juhsz Z, Bayer V, Trautmann C, Bodewits E, Hoekstra R 2011 Phys. Rev.. 83 062901
[31] Yang F J 2008 Atom. Phys. (Beijing: Higher Education Press) p95 (in Chinese) [杨福家 2008 原子物理学(北京: 高等教育出版社) 第95页]
-
[1] El-Said A S, Heller R, Meissl W, Ritter R, Facsko S, Lemell C, Solleder B, Gebeshuber I C, Betz G, Toulemonde M, Mller W, Burgdrfer J, Aumayr F 2008 Phys. Rev. Lett. 100 237601
[2] Mo D, Liu J, Duan J L, Yao H J, Chen Y H, Sun Y M, Zhai P F 2012 Mater. Lett. 68 201
[3] Kottmann J P, Martin O J F, Smith D R, Schultz S 2001 Phys. Rev.. 64 235402
[4] Mtfi-Tempfli S, Mtfi-Tempfli M, Piraux L, Juhsz Z, Biri S, Fekete , Ivn I, Gll F, Sulik B, Vkor G, Plinks J, Stolterfoht N 2006 Nanotechnology 17 3915
[5] Rajendra-Kumar R T, Badel X, Vikor G, Linnros J, Schuch R 2005 Nanotechnology 16 1697
[6] Stolterfoht N, Bremer J H, Hoffmann V, Hellhammer R, Fink D, Petrov A, Sulik B 2002 Phys. Rev. Lett. 88 133201
[7] Juhsz Z, Sulik B, Rcz R, Biri S, Bereczky J R, Tksi K, Kvr , Plinks J, Stolterfoht N 2010 Phys. Rev.. 82 062903
[8] Stolterfoht N 2013 Phys. Rev.. 87 032901
[9] Schiessl K, Palfinger W, Lemell C, Burgdrfer J 2005 Nucl. Instrum. Methods Phys. Res.. 232 228
[10] Schiessl K, Palfinger W, Tksi K, Nowotny H, Lemell C, Burgdrfer J 2005 Phys. Rev.. 72 062902
[11] Schiessl K, Palfinger W, Tksi K, Nowotny H, Lemell C, Burgdrfer J 2007 Nucl. Instrum. Methods Phys. Res.. 258 150
[12] Lemell C, Schiessl K, Nowotny H, Burgdrfer J 2007 Nucl. Instrum. Methods Phys. Res.. 256 66
[13] Schiessl K, Lemell C, Tksi K, Burgdrfer J 2009 J. Phys. Conf. Ser. 163 012081
[14] Schiessl K, Lemell C, Tksi K, Burgdrfer J 2009 J. Phys. Conf. Ser. 194 012069
[15] Schweigler T, Lemell C, Burgdrfer J 2011 Nucl. Instrum. Methods Phys. Res.. 269 1253
[16] Nebiki T, Yamamot T, Narusawa T, Breese M B H, Teo E J, Watt F, Vac J 2003 Sci. Tech. A: Vacuum, Surfaces, and Films 21 1671
[17] Nebiki T, Sekiba D, Yonemura H, Wilde M, Ogura S, Yamashita H, Matsumoto M, Fukutani K, Okano T, Kasagi J, Iwamura Y, Itoh T, Kuribayashi S, Matsuzaki H, Narusawa T 2008 Nucl. Instrum. Methods Phys. Res.. 266 1324
[18] Sekiba D, Yonemura H, Nebiki T, Wilde M, Ogura S, Yamashita H, Matsumoto M, Kasagi J, Iwamura Y, Itoh T, Matsuzaki H, Narusawa T, Fukutani K 2008 Nucl. Instrum. Methods Phys. Res.. 266 4027
[19] Hasegawa J, Jaiyen S, Polee C, Chankow N, Oguri Y 2011 J. Appl. Phys. 110 044913
[20] Simon M J, Zhou C L, Dbeli M, Cassimi A, Monnet I, Mry A, Grygiel C, Guillous S, Madi T, Benyagoub A, Lebius H, Mller A M, Shiromaru H, Synal H A 2014 Nucl. Instrum. Methods Phys. Res.. 330 11
[21] Hasegawa J, Jaiyen S, Polee C, Chankow N, Oguri Y 2011 J. Appl. Phys. 110 044913
[22] Wu Y H, Yu D Y, Xue Y L, Chen J, Liu J L, Zhang M W, Wang W, Lu R C, Ruan F F, Du F, Shao C J, Li J Y, Kang L, Cai X H 2014 Nucl. Instrum. Methods Phys. Res.. 334 59
[23] Xue Y L, Yu D Y, Liu J L, Wu Y H, Zhang M W, Chen J, Wang W, Lu R C, Shao C J, Kang L, Li J Y, Cai X H, Stolterfoht N 2015 Nucl. Instrum. Methods Phys. Res.. 359 44
[24] Wang G Y, Shao J X, Song Q, Mo D, Yang A X, Ma X, Zhou W, Cui Y, Li Y, Liu Z L, Chen X M 2015 Sci. Rep. 5 15169
[25] Zhou W, Niu S T, Yan X W, Bai X F, Han C Z, Zhang M X, Zhou L H, Yang A X, Pan P, Shao J X, Chen X M 2016 Acta Phys. Sin. 65 103401(in Chinese) [周旺, 牛书通, 闫学文, 白雄飞, 韩承志, 张鹛枭, 周利华, 杨爱香, 潘鹏, 邵剑雄, 陈熙萌 2016 物理学报 65 103401]
[26] Errea L F, Illescas C, Mndez L, Pons B, Rabadn I, Riera A 2007 Phys. Rev.. 76 040701
[27] Illescas C, Riera A 1999 Phys. Rev.. 60 4546
[28] Lilly Jr A C, McDowell J R 1968 J. Appl. Phys. 39 141
[29] Stolterfoht N, Bremer J H, Hoffmann V, Hellhammer R, Fink D, Petrov A, Sulik B 2002 Phys. Rev. Lett. 88 133201
[30] Stolterfoht N, Hellhammer R, Sulik B, Juhsz Z, Bayer V, Trautmann C, Bodewits E, Hoekstra R 2011 Phys. Rev.. 83 062901
[31] Yang F J 2008 Atom. Phys. (Beijing: Higher Education Press) p95 (in Chinese) [杨福家 2008 原子物理学(北京: 高等教育出版社) 第95页]
计量
- 文章访问数: 6359
- PDF下载量: 112
- 被引次数: 0