搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

100 keV质子与低高能质子在绝缘微孔中输运特性的对比分析

朱炳辉 杨爱香 牛书通 陈熙萌 周旺 邵剑雄

引用本文:
Citation:

100 keV质子与低高能质子在绝缘微孔中输运特性的对比分析

朱炳辉, 杨爱香, 牛书通, 陈熙萌, 周旺, 邵剑雄

Simulation analyses of 100-keV as well as low and high energy protons through insulating nanocapillary

Zhu Bing-Hui, Yang Ai-Xiang, Niu Shu-Tong, Chen Xi-Meng, Zhou Wang Shao, Jian-Xiong
PDF
导出引用
  • 为研究中能区带电粒子在绝缘微孔中传输的物理图像,利用MATLAB程序和蒙特卡罗方法建立理论模型,得到入射能量为10 keV,100 keV和1 MeV的质子,以-1倾斜角入射到微孔后,出射粒子角分布、沉积电荷斑分布,以及粒子在微孔内的运动轨迹等传输特性.研究结果表明,在10 keV的低能区,微孔内壁沉积电荷的导向效应是主要的传输机制.在1 MeV的高能区,进入表面以下多次随机非弹性碰撞是主要的输运机制.在100 keV的中能区,无电荷斑时,主要是以进入表面以下的随机二体碰撞为传输机制;在电荷斑累积过程中,增强的库仑排斥力逐渐抑制入射质子在微孔内壁表面发生电子俘获;当达到充放电平衡后,主要传输机制为电荷斑辅助的近表面镜面散射行为.这一特性加深了对中能区质子在微孔中输运行为的认识,有助于对百keV质子微束的控制和应用.
    In order to clearly understand the physical images of incident ions passing through the insulating nanocapillary, in this work we establish a theoretical model, in which the matlab program is combined with the Monte Carlo method, to estimate the time evolution of transmission features, such as the angular and deposited charge distribution, three-dimensional (3D) trajectories of H+ particles with proton incident energies of 10 keV, 100 keV and 1 MeV at -1 title angle. The simulation results show that the transmission mechanism of 100 keV protons is different from those of 10 keV and 1 MeV protons. After a sufficiently charging and discharging stage, 10 keV H+ particles are guided along the direction of capillary axis, indicating that the guiding force from the surface charge patches is significant, and the small-angle scattering of 1 MeV protons under the capillary inner wall is a physical process that determines the transport of H+ particles through the nanocapillary. However, for 100 keV H+ particles, the centroid angle gradually shifts from the guiding direction to the direction close to the incident beam, which is attributed to the fact that the stochastic inelastic binary collision below the surface is the main transmission mechanism at the beginning. After the charging and discharging reach an equilibrium state, the H+ particles are likely to pass through the nanocapillary, and the main transmission mechanism is the charge-patch-assisted specular scattering. This mechanism deepens the understanding of the transport behavior of protons through the nanocapillary, which will contribute to the control and application of the 100 keV proton beam.
      通信作者: 周旺, w.zhou@outlook.com;shaojx@lzu.edu.cn ; 邵剑雄, w.zhou@outlook.com;shaojx@lzu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11775103,11675067)和国家自然科学基金青年科学基金(批准号:11605078)资助的课题.
      Corresponding author: Zhou Wang Shao, w.zhou@outlook.com;shaojx@lzu.edu.cn ; Jian-Xiong, w.zhou@outlook.com;shaojx@lzu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11775103, 11675067) and the National Natural Science Foundation for Young Scholars of China (Grant No. 11605078).
    [1]

    El-Said A S, Heller R, Meissl W, Ritter R, Facsko S, Lemell C, Solleder B, Gebeshuber I C, Betz G, Toulemonde M, Mller W, Burgdrfer J, Aumayr F 2008 Phys. Rev. Lett. 100 237601

    [2]

    Mo D, Liu J, Duan J L, Yao H J, Chen Y H, Sun Y M, Zhai P F 2012 Mater. Lett. 68 201

    [3]

    Kottmann J P, Martin O J F, Smith D R, Schultz S 2001 Phys. Rev.. 64 235402

    [4]

    Mtfi-Tempfli S, Mtfi-Tempfli M, Piraux L, Juhsz Z, Biri S, Fekete , Ivn I, Gll F, Sulik B, Vkor G, Plinks J, Stolterfoht N 2006 Nanotechnology 17 3915

    [5]

    Rajendra-Kumar R T, Badel X, Vikor G, Linnros J, Schuch R 2005 Nanotechnology 16 1697

    [6]

    Stolterfoht N, Bremer J H, Hoffmann V, Hellhammer R, Fink D, Petrov A, Sulik B 2002 Phys. Rev. Lett. 88 133201

    [7]

    Juhsz Z, Sulik B, Rcz R, Biri S, Bereczky J R, Tksi K, Kvr , Plinks J, Stolterfoht N 2010 Phys. Rev.. 82 062903

    [8]

    Stolterfoht N 2013 Phys. Rev.. 87 032901

    [9]

    Schiessl K, Palfinger W, Lemell C, Burgdrfer J 2005 Nucl. Instrum. Methods Phys. Res.. 232 228

    [10]

    Schiessl K, Palfinger W, Tksi K, Nowotny H, Lemell C, Burgdrfer J 2005 Phys. Rev.. 72 062902

    [11]

    Schiessl K, Palfinger W, Tksi K, Nowotny H, Lemell C, Burgdrfer J 2007 Nucl. Instrum. Methods Phys. Res.. 258 150

    [12]

    Lemell C, Schiessl K, Nowotny H, Burgdrfer J 2007 Nucl. Instrum. Methods Phys. Res.. 256 66

    [13]

    Schiessl K, Lemell C, Tksi K, Burgdrfer J 2009 J. Phys. Conf. Ser. 163 012081

    [14]

    Schiessl K, Lemell C, Tksi K, Burgdrfer J 2009 J. Phys. Conf. Ser. 194 012069

    [15]

    Schweigler T, Lemell C, Burgdrfer J 2011 Nucl. Instrum. Methods Phys. Res.. 269 1253

    [16]

    Nebiki T, Yamamot T, Narusawa T, Breese M B H, Teo E J, Watt F, Vac J 2003 Sci. Tech. A: Vacuum, Surfaces, and Films 21 1671

    [17]

    Nebiki T, Sekiba D, Yonemura H, Wilde M, Ogura S, Yamashita H, Matsumoto M, Fukutani K, Okano T, Kasagi J, Iwamura Y, Itoh T, Kuribayashi S, Matsuzaki H, Narusawa T 2008 Nucl. Instrum. Methods Phys. Res.. 266 1324

    [18]

    Sekiba D, Yonemura H, Nebiki T, Wilde M, Ogura S, Yamashita H, Matsumoto M, Kasagi J, Iwamura Y, Itoh T, Matsuzaki H, Narusawa T, Fukutani K 2008 Nucl. Instrum. Methods Phys. Res.. 266 4027

    [19]

    Hasegawa J, Jaiyen S, Polee C, Chankow N, Oguri Y 2011 J. Appl. Phys. 110 044913

    [20]

    Simon M J, Zhou C L, Dbeli M, Cassimi A, Monnet I, Mry A, Grygiel C, Guillous S, Madi T, Benyagoub A, Lebius H, Mller A M, Shiromaru H, Synal H A 2014 Nucl. Instrum. Methods Phys. Res.. 330 11

    [21]

    Hasegawa J, Jaiyen S, Polee C, Chankow N, Oguri Y 2011 J. Appl. Phys. 110 044913

    [22]

    Wu Y H, Yu D Y, Xue Y L, Chen J, Liu J L, Zhang M W, Wang W, Lu R C, Ruan F F, Du F, Shao C J, Li J Y, Kang L, Cai X H 2014 Nucl. Instrum. Methods Phys. Res.. 334 59

    [23]

    Xue Y L, Yu D Y, Liu J L, Wu Y H, Zhang M W, Chen J, Wang W, Lu R C, Shao C J, Kang L, Li J Y, Cai X H, Stolterfoht N 2015 Nucl. Instrum. Methods Phys. Res.. 359 44

    [24]

    Wang G Y, Shao J X, Song Q, Mo D, Yang A X, Ma X, Zhou W, Cui Y, Li Y, Liu Z L, Chen X M 2015 Sci. Rep. 5 15169

    [25]

    Zhou W, Niu S T, Yan X W, Bai X F, Han C Z, Zhang M X, Zhou L H, Yang A X, Pan P, Shao J X, Chen X M 2016 Acta Phys. Sin. 65 103401(in Chinese) [周旺, 牛书通, 闫学文, 白雄飞, 韩承志, 张鹛枭, 周利华, 杨爱香, 潘鹏, 邵剑雄, 陈熙萌 2016 物理学报 65 103401]

    [26]

    Errea L F, Illescas C, Mndez L, Pons B, Rabadn I, Riera A 2007 Phys. Rev.. 76 040701

    [27]

    Illescas C, Riera A 1999 Phys. Rev.. 60 4546

    [28]

    Lilly Jr A C, McDowell J R 1968 J. Appl. Phys. 39 141

    [29]

    Stolterfoht N, Bremer J H, Hoffmann V, Hellhammer R, Fink D, Petrov A, Sulik B 2002 Phys. Rev. Lett. 88 133201

    [30]

    Stolterfoht N, Hellhammer R, Sulik B, Juhsz Z, Bayer V, Trautmann C, Bodewits E, Hoekstra R 2011 Phys. Rev.. 83 062901

    [31]

    Yang F J 2008 Atom. Phys. (Beijing: Higher Education Press) p95 (in Chinese) [杨福家 2008 原子物理学(北京: 高等教育出版社) 第95页]

  • [1]

    El-Said A S, Heller R, Meissl W, Ritter R, Facsko S, Lemell C, Solleder B, Gebeshuber I C, Betz G, Toulemonde M, Mller W, Burgdrfer J, Aumayr F 2008 Phys. Rev. Lett. 100 237601

    [2]

    Mo D, Liu J, Duan J L, Yao H J, Chen Y H, Sun Y M, Zhai P F 2012 Mater. Lett. 68 201

    [3]

    Kottmann J P, Martin O J F, Smith D R, Schultz S 2001 Phys. Rev.. 64 235402

    [4]

    Mtfi-Tempfli S, Mtfi-Tempfli M, Piraux L, Juhsz Z, Biri S, Fekete , Ivn I, Gll F, Sulik B, Vkor G, Plinks J, Stolterfoht N 2006 Nanotechnology 17 3915

    [5]

    Rajendra-Kumar R T, Badel X, Vikor G, Linnros J, Schuch R 2005 Nanotechnology 16 1697

    [6]

    Stolterfoht N, Bremer J H, Hoffmann V, Hellhammer R, Fink D, Petrov A, Sulik B 2002 Phys. Rev. Lett. 88 133201

    [7]

    Juhsz Z, Sulik B, Rcz R, Biri S, Bereczky J R, Tksi K, Kvr , Plinks J, Stolterfoht N 2010 Phys. Rev.. 82 062903

    [8]

    Stolterfoht N 2013 Phys. Rev.. 87 032901

    [9]

    Schiessl K, Palfinger W, Lemell C, Burgdrfer J 2005 Nucl. Instrum. Methods Phys. Res.. 232 228

    [10]

    Schiessl K, Palfinger W, Tksi K, Nowotny H, Lemell C, Burgdrfer J 2005 Phys. Rev.. 72 062902

    [11]

    Schiessl K, Palfinger W, Tksi K, Nowotny H, Lemell C, Burgdrfer J 2007 Nucl. Instrum. Methods Phys. Res.. 258 150

    [12]

    Lemell C, Schiessl K, Nowotny H, Burgdrfer J 2007 Nucl. Instrum. Methods Phys. Res.. 256 66

    [13]

    Schiessl K, Lemell C, Tksi K, Burgdrfer J 2009 J. Phys. Conf. Ser. 163 012081

    [14]

    Schiessl K, Lemell C, Tksi K, Burgdrfer J 2009 J. Phys. Conf. Ser. 194 012069

    [15]

    Schweigler T, Lemell C, Burgdrfer J 2011 Nucl. Instrum. Methods Phys. Res.. 269 1253

    [16]

    Nebiki T, Yamamot T, Narusawa T, Breese M B H, Teo E J, Watt F, Vac J 2003 Sci. Tech. A: Vacuum, Surfaces, and Films 21 1671

    [17]

    Nebiki T, Sekiba D, Yonemura H, Wilde M, Ogura S, Yamashita H, Matsumoto M, Fukutani K, Okano T, Kasagi J, Iwamura Y, Itoh T, Kuribayashi S, Matsuzaki H, Narusawa T 2008 Nucl. Instrum. Methods Phys. Res.. 266 1324

    [18]

    Sekiba D, Yonemura H, Nebiki T, Wilde M, Ogura S, Yamashita H, Matsumoto M, Kasagi J, Iwamura Y, Itoh T, Matsuzaki H, Narusawa T, Fukutani K 2008 Nucl. Instrum. Methods Phys. Res.. 266 4027

    [19]

    Hasegawa J, Jaiyen S, Polee C, Chankow N, Oguri Y 2011 J. Appl. Phys. 110 044913

    [20]

    Simon M J, Zhou C L, Dbeli M, Cassimi A, Monnet I, Mry A, Grygiel C, Guillous S, Madi T, Benyagoub A, Lebius H, Mller A M, Shiromaru H, Synal H A 2014 Nucl. Instrum. Methods Phys. Res.. 330 11

    [21]

    Hasegawa J, Jaiyen S, Polee C, Chankow N, Oguri Y 2011 J. Appl. Phys. 110 044913

    [22]

    Wu Y H, Yu D Y, Xue Y L, Chen J, Liu J L, Zhang M W, Wang W, Lu R C, Ruan F F, Du F, Shao C J, Li J Y, Kang L, Cai X H 2014 Nucl. Instrum. Methods Phys. Res.. 334 59

    [23]

    Xue Y L, Yu D Y, Liu J L, Wu Y H, Zhang M W, Chen J, Wang W, Lu R C, Shao C J, Kang L, Li J Y, Cai X H, Stolterfoht N 2015 Nucl. Instrum. Methods Phys. Res.. 359 44

    [24]

    Wang G Y, Shao J X, Song Q, Mo D, Yang A X, Ma X, Zhou W, Cui Y, Li Y, Liu Z L, Chen X M 2015 Sci. Rep. 5 15169

    [25]

    Zhou W, Niu S T, Yan X W, Bai X F, Han C Z, Zhang M X, Zhou L H, Yang A X, Pan P, Shao J X, Chen X M 2016 Acta Phys. Sin. 65 103401(in Chinese) [周旺, 牛书通, 闫学文, 白雄飞, 韩承志, 张鹛枭, 周利华, 杨爱香, 潘鹏, 邵剑雄, 陈熙萌 2016 物理学报 65 103401]

    [26]

    Errea L F, Illescas C, Mndez L, Pons B, Rabadn I, Riera A 2007 Phys. Rev.. 76 040701

    [27]

    Illescas C, Riera A 1999 Phys. Rev.. 60 4546

    [28]

    Lilly Jr A C, McDowell J R 1968 J. Appl. Phys. 39 141

    [29]

    Stolterfoht N, Bremer J H, Hoffmann V, Hellhammer R, Fink D, Petrov A, Sulik B 2002 Phys. Rev. Lett. 88 133201

    [30]

    Stolterfoht N, Hellhammer R, Sulik B, Juhsz Z, Bayer V, Trautmann C, Bodewits E, Hoekstra R 2011 Phys. Rev.. 83 062901

    [31]

    Yang F J 2008 Atom. Phys. (Beijing: Higher Education Press) p95 (in Chinese) [杨福家 2008 原子物理学(北京: 高等教育出版社) 第95页]

  • [1] 杨卫涛, 武艺琛, 许睿明, 时光, 宁提, 王斌, 刘欢, 郭仲杰, 喻松林, 吴龙胜. 碲镉汞红外焦平面阵列图像传感器空间质子位移损伤及电离总剂量效应Geant4仿真. 物理学报, 2024, 73(23): 232402. doi: 10.7498/aps.73.20241246
    [2] 何欢, 白雨蓉, 田赏, 刘方, 臧航, 柳文波, 李培, 贺朝会. 质子入射AlxGa1–xN 材料的位移损伤模拟. 物理学报, 2024, 73(5): 052402. doi: 10.7498/aps.73.20231671
    [3] 肖友鹏, 王怀平, 冯林. 硒化亚锗异质结太阳电池模拟研究. 物理学报, 2023, 72(24): 248801. doi: 10.7498/aps.72.20231220
    [4] 宋岩, 江鸿翔, 赵九洲, 何杰, 张丽丽, 李世欣. Al-Ti-B细化工业纯铝凝固组织演变过程数值模拟. 物理学报, 2021, 70(8): 086402. doi: 10.7498/aps.70.20201431
    [5] 闫大为, 田葵葵, 闫晓红, 李伟然, 俞道欣, 李金晓, 曹艳荣, 顾晓峰. GaN肖特基二极管的正向电流输运和低频噪声行为. 物理学报, 2021, 70(8): 087201. doi: 10.7498/aps.70.20201467
    [6] 罗尹虹, 张凤祁, 郭红霞, Wojtek Hajdas. 基于重离子试验数据预测纳米加固静态随机存储器质子单粒子效应敏感性. 物理学报, 2020, 69(1): 018501. doi: 10.7498/aps.69.20190878
    [7] 栗苹, 许玉堂. 氧空位迁移造成的氧化物介质层时变击穿的蒙特卡罗模拟. 物理学报, 2017, 66(21): 217701. doi: 10.7498/aps.66.217701
    [8] 韩燕龙, 贾富国, 曾勇, 王爱芳. 受碾区域内颗粒轴向流动特性的离散元模拟. 物理学报, 2015, 64(23): 234502. doi: 10.7498/aps.64.234502
    [9] 赵雯, 郭晓强, 陈伟, 邱孟通, 罗尹虹, 王忠明, 郭红霞. 质子与金属布线层核反应对微纳级静态随机存储器单粒子效应的影响分析. 物理学报, 2015, 64(17): 178501. doi: 10.7498/aps.64.178501
    [10] 罗尹虹, 张凤祁, 郭红霞, 郭晓强, 赵雯, 丁李利, 王园明. 纳米静态随机存储器质子单粒子多位翻转角度相关性研究. 物理学报, 2015, 64(21): 216103. doi: 10.7498/aps.64.216103
    [11] 朱金辉, 韦源, 谢红刚, 牛胜利, 黄流兴. 300 eV–1 GeV质子在硅中非电离能损的计算. 物理学报, 2014, 63(6): 066102. doi: 10.7498/aps.63.066102
    [12] 李铭杰, 高红, 李江禄, 温静, 李凯, 张伟光. 低温下单根ZnO纳米带电学性质的研究. 物理学报, 2013, 62(18): 187302. doi: 10.7498/aps.62.187302
    [13] 张明兰, 杨瑞霞, 李卓昕, 曹兴忠, 王宝义, 王晓晖. GaN厚膜中的质子辐照诱生缺陷研究. 物理学报, 2013, 62(11): 117103. doi: 10.7498/aps.62.117103
    [14] 刘耀民, 刘中良, 黄玲艳. 分形理论结合相变动力学的冷表面结霜过程模拟. 物理学报, 2010, 59(11): 7991-7997. doi: 10.7498/aps.59.7991
    [15] 王祖军, 唐本奇, 肖志刚, 刘敏波, 黄绍艳, 张勇. 质子辐照电荷耦合器件诱导电荷转移效率退化的实验分析. 物理学报, 2010, 59(6): 4136-4142. doi: 10.7498/aps.59.4136
    [16] 封 伟, 高中扩. 有机光伏电池物理性能的模拟. 物理学报, 2008, 57(4): 2567-2573. doi: 10.7498/aps.57.2567
    [17] 来国军, 刘濮鲲. W波段回旋行波管放大器的模拟与设计. 物理学报, 2006, 55(1): 321-325. doi: 10.7498/aps.55.321
    [18] 路 阳, 王 帆, 朱昌盛, 王智平. 等温凝固多晶粒生长相场法模拟. 物理学报, 2006, 55(2): 780-785. doi: 10.7498/aps.55.780
    [19] 何宝平, 陈 伟, 王桂珍. CMOS器件60Co γ射线、电子和质子电离辐射损伤比较. 物理学报, 2006, 55(7): 3546-3551. doi: 10.7498/aps.55.3546
    [20] 王培林, 丁天骅, 蔡珣. 超薄晶体膜生长过程的计算机模拟. 物理学报, 2002, 51(9): 2109-2112. doi: 10.7498/aps.51.2109
计量
  • 文章访问数:  6520
  • PDF下载量:  113
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-24
  • 修回日期:  2017-10-08
  • 刊出日期:  2018-01-05

/

返回文章
返回