搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

线性不可逆热力学框架下一个无限尺寸热源而有限尺寸冷源的制冷机的性能分析

张荣 卢灿灿 李倩文 刘伟 白龙

引用本文:
Citation:

线性不可逆热力学框架下一个无限尺寸热源而有限尺寸冷源的制冷机的性能分析

张荣, 卢灿灿, 李倩文, 刘伟, 白龙

Performance analysis of a refrigerator operating between an infinite-sized hot reservoir and a finite-sized cold one within linear irreversible thermodynamics

Zhang Rong, Lu Can-Can, Li Qian-Wen, Liu Wei, Bai Long
PDF
导出引用
  • 如何优化工作在有限尺寸的热源与冷源之间的热设备的性能是有限时间热力学领域的一个重要课题.本文在线性不可热力学框架下,结合有限时间热力学理论,研究了一个无限尺寸热源而有限尺寸冷源的制冷机的工作过程,解析性地推导了紧耦合条件下平均输入功率以及制冷系数表达式,并且进一步讨论了该制冷机的性能.发现平均输入功率与制冷时间不存在明确的优化关系,而且输入功率的增加导致制冷系数单调减小,但辐射能的增加致使制冷系数增强.研究结果对于深入理解实际的热力学过程具有一定的工程实践性价值.
    How to optimize the performances of heat devices operating between finite-sized heat sources and sinks has become a very important issue in the field of finite-time thermodynamics. In this paper, a physical model of the refrigerator operating between an infinite-sized hot reservoir and a finite-sized cold one is proposed, and by using the principles of finite-time thermodynamics and the theory of linear irreversible thermodynamics, we present the analytical expressions of the input power and the coefficient of performance (COP) under the tight-coupling condition, and analyze the performance characteristics of the refrigerator in detail. When the temperature of the cold reservoir is changed with fixing the environment temperature (the temperature of the hot reservoir), it is found that there does not exist a well-defined optimal relation between the input power and a duration time of the refrigerating process, which is a remarkable difference from the working process of a heat engine operating between a finite-sized hot reservoir and an infinite-sized cold one. We further find that the COP exhibits the monotonically decreasing trend with the increase of the input power, but the increase of the exergy leads to the enhancement of the COP. This feature can be understood as follows:when P is small, this means that the duration time is large, thus the refrigerating process approaches to the quasistatic operation, which induces the large COP. In particular, when P0, the COP max. The increase of P implies the reduction of , thus the refrigerating process keeps away from the quasistatic process and approaches to the actual irreversible process, which causes the COP to decrease. On the contrary, shows the increasing trend with the increase of the exergy E. This is because the increase of E means the enhancement of at fixing the input power P, which corresponds to a slow refrigerating process. As a result, E exhibits the increasing behaviors due to the emergence of the quasistatic process. From the above analyses, we can find that an appropriate proposal to optimize the refrigerating performance of heat devices should be based on the actual parameters and the real external environment, thus it is possible to obtain the optimal refrigerating objective at the expense of the suitable input power. These results are not only helpful in the in-depth understanding of the refrigerator operating between an infinite-sized hot reservoir and a finite-sized cold one, but also of great engineering interest in designing realistic heat deices. Our method can also generalize the investigation of heat pumps. In addition, when the tight-coupling condition is false due to the breaking of time-reversal symmetry, there needs to be further consideration about it from the angle of physics.
      通信作者: 白龙, bailong2200@163.com
    • 基金项目: 中央高校基本科研业务费专项资金(批准号:2014QNA72)资助的课题.
      Corresponding author: Bai Long, bailong2200@163.com
    • Funds: Project supported by the Fundamental Research Funds for the Central Universities, China (Grant No. 2014QNA72).
    [1]

    Curzon F, Ahlborn B 1975 Am. J. Phys. 43 22

    [2]

    Vaudrey A, Lanzetta F, Feidt M 2014 J. Non-Equil. Therm. 39 199

    [3]

    van den Broeck C 2005 Phys. Rev. Lett. 95 190602

    [4]

    Andresen B 2011 Angew. Chem. Int. Ed. 50 2690

    [5]

    Ding Z M, Chen L G, Wang W H, Sun F R 2015 Sci. Sin. Technolog. 45 889 (in Chinese)[丁泽民, 陈林根, 王文华, 孙丰瑞 2015 中国科学:技术科学 45 889]

    [6]

    Bi Y H, Chen L G 2017 Optimal Peformamnce of Gas Heat Pumps With the Framework of Finite-time Thermodynamics (Beijing:Science Press) pp1-20 (in Chinese)[毕月虹, 陈林根 2017 空气热泵性能有限时间热力学优化(北京:科学出版社) 第1–20页]

    [7]

    Gordon J M, Huleihil M 1991 J. Appl. Phys. 69 1

    [8]

    Bejan A 1996 J. Appl. Phys. 79 1191

    [9]

    Lu C C, Bai L 2017 Acta Phys. Sin. 66 130501 (in Chinese)[卢灿灿, 白龙 2017 物理学报 66 130501]

    [10]

    Johal R S 2017 Phys. Rev. E 96 012151

    [11]

    Yan H, Guo H 2012 Phys. Rev. E 86 051135

    [12]

    Sheng S, Tu Z C 2014 Phys. Rev. E 89 012129

    [13]

    Ondrechen M J, Rubin M H, Band Y B 1983 J. Chem. Phys. 78 4721

    [14]

    Ondrechen M J, Andresen B, Mozurkewich M, Berry R S 1981 Am. J. Phys. 49 681

    [15]

    Leff H S 1987 Am. J. Phys. 55 701

    [16]

    Andresen B, Berry R S, Ondrechen M J, Salamon P 1984 Acc. Chem. Res. 17 266

    [17]

    Yan Z, Chen L X 1997 J. Phys. A:Math. Gen. 30 8119

    [18]

    Izumida Y, Okuda K 2014 Phys. Rev. Lett. 112 180603

    [19]

    Wang Y 2014 Phys. Rev. E 90 062140

    [20]

    Wang Y 2016 Phys. Rev. E 93 021120

    [21]

    de Cisneros B J, Arias-Hernández L A, Hernández A C 2006 Phys. Rev. E 73 057103

    [22]

    Izumida Y, Okuda K, Roco J M M, Hernández A C 2015 Phys. Rev. E 91 052140

  • [1]

    Curzon F, Ahlborn B 1975 Am. J. Phys. 43 22

    [2]

    Vaudrey A, Lanzetta F, Feidt M 2014 J. Non-Equil. Therm. 39 199

    [3]

    van den Broeck C 2005 Phys. Rev. Lett. 95 190602

    [4]

    Andresen B 2011 Angew. Chem. Int. Ed. 50 2690

    [5]

    Ding Z M, Chen L G, Wang W H, Sun F R 2015 Sci. Sin. Technolog. 45 889 (in Chinese)[丁泽民, 陈林根, 王文华, 孙丰瑞 2015 中国科学:技术科学 45 889]

    [6]

    Bi Y H, Chen L G 2017 Optimal Peformamnce of Gas Heat Pumps With the Framework of Finite-time Thermodynamics (Beijing:Science Press) pp1-20 (in Chinese)[毕月虹, 陈林根 2017 空气热泵性能有限时间热力学优化(北京:科学出版社) 第1–20页]

    [7]

    Gordon J M, Huleihil M 1991 J. Appl. Phys. 69 1

    [8]

    Bejan A 1996 J. Appl. Phys. 79 1191

    [9]

    Lu C C, Bai L 2017 Acta Phys. Sin. 66 130501 (in Chinese)[卢灿灿, 白龙 2017 物理学报 66 130501]

    [10]

    Johal R S 2017 Phys. Rev. E 96 012151

    [11]

    Yan H, Guo H 2012 Phys. Rev. E 86 051135

    [12]

    Sheng S, Tu Z C 2014 Phys. Rev. E 89 012129

    [13]

    Ondrechen M J, Rubin M H, Band Y B 1983 J. Chem. Phys. 78 4721

    [14]

    Ondrechen M J, Andresen B, Mozurkewich M, Berry R S 1981 Am. J. Phys. 49 681

    [15]

    Leff H S 1987 Am. J. Phys. 55 701

    [16]

    Andresen B, Berry R S, Ondrechen M J, Salamon P 1984 Acc. Chem. Res. 17 266

    [17]

    Yan Z, Chen L X 1997 J. Phys. A:Math. Gen. 30 8119

    [18]

    Izumida Y, Okuda K 2014 Phys. Rev. Lett. 112 180603

    [19]

    Wang Y 2014 Phys. Rev. E 90 062140

    [20]

    Wang Y 2016 Phys. Rev. E 93 021120

    [21]

    de Cisneros B J, Arias-Hernández L A, Hernández A C 2006 Phys. Rev. E 73 057103

    [22]

    Izumida Y, Okuda K, Roco J M M, Hernández A C 2015 Phys. Rev. E 91 052140

  • [1] 王宇枭, 成泽帅, 江可扬, 魏琳扬, 历秀明. 基于辐射制冷与电致变色的可调节多层膜性能研究. 物理学报, 2024, 73(21): 214401. doi: 10.7498/aps.73.20240863
    [2] 郑茂文, 郭浩文, 卫铃佼, 潘子杰, 邹佳润, 李瑞鑫, 赵密广, 陈厚磊, 梁惊涛. 稀释制冷技术. 物理学报, 2024, 73(23): 230701. doi: 10.7498/aps.73.20241211
    [3] 李珂, 王亚男, 刘萍, 禹芳秋, 戴巍, 沈俊. 50 mK多级绝热去磁制冷机的实验研究. 物理学报, 2023, 72(19): 190702. doi: 10.7498/aps.72.20231102
    [4] 刘旭明, 潘长钊, 张宇, 廖奕, 郭伟杰, 俞大鹏. 4 K大冷量GM型脉冲管制冷机. 物理学报, 2023, 72(19): 190701. doi: 10.7498/aps.72.20230910
    [5] 俎红叶, 程维军, 王亚男, 王晓涛, 李珂, 戴巍. 冷凝泵型稀释制冷机实验研究. 物理学报, 2023, 72(8): 080701. doi: 10.7498/aps.72.20222257
    [6] 阳润恒, 安顺, 尚文, 邓涛. 仿生辐射制冷的研究进展. 物理学报, 2022, 71(2): 024401. doi: 10.7498/aps.71.20211854
    [7] 徐帅, 杨贇贇, 刘行, 何济洲. 基于一维弹道导体的三端纳米线制冷机的性能优化. 物理学报, 2022, 71(2): 020501. doi: 10.7498/aps.71.20211077
    [8] 刘行, 徐帅, 高金柱, 何济洲. 基于三个耦合量子点的四端混合驱动制冷机. 物理学报, 2022, 71(19): 190502. doi: 10.7498/aps.71.20220904
    [9] 王昌, 李珂, 沈俊, 戴巍, 王亚男, 罗二仓, 沈保根, 周远. 用于亚开温区的极低温绝热去磁制冷机. 物理学报, 2021, 70(9): 090702. doi: 10.7498/aps.70.20202237
    [10] 何济洲, 徐帅. 基于一维弹道导体的三端纳米线制冷机的性能优化. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211077
    [11] 付柏山, 廖奕, 周俊. 稀释制冷机及其中的热交换问题. 物理学报, 2021, 70(23): 230202. doi: 10.7498/aps.70.20211760
    [12] 刘扬, 潘登, 陈文, 王文强, 沈昊, 徐红星. 纳米光学辐射传热: 从热辐射增强理论到辐射制冷应用. 物理学报, 2020, 69(3): 036501. doi: 10.7498/aps.69.20191906
    [13] 李唯, 符婧, 杨贇贇, 何济洲. 光子驱动量子点制冷机. 物理学报, 2019, 68(22): 220501. doi: 10.7498/aps.68.20191091
    [14] 常松涛, 孙志远, 张尧禹, 朱玮. 制冷型红外成像系统内部杂散辐射测量方法. 物理学报, 2015, 64(5): 050702. doi: 10.7498/aps.64.050702
    [15] 何弦, 何济洲, 肖宇玲. 四能级量子制冷循环. 物理学报, 2012, 61(15): 150302. doi: 10.7498/aps.61.150302
    [16] 贺兵香, 何济洲, 缪贵玲. 纳米线异质结构对电子制冷机性能的影响. 物理学报, 2011, 60(4): 040509. doi: 10.7498/aps.60.040509
    [17] 孟庆苗, 蒋继建, 李传安. 球对称动态黑洞视界附近的瞬时辐射能通量及瞬时辐射功率. 物理学报, 2010, 59(3): 1481-1486. doi: 10.7498/aps.59.1481
    [18] 贺兵香, 何济洲. 双势垒InAs/InP纳米线异质结热电子制冷机. 物理学报, 2010, 59(6): 3846-3850. doi: 10.7498/aps.59.3846
    [19] 韩 鹏, 金奎娟, 周岳亮, 周庆莉, 王 旭, 赵嵩卿, 马中水. GaAs/Ga1-xAlxAs半导体量子阱光辐射-热离子制冷. 物理学报, 2005, 54(9): 4345-4349. doi: 10.7498/aps.54.4345
    [20] 马伟增, 季诚昌, 李建国, 许振明. 电磁悬浮熔炼的温度特性. 物理学报, 2003, 52(4): 834-839. doi: 10.7498/aps.52.834
计量
  • 文章访问数:  6596
  • PDF下载量:  131
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-11
  • 修回日期:  2017-10-29
  • 刊出日期:  2019-02-20

/

返回文章
返回