搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水滴撞击结冰过程的分子动力学模拟

董琪琪 胡海豹 陈少强 何强 鲍路瑶

引用本文:
Citation:

水滴撞击结冰过程的分子动力学模拟

董琪琪, 胡海豹, 陈少强, 何强, 鲍路瑶

Molecular dynamics simulation of freezing process of water droplets impinging on cold surface

Dong Qi-Qi, Hu Hai-Bao, Chen Shao-Qiang, He Qiang, Bao Lu-Yao
PDF
导出引用
  • 利用三维分子动力学模拟方法,研究了纳米尺度水滴撞击冷壁面的结冰过程.数值模拟中,统计系统采用微正则系综,势能函数选用TIP4P/ice模型,温度校正使用速度定标法,牛顿运动方程的求解采用文莱特算法,水滴内部结冰过程则通过统计垂直方向水分子温度分布来判定.研究发现,当冷壁面温度降低时,水滴完全结冰的时间减小,但水滴降至壁面温度的时间却增大;同时随着壁面亲水性降低,水滴内部热传递速度减慢(尤其是冷壁面与水滴底端分子层间),水滴内部温度趋于均匀,但水滴完全结冰时间延长.
    The freezing of water droplet is a ubiquitous phenomenon in nature. Although the freezing process of water droplet impacting on cold surfaces is widely observed on a macroscopic scale, the study of freezing process on a micro-scale is still deficient, and it is definitely difficult to study micro-droplets and nano-droplets using experimental methods due to the obstacles in both generation and observation. For these reasons, simulation methods using molecular dynamics (MD) have been proposed to study micro-droplets and nano-droplets, as molecular dynamics can trace each atom, count up the collective behavior of a group of atoms and describe the detail interaction between atoms. In this paper, a three-dimensional model is established by molecular dynamics simulation to study the freezing process of water droplets impinging on a cold solid surface on a nanoscale. We select the micro-canonical ensemble (NVE) as a statistical system and the TIP4P/ice model as a potential energy function to simulate oxygen atoms, hydrogen atoms and water molecules. The LJ/126 model is used to simulate the interaction between water molecules and solid atoms. Different wettability walls are simulated by adjusting the potential energy parameters. For all the simulations, the velocity-rescale method is used to keep the temperature constant and the Verlet algorithm is adopted to solve the Newton equations. In the velocity-rescale method, the temperature is calculated by using the profile-unbiased thermostat. The freezing process inside the water droplet is determined by the temperature distribution of water molecules along the vertical direction, which is more concise than by the location coordinates of the microscopic atoms. Through the numerical experimentations, we find that when the surface temperature decreases, the completely freezing time of drops is reduced; meanwhile, the time required for water temperature to drop down to the wall temperature is increased. Moreover, the heat transfer inside the water droplet slows down with the decreasing of wall hydrophilicity while the total freezing time is prolonged.
      通信作者: 胡海豹, huhaibao@nwpu.edu.cn
    • 基金项目: 深圳市基础研究项目(批准号:JCYJ20160510140747996)和陕西省自然科学基础研究计划(批准号:2016JM1002)资助的课题.
      Corresponding author: Hu Hai-Bao, huhaibao@nwpu.edu.cn
    • Funds: Project supported by the Basic Research Plan of Natural Science of Shenzhen City, China (Grant No. JCYJ20160510140747996) and the Basic Research Plan of Natural Science in Shaanxi Province of China (Grant No. 2016JM1002).
    [1]

    Jung S, Tiwari M K, Doan N V, Poulikakos D 2012 Nat. Commun. 3 615

    [2]

    Jin Z, Wang Z, Sui D 2016 Int. J. Heat. Mass. Trans. 97 211

    [3]

    Wang Y, Orol D, Owens J, Simpson K, Lee H J 2013 Mater. Sci. Appl. 04 347

    [4]

    Dalili N, Edrisy A, Carriveau R 2009 Renew Sust. Energ. Rev. 13 428

    [5]

    Zou L, Xu H J, Gong S K, Li D W 2010 China Safety Sci. J. 20 105 (in Chinese) [周莉, 徐浩军, 龚胜科, 李大伟 2010 中国安全科学学报 20 105]

    [6]

    Xiao S, He J, Zhang Z 2017 Acta Mech. Solida Sin. 30 224

    [7]

    Yao Y, Li C, Zhang H, Yang R 2017 Appl. Surf. Sci. 419 52

    [8]

    Zou M, Beckford S, Wei R, Ellis C, Hattonc G, Millerb M A 2011 Appl. Surf. Sci. 257 3786

    [9]

    Zhang C, Liu H 2016 Phys. Fluids 28 260

    [10]

    Quero M, Hammond D W, Purvis R, Smith F T 2006 AIAA 466

    [11]

    Mishchenko L, Hatton B, Bahadur V, Taylor J A, Krupenkin T, Aizenberg J 2010 ACS Nano 4 7699

    [12]

    Jung S, Dorrestijn M, Raps D, Das A, Megaridis C M, Poulikakos M 2011 Langmuir 27 3059

    [13]

    Li H, Roisman I V, Tropea C 2011 Proceeding of the Sixth International Conference on Fluid Mechanics 1376 451

    [14]

    Yang G, Guo K, Li N 2011 Int. J. Refrig. 34 2007

    [15]

    Zhang D L, Yang X, Ang H S 2003 J. Propul. Power 18 87 (in Chinese) [张大林, 杨曦, 昂海松 2003 航空动力学报 18 87]

    [16]

    Yang Q, Chang S N, Yuan X G 2002 Acta Aeronaut. Astronaut. Sin. 23 173 (in Chinese) [杨倩, 常士楠, 袁修干 2002 航空学报 23 173]

    [17]

    Chen K, Cao Y H 2008 Aeronaut. Comput. Tech. 38 36 (in Chinese) [陈科, 曹义华 2008 航空计算技术 38 36]

    [18]

    Sheng Q, Xing Y M, He C 2009 Aeronaut. Comput. Tech. 39 37 (in Chinese) [盛强, 邢玉明, 何超 2009 航空计算技术 39 37]

    [19]

    Yuan Q Z, Zhao Y P 2010 Phys. Rev. Lett. 104 246101

    [20]

    Xiao S, He J Y, Zhang Z X 2016 Nanoscale 8 14625

    [21]

    Bi Y, Cao B, Li T 2017 Nat. Commun. 8 15372

    [22]

    Abascal J L, Sanz E, García F R, Vega C 2005 J. Chem. Phys. 122 234511

    [23]

    Hong S D, Ha M Y, Balachandar S 2009 J. Colloid Interf. Sci. 339 187

    [24]

    Evans D J, Morriss G P 1986 Phys. Rev. Lett. 56 2172

    [25]

    Hu H B, He Q, Yu S X, Zhang Z Z, Song D 2016 Acta Phys. Sin. 65 104703 (in Chinese) [胡海豹, 何强, 余思潇, 张招柱, 宋东 2016 物理学报 65 104703]

    [26]

    Fitzner M, Sosso G C, Cox S J, Michaelides A 2015 J. Am. Chem. Soc. 137 13658

    [27]

    Liu K, Wang C, Ma J, Shi G, Yao X, Fang H, Song Y L, Wang J J 2016 Proc. Natl. Acad. Sci. USA 113 14739

  • [1]

    Jung S, Tiwari M K, Doan N V, Poulikakos D 2012 Nat. Commun. 3 615

    [2]

    Jin Z, Wang Z, Sui D 2016 Int. J. Heat. Mass. Trans. 97 211

    [3]

    Wang Y, Orol D, Owens J, Simpson K, Lee H J 2013 Mater. Sci. Appl. 04 347

    [4]

    Dalili N, Edrisy A, Carriveau R 2009 Renew Sust. Energ. Rev. 13 428

    [5]

    Zou L, Xu H J, Gong S K, Li D W 2010 China Safety Sci. J. 20 105 (in Chinese) [周莉, 徐浩军, 龚胜科, 李大伟 2010 中国安全科学学报 20 105]

    [6]

    Xiao S, He J, Zhang Z 2017 Acta Mech. Solida Sin. 30 224

    [7]

    Yao Y, Li C, Zhang H, Yang R 2017 Appl. Surf. Sci. 419 52

    [8]

    Zou M, Beckford S, Wei R, Ellis C, Hattonc G, Millerb M A 2011 Appl. Surf. Sci. 257 3786

    [9]

    Zhang C, Liu H 2016 Phys. Fluids 28 260

    [10]

    Quero M, Hammond D W, Purvis R, Smith F T 2006 AIAA 466

    [11]

    Mishchenko L, Hatton B, Bahadur V, Taylor J A, Krupenkin T, Aizenberg J 2010 ACS Nano 4 7699

    [12]

    Jung S, Dorrestijn M, Raps D, Das A, Megaridis C M, Poulikakos M 2011 Langmuir 27 3059

    [13]

    Li H, Roisman I V, Tropea C 2011 Proceeding of the Sixth International Conference on Fluid Mechanics 1376 451

    [14]

    Yang G, Guo K, Li N 2011 Int. J. Refrig. 34 2007

    [15]

    Zhang D L, Yang X, Ang H S 2003 J. Propul. Power 18 87 (in Chinese) [张大林, 杨曦, 昂海松 2003 航空动力学报 18 87]

    [16]

    Yang Q, Chang S N, Yuan X G 2002 Acta Aeronaut. Astronaut. Sin. 23 173 (in Chinese) [杨倩, 常士楠, 袁修干 2002 航空学报 23 173]

    [17]

    Chen K, Cao Y H 2008 Aeronaut. Comput. Tech. 38 36 (in Chinese) [陈科, 曹义华 2008 航空计算技术 38 36]

    [18]

    Sheng Q, Xing Y M, He C 2009 Aeronaut. Comput. Tech. 39 37 (in Chinese) [盛强, 邢玉明, 何超 2009 航空计算技术 39 37]

    [19]

    Yuan Q Z, Zhao Y P 2010 Phys. Rev. Lett. 104 246101

    [20]

    Xiao S, He J Y, Zhang Z X 2016 Nanoscale 8 14625

    [21]

    Bi Y, Cao B, Li T 2017 Nat. Commun. 8 15372

    [22]

    Abascal J L, Sanz E, García F R, Vega C 2005 J. Chem. Phys. 122 234511

    [23]

    Hong S D, Ha M Y, Balachandar S 2009 J. Colloid Interf. Sci. 339 187

    [24]

    Evans D J, Morriss G P 1986 Phys. Rev. Lett. 56 2172

    [25]

    Hu H B, He Q, Yu S X, Zhang Z Z, Song D 2016 Acta Phys. Sin. 65 104703 (in Chinese) [胡海豹, 何强, 余思潇, 张招柱, 宋东 2016 物理学报 65 104703]

    [26]

    Fitzner M, Sosso G C, Cox S J, Michaelides A 2015 J. Am. Chem. Soc. 137 13658

    [27]

    Liu K, Wang C, Ma J, Shi G, Yao X, Fang H, Song Y L, Wang J J 2016 Proc. Natl. Acad. Sci. USA 113 14739

  • [1] 陈晶晶, 赵洪坡, 王葵, 占慧敏, 罗泽宇. SiC基底覆多层石墨烯力学强化性能分子动力学模拟. 物理学报, 2024, 73(10): 109601. doi: 10.7498/aps.73.20232031
    [2] 冯山青, 龚路远, 权生林, 郭亚丽, 沈胜强. 纳米液滴撞击高温平板壁的分子动力学模拟. 物理学报, 2024, 73(10): 103106. doi: 10.7498/aps.73.20240034
    [3] 张宇航, 李孝宝, 詹春晓, 王美芹, 浦玉学. 单层MoSSe力学性质的分子动力学模拟研究. 物理学报, 2023, 72(4): 046201. doi: 10.7498/aps.72.20221815
    [4] 赵昶, 纪献兵, 杨聿昊, 孟宇航, 徐进良, 彭家略. Janus颗粒撞击气泡的行为特征. 物理学报, 2022, 71(21): 214701. doi: 10.7498/aps.71.20220632
    [5] 潘伶, 张昊, 林国斌. 纳米液滴撞击柱状固体表面动态行为的分子动力学模拟. 物理学报, 2021, 70(13): 134704. doi: 10.7498/aps.70.20210094
    [6] 第伍旻杰, 胡晓棉. 单晶Ce冲击相变的分子动力学模拟. 物理学报, 2020, 69(11): 116202. doi: 10.7498/aps.69.20200323
    [7] 唐鹏博, 王关晴, 王路, 石中玉, 李源, 徐江荣. 单液滴正碰球面动态行为特性实验研究. 物理学报, 2020, 69(2): 024702. doi: 10.7498/aps.69.20191141
    [8] 杨亚晶, 梅晨曦, 章旭东, 魏衍举, 刘圣华. 液滴撞击液膜的穿越模式及运动特性. 物理学报, 2019, 68(15): 156101. doi: 10.7498/aps.68.20190604
    [9] 裴传康, 魏炳乾, 左娟莉, 杨泓. 椭圆形变微小水滴撞击深水液池运动大型气泡夹带机理. 物理学报, 2019, 68(20): 204703. doi: 10.7498/aps.68.20190541
    [10] 李杰杰, 鲁斌斌, 线跃辉, 胡国明, 夏热. 纳米多孔银力学性能表征分子动力学模拟. 物理学报, 2018, 67(5): 056101. doi: 10.7498/aps.67.20172193
    [11] 裴传康, 魏炳乾. 微小水滴撞击深水液池空腔运动的数值模拟及机理研究. 物理学报, 2018, 67(22): 224703. doi: 10.7498/aps.67.20181422
    [12] 孙川琴, 黄海深, 毕庆玲, 吕勇军. 非晶态合金表面的水润湿动力学. 物理学报, 2017, 66(17): 176101. doi: 10.7498/aps.66.176101
    [13] 胡海豹, 何强, 余思潇, 张招柱, 宋东. 低温光滑壁面上水滴撞击结冰行为. 物理学报, 2016, 65(10): 104703. doi: 10.7498/aps.65.104703
    [14] 张宝玲, 宋小勇, 侯氢, 汪俊. 高密度氦相变的分子动力学研究. 物理学报, 2015, 64(1): 016202. doi: 10.7498/aps.64.016202
    [15] 常旭. 多层石墨烯的表面起伏的分子动力学模拟. 物理学报, 2014, 63(8): 086102. doi: 10.7498/aps.63.086102
    [16] 周化光, 林鑫, 王猛, 黄卫东. Cu固液界面能的分子动力学计算. 物理学报, 2013, 62(5): 056803. doi: 10.7498/aps.62.056803
    [17] 毕菲菲, 郭亚丽, 沈胜强, 陈觉先, 李熠桥. 液滴撞击固体表面铺展特性的实验研究. 物理学报, 2012, 61(18): 184702. doi: 10.7498/aps.61.184702
    [18] 马颖. 非晶态石英的变电荷分子动力学模拟. 物理学报, 2011, 60(2): 026101. doi: 10.7498/aps.60.026101
    [19] 邵建立, 王 裴, 秦承森, 周洪强. 铁冲击相变的分子动力学研究. 物理学报, 2007, 56(9): 5389-5393. doi: 10.7498/aps.56.5389
    [20] 吴恒安, 倪向贵, 王宇, 王秀喜. 金属纳米棒弯曲力学行为的分子动力学模拟. 物理学报, 2002, 51(7): 1412-1415. doi: 10.7498/aps.51.1412
计量
  • 文章访问数:  10011
  • PDF下载量:  710
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-06
  • 修回日期:  2017-12-11
  • 刊出日期:  2018-03-05

/

返回文章
返回