搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ca2+掺杂对SmFeO3的介电、铁磁特性及磁相变温度的影响

李德铭 方松科 童金山 苏健 张娜 宋桂林

引用本文:
Citation:

Ca2+掺杂对SmFeO3的介电、铁磁特性及磁相变温度的影响

李德铭, 方松科, 童金山, 苏健, 张娜, 宋桂林

Effects of Ca2+ doping on dielectric, ferromagnetic properties and magnetic phase transition of SmFeO3 ceramics

Li De-Ming, Fang Song-Ke, Tong Jin-Shan, Su Jian, Zhang Na, Song Gui-Lin
PDF
导出引用
  • 采用固相反应法制备Sm1-xCaxFeO3(x=0,0.1,0.2,0.3)样品,研究Ca2+掺杂对SmFeO3介电性能、铁磁性及磁相变温度的影响.X射线衍射图谱分析表明:所有样品的主衍射峰与SmFeO3相符合且具有良好的晶体结构.随着x的增加,SmFeO3样品的晶粒尺寸由原来的0.5 μm逐渐增大到2 μm.当f=1 kHz时,Sm1-xCaxFeO3(x=0.1,0.2,0.3)样品的εr分别是SmFeO3的5倍、3倍和2.6倍,而tg σ增大一个数量级.在3 T磁场作用下,SmFeO3样品的M-H呈线性,随着x的增加,M-H逐渐趋向饱和,Sm1-xCaxFeO3(x=0.1,0.2,0.3)样品的Mr分别是SmFeO3的20倍、31倍和68倍.X射线光电子能谱分析表明:Fe2+和Fe3+共存于Sm1-xCaxFeO3样品中,Fe2+/Fe3+比例随着x的增加而增大,证明Ca2+掺杂增加了Fe2+的含量,形成Fe2+–O2-–Fe3+超交换作用,增强SmFeO3的铁磁特性.测量了Sm1-xCaxFeO3样品在外加磁场为1000 Oe(1 Oe=79.5775 A/m)的M-T变化关系,观测到其自旋重组温度(TSR)和尼尔温度(TN)分别为438 K和687 K,发现SmFeO3样品的TSR和TN均随着x的增加向低温方向移动,当x=0.3时,自旋重组现象消失.这主要是SmFeO3样品磁结构的稳定性和Fe3+–O2-–Fe3+及Sm3+–O2-–Fe3+超交换三者共同作用的结果.
    In this paper we deal with the preparation of Sm1-xCaxFeO3(x=0-0.3) ceramics by the solid stat reaction and study the influences of Ca2+ doping on the dielectric,ferromagnetic properties and magnetic phase transition of SmFeO3.The crystalline structures of the Sm1-xCaxFeO3(x=0-0.3) samples are characterized by X-ray diffraction.The dielectric property is measured by a precisive impedance analyzer (HP4294A) in a frequency range from 40 to 110 MHz.The microstructures of Sm1-xCaxFeO3 are imaged with scanning electron microscope under an operating voltage of 20 kV.The coexistence of Fe3+/2+ ions in Sm1-xCaxFeO3 samples is investigated with X-ray photoelectron spectroscopy (XPS).The magnetic properties of Sm1-xCaxFeO3 are measured with the physical property measurement system.The result shows that all the peaks for Sm1-xCaxFeO3 samples can be indexed according to the crystal structure of pure SmFeO3 and their fine crystal structures are obtained by XRD.The lattice parameter a value of SmFeO3 gradually increases,while the values of b and c decrease,and the unit cell volume (V) shrinks slightly with the increase of x.The scan electron microscope images indicate that Ca2+ doping significantly increases the grain size of SmFeO3 ceramic.The average grain sizes of Sm1-xCaxFeO3 samples range from 0.5 to 2μm with Ca2+ doping.The εr values of Sm1-xCaxFeO3(x=0.1,0.2,0.3) measured at 1 kHz are about 5,3 and 2.6 times greater than that of SmFeO3,respectively,and dielectric loss increases by an order of magnitude.The increase of εr is mainly caused by the interaction between the dipole and the space charge orientation polarization.Both the conductance current and the space charge limiting current are the main factors to increase the dielectric loss.The magnetic measurements show that the M-H curves of Sm1-xCaxFeO3(x=0-0.3) samples exhibit saturated magnetic hysteresis loops with the increase of Ca2+,and the Mr values of Sm1-xCaxFeO3(x=0.1,0.2,0.3) are 20,31,and 68 times that of SmFeO3,respectively,indicating the weakly ferromagnetic behavior.The XPS spectrum indicates that the Fe2+ and Fe3+ co-exist in each of Sm1-xCaxFeO3 samples.The ratio of Fe2+/Fe3+ increases with doping Ca2+ increasing,and the magnetic preparation of SmFeO3 is enhanced.It can be attributed to the structural distortion and the formation of Fe2+–O2-–Fe3+ super-exchange.The spin recombination temperature (TSR) and the Neel temperature (TN) are obtained,respectively,to be 438 K and 687 K by measuring the M-T curves.It is noted that both TSR and TN of SmFeO3 samples move toward low temperature with the increase of x,and the spin recombination disappears when x=0.3.This is mainly due to the stability of the magnetic structure of SmFeO3 sample and the interactions of Fe3+–O2-–Fe3+ and Sm3+–O2-–Fe3+ super-exchange.
      通信作者: 宋桂林, guilinyichen@163.com
    • 基金项目: 国家自然科学基金(批准号:11504093,U1304518)、河南省基础和前沿技术研究项目(批准号:162300410086)、河南省高等教育重点研究项目(批准号:18A140022)和河南师范大学博士启动项目(批准号:qd16173)赞助的课题.
      Corresponding author: Song Gui-Lin, guilinyichen@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11504093, U1304518), the Basic and Frontier Technology Research Project of Henan Province, China (Grant No. 162300410086), the Henan Provincial Key Research Project of Higher Education, China (Grant No. 18A140022), and the Project of Ph. D. Primer Project of Henan Normal University, China (Grant No. qd16173).
    [1]

    Hosoya Y, Itagaki Y, Aono H, Sadaoka Y 2005 Sensor Actuat. B:Chem. 108 198.

    [2]

    Tokunaga Y, Furukawa N, Sakai H, Taguchi Y, Arima T, Tokura Y 2009 Nat. Mater. 8 558

    [3]

    Yuan X P, Tang Y K, Sun Y, Xu M X 2012 J. Appl. Phys. 111 053911

    [4]

    Steele B C, Heinzel A 2001 Nature 414 345

    [5]

    Kuo C Y, Drees Y, Fernández-Díaz M T, Zhao L, Vasylechko L, Sheptyakov D, Bell A M T, Pi T W, Lin H J, Steppke A, Tjeng L H, Hu Z, Komarek A C 2014 Phys. Rev. Lett. 113 217203

    [6]

    Lee J H, Jeong Y K, Park J H, Oak M A, Jang H M, Son J Y, Scott J F 2011 Phys. Rev. Lett. 107 117201

    [7]

    Yuvaraja S, Layekb S, Vidyavathyc S M, Yuvaraja S, Meyrickd D, Selvana R K 2015 Mater. Res. Bull. 72 77

    [8]

    Xu K, Zhao W Y, Xing J J, Gu H, Ren W, Zhang J C, Cao S X 2017 J. Cryst. Growth. 467 111

    [9]

    Zhao X Y, Zhang K L, Xu K, Man P W, Xie T, Wu A H, Ma G H, Cao S X, Su L B 2016 Solid State Commun. 231-232 43

    [10]

    Silva-Santana M C, daSilva C A, Barrozo P, Plaza E J R, de los Santos Valladares L, Moreno N O 2016 J. Magn. Magn. Mater. 401 612

    [11]

    Kang J, Cui X P, Fang Y F, Zhang J C 2016 Solid State Commun. 248 101

    [12]

    Praveena K, Bharathi P, Liu H L, Varma K B R 2016 Ceram. Int. 42 13572

    [13]

    Huízar-Félix A M, Hernández T, de la Parra S, Ibarra J, Kharisov B 2012 Powder Technol. 229 290

    [14]

    Song G L, Su J, Zhang N, Chang F G 2015 Acta Phys. Sin. 64 247502 (in Chinese) [宋桂林, 苏健, 张娜, 常方高 2015 物理学报 64 247502]

    [15]

    Prasad B V, Narsinga Rao G, Chen J W, Suresh Babu D 2011 Mater. Res. Bull. 46 1670

    [16]

    Jaiswal A, Das R, Adyanthaya S, Poddar P 2011 J. Phys. Chem. C 115 2954

    [17]

    Jung J S, Iyama A, Nakamura H, Mizumaki M, Kawamura N, Wakabayashi Y, Kimura T 2010 Phys. Rev. B 82 212403

    [18]

    Cao S, Zhao H, Kang B J, Zhang J C, Ren W 2014 Sci. Rep 4 5960

    [19]

    Babu P R, Bhaumik I, Ganesamoorthy S, Kalainathan S, Bhatt R, Karnal A K, Gupta P K 2016 J. Alloy. Compd. 676 313

    [20]

    Zhang C Y, Shang M Y, Liu M L, Zhang T S, Ge L, Yuan H M, Feng S H 2016 J. Alloy. Compd. 665 152

    [21]

    Jeong Y K, Lee J H, Ahn S J, Jang H M 2012 Solid State Commun. 152 1112

    [22]

    Marshall L G, Cheng J G, Zhou J S, Goodenough J B, Yan J Q, Mandrus D G 2012 Phys. Rev. B 86 064417

    [23]

    Zhao H, Cao S, Huang R, Ren W, Yuan S, Kang B, Lu B, Zhang J 2013 J. Appl. Phys. 114 113907

    [24]

    Song G L, Zhang H X, Wang T X, Yang H G, Chang F G 2012 J. Magn. Magn. Mater. 324 2121

    [25]

    Sati P C, Kumar M, Chhoker S 2015 Ceram. Int. 41 3227

    [26]

    Song G L, Song Y C, Su J, Song X H, Zhang N, Wang T X, Chang F G 2017 J. Alloy. Compd. 696 503

  • [1]

    Hosoya Y, Itagaki Y, Aono H, Sadaoka Y 2005 Sensor Actuat. B:Chem. 108 198.

    [2]

    Tokunaga Y, Furukawa N, Sakai H, Taguchi Y, Arima T, Tokura Y 2009 Nat. Mater. 8 558

    [3]

    Yuan X P, Tang Y K, Sun Y, Xu M X 2012 J. Appl. Phys. 111 053911

    [4]

    Steele B C, Heinzel A 2001 Nature 414 345

    [5]

    Kuo C Y, Drees Y, Fernández-Díaz M T, Zhao L, Vasylechko L, Sheptyakov D, Bell A M T, Pi T W, Lin H J, Steppke A, Tjeng L H, Hu Z, Komarek A C 2014 Phys. Rev. Lett. 113 217203

    [6]

    Lee J H, Jeong Y K, Park J H, Oak M A, Jang H M, Son J Y, Scott J F 2011 Phys. Rev. Lett. 107 117201

    [7]

    Yuvaraja S, Layekb S, Vidyavathyc S M, Yuvaraja S, Meyrickd D, Selvana R K 2015 Mater. Res. Bull. 72 77

    [8]

    Xu K, Zhao W Y, Xing J J, Gu H, Ren W, Zhang J C, Cao S X 2017 J. Cryst. Growth. 467 111

    [9]

    Zhao X Y, Zhang K L, Xu K, Man P W, Xie T, Wu A H, Ma G H, Cao S X, Su L B 2016 Solid State Commun. 231-232 43

    [10]

    Silva-Santana M C, daSilva C A, Barrozo P, Plaza E J R, de los Santos Valladares L, Moreno N O 2016 J. Magn. Magn. Mater. 401 612

    [11]

    Kang J, Cui X P, Fang Y F, Zhang J C 2016 Solid State Commun. 248 101

    [12]

    Praveena K, Bharathi P, Liu H L, Varma K B R 2016 Ceram. Int. 42 13572

    [13]

    Huízar-Félix A M, Hernández T, de la Parra S, Ibarra J, Kharisov B 2012 Powder Technol. 229 290

    [14]

    Song G L, Su J, Zhang N, Chang F G 2015 Acta Phys. Sin. 64 247502 (in Chinese) [宋桂林, 苏健, 张娜, 常方高 2015 物理学报 64 247502]

    [15]

    Prasad B V, Narsinga Rao G, Chen J W, Suresh Babu D 2011 Mater. Res. Bull. 46 1670

    [16]

    Jaiswal A, Das R, Adyanthaya S, Poddar P 2011 J. Phys. Chem. C 115 2954

    [17]

    Jung J S, Iyama A, Nakamura H, Mizumaki M, Kawamura N, Wakabayashi Y, Kimura T 2010 Phys. Rev. B 82 212403

    [18]

    Cao S, Zhao H, Kang B J, Zhang J C, Ren W 2014 Sci. Rep 4 5960

    [19]

    Babu P R, Bhaumik I, Ganesamoorthy S, Kalainathan S, Bhatt R, Karnal A K, Gupta P K 2016 J. Alloy. Compd. 676 313

    [20]

    Zhang C Y, Shang M Y, Liu M L, Zhang T S, Ge L, Yuan H M, Feng S H 2016 J. Alloy. Compd. 665 152

    [21]

    Jeong Y K, Lee J H, Ahn S J, Jang H M 2012 Solid State Commun. 152 1112

    [22]

    Marshall L G, Cheng J G, Zhou J S, Goodenough J B, Yan J Q, Mandrus D G 2012 Phys. Rev. B 86 064417

    [23]

    Zhao H, Cao S, Huang R, Ren W, Yuan S, Kang B, Lu B, Zhang J 2013 J. Appl. Phys. 114 113907

    [24]

    Song G L, Zhang H X, Wang T X, Yang H G, Chang F G 2012 J. Magn. Magn. Mater. 324 2121

    [25]

    Sati P C, Kumar M, Chhoker S 2015 Ceram. Int. 41 3227

    [26]

    Song G L, Song Y C, Su J, Song X H, Zhang N, Wang T X, Chang F G 2017 J. Alloy. Compd. 696 503

  • [1] 何院耀, 杨兵. 基于哈伯德模型的超冷原子量子模拟研究进展. 物理学报, 2025, 74(1): . doi: 10.7498/aps.74.20241595
    [2] 褚欣博, 金钻明, 吴旭, 李婧楠, 沈阳, 王若愚, 季秉煜, 李章顺, 彭滟. 铁磁异质结的远红外脉冲辐射及其光热调控研究. 物理学报, 2023, 72(15): 157801. doi: 10.7498/aps.72.20230543
    [3] 刘荣肇, 樊振军, 王浩成, 宁昊明, 米振宇, 刘广耀, 宋小会. 锌离子掺杂钴基金属有机材料[(CH3)2NH2]Co1–xZnx(HCOO)3中的低温反常磁现象. 物理学报, 2023, 72(3): 030201. doi: 10.7498/aps.72.20221761
    [4] 罗旭, 朱海燕, 丁雅萍. 基于力磁耦合效应的铁磁材料修正磁化模型. 物理学报, 2019, 68(18): 187501. doi: 10.7498/aps.68.20190765
    [5] 于佳, 刘通, 赵康, 潘伯津, 穆青隔, 阮彬彬, 任治安. 112型铁基化合物EuFeAs2的单晶生长与表征. 物理学报, 2018, 67(20): 207403. doi: 10.7498/aps.67.20181393
    [6] 刘清友, 罗旭, 朱海燕, 韩一维, 刘建勋. 基于Jiles-Atherton理论的铁磁材料塑性变形磁化模型修正. 物理学报, 2017, 66(10): 107501. doi: 10.7498/aps.66.107501
    [7] 宋桂林, 苏健, 张娜, 常方高. 多铁材料Bi1-xCaxFeO3的介电、铁磁特性和高温磁相变. 物理学报, 2015, 64(24): 247502. doi: 10.7498/aps.64.247502
    [8] 李正华, 李翔. L10-FePt合金单层磁性薄膜的微磁学模拟. 物理学报, 2014, 63(16): 167504. doi: 10.7498/aps.63.167504
    [9] 朱洁, 苏垣昌, 潘靖, 封国林. 高斯型非均匀应力对铁磁薄膜磁化性质的影响. 物理学报, 2013, 62(16): 167503. doi: 10.7498/aps.62.167503
    [10] 宋桂林, 罗艳萍, 苏健, 周晓辉, 常方高. Dy, Co共掺杂对BiFeO3陶瓷磁特性和磁相变温度Tc的影响. 物理学报, 2013, 62(9): 097502. doi: 10.7498/aps.62.097502
    [11] 王光建, 蒋成保. Sm(CobalFe0.1Cu0.1Zr0.033)6.9高温永磁合金的矫顽力. 物理学报, 2012, 61(18): 187503. doi: 10.7498/aps.61.187503
    [12] 宋桂林, 周晓辉, 苏健, 杨海刚, 王天兴, 常方高. Gd,Co共掺杂对BiFeO3陶瓷电输运和铁磁特性的影响. 物理学报, 2012, 61(17): 177501. doi: 10.7498/aps.61.177501
    [13] 邓娅, 赵国平, 薄鸟. 交换弹簧磁性多层膜的磁矩取向及磁滞回线的解析研究. 物理学报, 2011, 60(3): 037502. doi: 10.7498/aps.60.037502
    [14] 鲜承伟, 赵国平, 张庆香, 徐劲松. 垂直取向Nd2Fe14B/α-Fe磁性三层膜的磁化反转. 物理学报, 2009, 58(5): 3509-3514. doi: 10.7498/aps.58.3509
    [15] 马玉彬. 脱氧La0.5Ca0.5MnO3样品的铁磁-反铁磁转变和电阻率变化. 物理学报, 2009, 58(7): 4976-4979. doi: 10.7498/aps.58.4976
    [16] 张翠玲, 郑瑞伦, 滕 蛟. NiFeNb种子层对坡莫合金磁滞回线的影响. 物理学报, 2005, 54(11): 5389-5394. doi: 10.7498/aps.54.5389
    [17] 程金光, 隋 郁, 千正男, 刘志国, 黄喜强, 苗继鹏, 吕 喆, 王先杰, 苏文辉. 单晶NdMnO3的比热研究. 物理学报, 2005, 54(9): 4359-4364. doi: 10.7498/aps.54.4359
    [18] 肖春涛, 曹先胜. La0.67Pb0.33MnO3的Preisach分析. 物理学报, 2004, 53(7): 2347-2351. doi: 10.7498/aps.53.2347
    [19] 张宏伟, 荣传兵, 张 健, 张绍英, 沈保根. 纳米晶永磁Pr2Fe14B微磁学有限元法的模拟计算研究. 物理学报, 2003, 52(3): 718-721. doi: 10.7498/aps.52.718
    [20] 王文虎, 李世亮, 陈兆甲, 闻海虎, 熊玉峰. Bi2Sr2CaCu2O8单晶中的反常尖锋效应. 物理学报, 2001, 50(12): 2466-2470. doi: 10.7498/aps.50.2466
计量
  • 文章访问数:  6674
  • PDF下载量:  143
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-12
  • 修回日期:  2018-01-06
  • 刊出日期:  2019-03-20

/

返回文章
返回