搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高超声速条件下7°直圆锥边界层转捩实验研究

刘小林 易仕和 牛海波 陆小革 赵鑫海

引用本文:
Citation:

高超声速条件下7°直圆锥边界层转捩实验研究

刘小林, 易仕和, 牛海波, 陆小革, 赵鑫海

Experimental investigation of the hypersonic boundary layer transition on a 7° straight cone

Liu Xiao-Lin, Yi Shi-He, Niu Hai-Bo, Lu Xiao-Ge, Zhao Xin-Hai
PDF
导出引用
  • 在Ma=6低噪声风洞中开展了半锥角7°的直圆锥边界层转捩相关实验研究.利用响应频率达到MHz量级的高频压力传感器对圆锥壁面脉动压力进行了测量,研究了高超声速圆锥边界层中扰动波的发展过程.结果表明:高超声速圆锥边界层中第二模态扰动波产生的位置以及扰动波特征频率和波长等参数受雷诺数影响较大,当单位雷诺数从2×106 m-1增加到8×106 m-1 时,第二模态波的特征频率从55 kHz增加到226 kHz;随着单位雷诺数增加,边界层中扰动增长速度加快,第二模态波出现在圆锥表面更靠近上游的位置;相同单位雷诺数条件下,随着第二模态波的向下游传播,其特征频率逐渐减小.通过对比发现自由来流湍流度对边界层中扰动波的发展同样有较大影响,自由来流湍流度降低,边界层中的第二模态波的特征频率明显减小.利用互相关分析得出第二模态扰动波在边界层中的传播速度大约为当地主流速度的0.8–0.9 倍.在1°小攻角条件下,圆锥迎风面和背风面边界层发展呈现出明显的差异,背风面边界层中扰动发展提前,第二模态波出现在更靠近上游的位置,而迎风面中扰动发展受到抑制,第二模态波特征频率更大.
    In this paper, the experiments about the boundary layer transition on a 7° half-angle straight cone are carried out in a Mach 6 low-noise wind tunnel. The wall fluctuation pressure is measured by the transducer with megahertz response frequency, and the development process of the disturbance in the hypersonic boundary layer is investigated. The peaks in power spectrum density of the fluctuation pressure are related to the second mode wave, which is indicated through verifying the existence of the longitudinal acoustic second mode waves reflected between the relative sonic line and the solid wall by the flow visualization result. The wavelength and the characteristic frequency of the second mode wave in the hypersonic boundary layer are found to be greatly influenced by Reynolds number. The characteristic frequency of the second mode wave changes from 55 kHz to about 226 kHz when the Reynolds number increases from 2×106 m-1 to 8×106 m-1. The second mode wave appears at the position closer to the upstream with a higher disturbance growth speed under higher unit Reynolds number. As the second mode wave propagates downstream, its characteristic frequency gradually decreases. The freestream noise level also has a great influence on the development of the disturbance wave. The characteristic frequency of the second mode wave decreases significantly in a relatively quiet environment. The cross-correlation analysis results show that the propagation velocity of the second mode wave in the boundary layer is about 0.8-0.9 times the local mainstream velocity. The wavelength of the second mode wave is about 5.01 mm at the location from X=380 mm to X=440 mm when the unit Reynolds number is 5×106 m-1. At 1° angle of attack, the development of the boundary layer on the windward side and the leeward side of the cone are significantly different. The characteristic frequency of the second mode wave in the leeward surface is almost the same as the result at zero angle of attack under the same unit Reynolds number. However, the position of the second mode wave is greatly advanced. Results show that the disturbance development in the boundary layer of the leeward surface is accelerated, and the second mode wave appears at the position closer to the upstream. The velocity of the second mode wave in the leeward surface rapidly increases when it propagates downstream. While on the windward side, the disturbance development is inhibited and the second mode wave has a higher characteristic frequency. The wavelength of second mode wave also decreases obviously.
      通信作者: 刘小林, liuxiaolin09@nudt.edu.cn
    • 基金项目: 国家重点研发计划(批准号:2016YFA0401200)和国家自然科学基金重大项目(批准号:91752102)资助的课题.
      Corresponding author: Liu Xiao-Lin, liuxiaolin09@nudt.edu.cn
    • Funds: Project supported by the National Key Research and Development Plan of China (Grant No. 2016YFA0401200) and the Major Research Plan of the National Natural Science Foundation of China (Grant No. 91752102).
    [1]

    Mack L M 1975 AIAA J. 13 278

    [2]

    Mack L M 1984 AGARD Rep. 709

    [3]

    Malik M 1989 AIAA J. 27 1487

    [4]

    Reed H L, Saric W S 1996 Annu. Rev. Fluid Mech. 28 389

    [5]

    Kendall J M 1974 AIAA P. 133

    [6]

    Doggett G P 1996 Ph. D. Dissertation (Raleigh:North Carolina State University)

    [7]

    Stetson K, Kimmel R 1992 AIAA P. 0737

    [8]

    Casper K M, Beresh S J, Schneider S P 2014 J. Fluid Mech. 756 1058

    [9]

    Chou A 2014 Ph. D. Dissertation (West Lafayette:Purdue University)

    [10]

    Wheaton B M 2012 Ph. D. Dissertation (West Lafayette:Purdue University)

    [11]

    Schneider S P 2015 Prog. Aerosp. Sci. 72 17

    [12]

    Borisov S P, Bountin D A, Gromyko Y V, Khotyanovsky D V, Kudryavtsev A N 2016 International Conference on the Methods of Aerophysical Research Perm, Russia, June 27-July 3, 2016 p030057-1

    [13]

    Keisuke F, Noriaki H, Hiroshi O, Tadao K, Shoichi T, Muneyoshi N, Yukihiro I, Akihiro N 2011 AIAA P. 3871

    [14]

    Lu C G, Shen L Y 2016 Acta Phys. Sin. 65 194701 (in Chinese)[陆昌根, 沈露予 2016 物理学报 65 194701]

    [15]

    Wheaton B M, Juliano T J, Berridge D C, Chou A 2009 AIAA P. 3559

    [16]

    Balakumar P, Kegerise M A 2015 AIAA J. 53 2097

    [17]

    Jayahar S, Fasel H F 2015 J. Fluid Mech. 768 175

    [18]

    Li X L, Fu D X, Ma Y W 2010 Phys. Fluids 22 025105

    [19]

    Liu J X 2010 Ph. D. Dissertation (Tianjin:Tianjin University) (in Chinese)[刘建新 2010 博士学位论文 (天津:天津大学)]

    [20]

    Chen F J, Malik M R, Beckwith I E 1989 AIAA J. 27 687

    [21]

    Casper K M, Johnson H B, Schneider S P 2011 J. Spacecr. Rockets 48 406

    [22]

    Schneider S P, Haven C E 1995 AIAA J. 33 688

    [23]

    Zhao Y X, Yi S H, Tian L F, Cheng Z Y 2009 Sci. China Ser. E:Technol. Sci. 52 3640

    [24]

    Yi S H, He L, Zhao Y X, Tian L F, Cheng Z Y 2009 Sci. China Ser. G:Phys. Mech. Astron. 52 2001

    [25]

    Wu Y, Yi S H, He L, Quan P C, Zhu Y Z 2015 Acta Phys. Sin. 64 014703 (in Chinese)[武宇, 易仕和, 何霖, 全鹏程, 朱杨柱 2015 物理学报 64 014703]

    [26]

    Christopher A, Katya C, Steven B, Steven S 2010 AIAA P. 897

    [27]

    Katya C, Steven B, John H, Russell S, Brian P, Steven S 2009 AIAA P. 4054

    [28]

    Chen M Z 2002 Fundamentals of Viscous Fluid Dynamics (Beijing:Higher Education Press) pp151-155 (in Chinese)[陈懋章 2002 黏性流体动力学基础(北京:高等教育出版社)第151–155页]

    [29]

    Li X L, Fu D X, Ma Y W 2008 AIAA J. 46 2899

  • [1]

    Mack L M 1975 AIAA J. 13 278

    [2]

    Mack L M 1984 AGARD Rep. 709

    [3]

    Malik M 1989 AIAA J. 27 1487

    [4]

    Reed H L, Saric W S 1996 Annu. Rev. Fluid Mech. 28 389

    [5]

    Kendall J M 1974 AIAA P. 133

    [6]

    Doggett G P 1996 Ph. D. Dissertation (Raleigh:North Carolina State University)

    [7]

    Stetson K, Kimmel R 1992 AIAA P. 0737

    [8]

    Casper K M, Beresh S J, Schneider S P 2014 J. Fluid Mech. 756 1058

    [9]

    Chou A 2014 Ph. D. Dissertation (West Lafayette:Purdue University)

    [10]

    Wheaton B M 2012 Ph. D. Dissertation (West Lafayette:Purdue University)

    [11]

    Schneider S P 2015 Prog. Aerosp. Sci. 72 17

    [12]

    Borisov S P, Bountin D A, Gromyko Y V, Khotyanovsky D V, Kudryavtsev A N 2016 International Conference on the Methods of Aerophysical Research Perm, Russia, June 27-July 3, 2016 p030057-1

    [13]

    Keisuke F, Noriaki H, Hiroshi O, Tadao K, Shoichi T, Muneyoshi N, Yukihiro I, Akihiro N 2011 AIAA P. 3871

    [14]

    Lu C G, Shen L Y 2016 Acta Phys. Sin. 65 194701 (in Chinese)[陆昌根, 沈露予 2016 物理学报 65 194701]

    [15]

    Wheaton B M, Juliano T J, Berridge D C, Chou A 2009 AIAA P. 3559

    [16]

    Balakumar P, Kegerise M A 2015 AIAA J. 53 2097

    [17]

    Jayahar S, Fasel H F 2015 J. Fluid Mech. 768 175

    [18]

    Li X L, Fu D X, Ma Y W 2010 Phys. Fluids 22 025105

    [19]

    Liu J X 2010 Ph. D. Dissertation (Tianjin:Tianjin University) (in Chinese)[刘建新 2010 博士学位论文 (天津:天津大学)]

    [20]

    Chen F J, Malik M R, Beckwith I E 1989 AIAA J. 27 687

    [21]

    Casper K M, Johnson H B, Schneider S P 2011 J. Spacecr. Rockets 48 406

    [22]

    Schneider S P, Haven C E 1995 AIAA J. 33 688

    [23]

    Zhao Y X, Yi S H, Tian L F, Cheng Z Y 2009 Sci. China Ser. E:Technol. Sci. 52 3640

    [24]

    Yi S H, He L, Zhao Y X, Tian L F, Cheng Z Y 2009 Sci. China Ser. G:Phys. Mech. Astron. 52 2001

    [25]

    Wu Y, Yi S H, He L, Quan P C, Zhu Y Z 2015 Acta Phys. Sin. 64 014703 (in Chinese)[武宇, 易仕和, 何霖, 全鹏程, 朱杨柱 2015 物理学报 64 014703]

    [26]

    Christopher A, Katya C, Steven B, Steven S 2010 AIAA P. 897

    [27]

    Katya C, Steven B, John H, Russell S, Brian P, Steven S 2009 AIAA P. 4054

    [28]

    Chen M Z 2002 Fundamentals of Viscous Fluid Dynamics (Beijing:Higher Education Press) pp151-155 (in Chinese)[陈懋章 2002 黏性流体动力学基础(北京:高等教育出版社)第151–155页]

    [29]

    Li X L, Fu D X, Ma Y W 2008 AIAA J. 46 2899

  • [1] 李松蔚, 谢勇. 基于功率谱的神经元放电早期预警信号. 物理学报, 2025, 74(1): 010501. doi: 10.7498/aps.74.20241471
    [2] 曾瑞童, 易仕和, 陆小革, 赵玉新, 张博, 冈敦殿. 内流可视超声速喷管边界层实验研究. 物理学报, 2024, 73(16): 164702. doi: 10.7498/aps.73.20240713
    [3] 胡玉发, 易仕和, 刘小林, 徐席旺, 张震, 张臻. 壁面渗透气膜工质对圆锥高超声速边界层稳定性的影响. 物理学报, 2024, 73(12): 124701. doi: 10.7498/aps.73.20240369
    [4] 吴明兴, 田得阳, 唐璞, 田径, 何子远, 马平. 高超声速模型尾迹电子密度二维分布反演方法. 物理学报, 2022, 71(11): 115202. doi: 10.7498/aps.70.20212345
    [5] 刘勇, 涂国华, 向星皓, 李晓虎, 郭启龙, 万兵兵. 横向矩形微槽抑制高超声速第二模态扰动波的参数化研究. 物理学报, 2022, 71(19): 194701. doi: 10.7498/aps.71.20220851
    [6] 赵丽霞, 王成会, 莫润阳. 多层膜磁性微泡的非线性声振动特性. 物理学报, 2021, 70(1): 014301. doi: 10.7498/aps.70.20200973
    [7] 牛海波, 易仕和, 刘小林, 霍俊杰, 冈敦殿. 高超声速三角翼上横流不稳定性的实验研究. 物理学报, 2021, 70(13): 134701. doi: 10.7498/aps.70.20201777
    [8] 张博, 何霖, 易仕和. 超声速湍流边界层密度脉动小波分析. 物理学报, 2020, 69(21): 214702. doi: 10.7498/aps.69.20200748
    [9] 李强, 赵磊, 陈苏宇, 江涛, 庄宇, 张扣立. 展向凹槽及泄流孔对高超声速平板边界层转捩影响的试验研究. 物理学报, 2020, 69(2): 024703. doi: 10.7498/aps.69.20191155
    [10] 刘小林, 易仕和, 牛海波, 陆小革. 激光聚焦扰动作用下高超声速边界层稳定性实验研究. 物理学报, 2018, 67(21): 214701. doi: 10.7498/aps.67.20181192
    [11] 何霖, 易仕和, 陆小革. 超声速湍流边界层密度场特性. 物理学报, 2017, 66(2): 024701. doi: 10.7498/aps.66.024701
    [12] 王小虎, 易仕和, 付佳, 陆小革, 何霖. 二维高超声速后台阶表面传热特性实验研究. 物理学报, 2015, 64(5): 054706. doi: 10.7498/aps.64.054706
    [13] 付佳, 易仕和, 王小虎, 张庆虎, 何霖. 高超声速平板边界层流动显示的试验研究. 物理学报, 2015, 64(1): 014704. doi: 10.7498/aps.64.014704
    [14] 刘扬阳, 吕群波, 张文喜. 大气湍流畸变对空间目标清晰干涉成像仿真研究. 物理学报, 2012, 61(12): 124201. doi: 10.7498/aps.61.124201
    [15] 李锦, 刘大钊. 昼夜节律下心率变异性信号的熵信息和谱特征. 物理学报, 2012, 61(20): 208701. doi: 10.7498/aps.61.208701
    [16] 张良英, 金国祥, 曹力. 具有频率噪声的单模激光线性模型随机共振. 物理学报, 2011, 60(4): 044207. doi: 10.7498/aps.60.044207
    [17] 徐彬, 吴振森, 吴健, 薛昆. 碰撞等离子体的非相干散射谱. 物理学报, 2009, 58(7): 5104-5110. doi: 10.7498/aps.58.5104
    [18] 宋艳丽. 简谐速度噪声及其与势场之间的频率共振. 物理学报, 2006, 55(12): 6482-6487. doi: 10.7498/aps.55.6482
    [19] 袁常青, 赵同军, 王永宏, 展 永. 有限体系能量耗散运动的功率谱分析. 物理学报, 2005, 54(12): 5602-5608. doi: 10.7498/aps.54.5602
    [20] 降雨强, 郭红莲, 刘春香, 李兆霖, 程丙英, 张道中, 贾锁堂. 低频响及低采样频率下用布朗运动分析法测量光阱刚度. 物理学报, 2004, 53(6): 1721-1726. doi: 10.7498/aps.53.1721
计量
  • 文章访问数:  7237
  • PDF下载量:  126
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-25
  • 修回日期:  2018-05-07
  • 刊出日期:  2018-09-05

/

返回文章
返回