搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CeFe2-xInx合金磁性研究与CeFe1.95In0.05合金磁相变临界参数分析

陈湘 赵明骅

引用本文:
Citation:

CeFe2-xInx合金磁性研究与CeFe1.95In0.05合金磁相变临界参数分析

陈湘, 赵明骅

Magnetic property of CeFe2-xInx alloys and critical parameters of magnetic phase transition of CeFe1.95In0.05 alloy

Chen Xiang, Zhao Ming-Hua
PDF
导出引用
  • 通过等温磁化曲线和等磁场变温曲线测量与标度理论,系统研究了CeFe2-xInx合金的磁性和CeFe1.95In0.05合金的磁相变临界参数.结果表明:用2.5 at.%的铟替代CeFe2合金中的铁并不能使合金中的反铁磁态在低温下完全稳定,低场下在280 K均能观察到反铁磁相振荡;CeFe2与CeFe1.95In0.05合金的顺磁-铁磁二级相变居里温度均在230 K附近;在05 T磁场范围内,CeFe1.95In0.05合金居里温度处的最大磁熵变为3.13 J/(kgK),相对制冷量为151.3 J/kg.通过不同方法得到的具有高度自洽性的磁相变标度临界参数均表明CeFe1.95In0.05合金的磁相互作用可以用基于短程相互作用的3D-Ising模型来描述.
    Magnetic properties of CeFe2-xInx alloys and scaling critical behaviors of CeFe1.95In0.05 alloy are investigated by measuring the magnetic susceptibility and isothermal magneteization. The X-ray diffraction (XRD) patterns show that the solid solubility of the In substituted for the Fe in CeFe2-xInx alloy is limited. Because the intensity diffraction peak of impurity at 2=30.75 and 35.80 in CeFe1.95In0.05 XRD pattern are very low, the effect of impurity on magnetism is not considered in this paper. Magnetic measurements indicate that using 2.5 at.% indium to substitute for Fe in CeFe2 alloy can strengthen the orbital hybridization interaction between Ce-4f and Fe-3d, but it cannot reach the critical point to make the antiferromagnetic stable. The AFM fluctuation still keeps in a value ranging from 2 K to 80 K. The second order paramagnetic-ferromagnetic transition of CeFe1.95In0.05 at TC=230 K is confirmed by Arrott plot analysis. The effective ferromagnetic moment of Fe atoms can be increased by replacing part of the Fe atoms with In atoms in the CeFe2 alloy, which can increase the paramagnetic and effective magnetic moment and the magnetic saturation magnetic moment of the alloy. For a magnetic field change of 0-50 kOe, the maximum value of the magnetic entropy change-△ SM is 3.13 J/(kgK) at 230 K and RCP is 151.3 J/kg, which are higher than the values of Ce0.95Gd0.05Fe2, Ce0.9Gd0.1Fe2, and Ce0.9Ho0.1Fe2 alloys under the same magnetic field. The high self-consistent scaling critical exponents determined by modified Arrott plot and Kouvel-Fisher methods are[=0.3212(8) and =0.9357(9)] and[=0.3304(1) and =0.9249(1)], respectively. The parameter obtained from the critical magnetization isotherm MTC=DH1/ satisfies the Widom scaling relation =1+/. Moreover, the plot of M1/ vs. (H/M) 1/ constructed by the above critical parameters completely complies with the scaling hypothesis. At the same time, the critical parameters of n and obtained by|△ SM| Hn and RCP H(1 + 1/) fitting are 0.6191(8) and 5.0559(1), respectively. In all, non-local effect of spin interaction causes a certain difference between the critical parameters and 3D-Ising model standard values (=0.325, =1.241, n=0.569, and =4.818). But these differences are small, especially for critical parameter , which suggests that the magnetic interaction in CeFe1.95In0.05 alloy is a short-range interaction.
      通信作者: 陈湘, gxucx@163.com
    • 基金项目: 四川省科技厅科研基金(批准号:2017JY0181)和四川省教育厅科研基金(批准号:16ZB0301)资助的课题.
      Corresponding author: Chen Xiang, gxucx@163.com
    • Funds: Project supported by the Scientific Research Fundation of the Science and Technology Department of Sichuan Province, China (Grant No. 2017JY0181) and the Scientific Research Fundation of the Education Department of Sichuan Province, China (Grant No. 16ZB0301).
    [1]

    Clausen K, Rhyne J J, Lebech B, Koon N C 1982 J. Phys. C 15 3587

    [2]

    Rhyne J J 1987 J. Magn. Magn. Mater. 70 88

    [3]

    Eriksson O, Nordstrm L, Brooks M S S, Brje J 1988 Phys. Rev. Lett. 60 2523

    [4]

    Franse J J M, Radwanski R J 1993 Handbook of Magnetic Materials (Vol. 7) (Amsterdam:Elsevier Press) p207

    [5]

    Paolasini L, Dervenagas P, Vulliet P, Sanchez J P, Lander G H, Hiess A, Panchula A, Canfield P 1998 Phys. Rev. B 58 12117

    [6]

    Paolasini L, Lander G H, Shapiro S M, Caciuffo R, Lebech B, Regnault L P, Roessli B, Fournier J M 1996 Phys. Rev. B 54 7222

    [7]

    Paolasini L, Caciuffo R, Roessli B, Lander G H, Myers K, Canfield P 1999 Phys. Rev. B 59 6867

    [8]

    Haldar A, Suresh K G, Nigam A K 2010 J. Phys. D:Appl. Phys. 43 285004

    [9]

    Fukuda H, Fujii H, Kamura H, Hasegawa Y, Ekino T, Kikogawa N, Suzuki T, Fujita T 2001 Phys. Rev. B 63 054405

    [10]

    Roy S B, Coles B R 1989 J. Phys.:Condens. Matter 1 419

    [11]

    Manekar M A, Chaudhary S, Chattopadhyay M K, Singh K J, Roy S B, Chaddah P 2001 Phys. Rev. B 64 104416

    [12]

    Grover A K, Pillay R G, Balasubramanian V, Tandon P N 1988 Solid State Commun. 67 1223

    [13]

    Matsuura M, Kim S H, Sakurai M, Suzuki K 1995 Physica B 208-209 283

    [14]

    Roy S B, Coles B R 1987 J. Phys. F:Met. Phys. 17 L215

    [15]

    Fukuda H, Kamura H, Ekino T, Fujii H, Kikugawa N, Suzuki T, Fujita T 2000 Physica B 281-282 92

    [16]

    Manekar M, Roy S B, Chaddah P 2000 J. Phys.:Condens. Matter 12 L409

    [17]

    Roy S B, Perkins G K, Chattopadhyay M K, Nigam A K, Sokhey K J S, Chaddah P, Caplin A D, Cohen L F 2004 Phys. Rev. Lett. 92 147203

    [18]

    Roy S B, Coles B R 1989 Phys. Rev. B 39 9360

    [19]

    Chattopadhyay M K, Manekar M A, Roy S B 2006 J. Phys. D:Appl. Phys. 39 1006

    [20]

    Rajarajan A K, Roy S B, Chaddah P 1997 Phys. Rev. B 56 7808

    [21]

    Paolasini L, Ouladdiaf B, Bernhoeft N, Sanchez J P, Vulliet P, Lander G H, Canfield P 2003 Phys. Rev. Lett. 90 057201

    [22]

    Haldar A, Suresh K G, Nigam A K 2008 Phys. Rev. B 78 144429

    [23]

    Haldar A, Das A, Hoser A, Hofmann T, Nayak A K, Suresh K G, Nigam A K 2001 J. Appl. Phys. 109 07E125

    [24]

    Haldar A, Suresh K G, Nigam A K 2010 Intermetallics 18 1772

    [25]

    Yamada H, Fukamichi K, Goto T 2001 Phys. Rev. B 65 024413

    [26]

    Fan J Y, Ling L S, Hong B, Zhang L, Pi L, Zhang Y H 2010 Phys. Rev. B 81 144426

    [27]

    Sahana M, Rssler U K, Ghosh N, Elizabeth S, Bhat H L, Drr K, Eckert D, Wolf M, Mller K H 2003 Phys. Rev. B 68 144408

    [28]

    Kouvel J S, Fisher M E 1964 Phys. Rev. 136 A1626

    [29]

    Kaul S N 1985 J. Magn. Magn. Mater. 3 5

    [30]

    Widom B 1965 J. Chem. Phys. 43 3892

    [31]

    Kim D, Revaz B, Zink B L, Hellman F, Rhyne J J, Mitchell J F 2002 Phys. Rev. Lett. 89 227202

    [32]

    Shamba P, Wang J L, Debnath J C, Kennedy S J, Zeng R, Din M F, Hong F, Cheng Z X, Studer A J, Dou S X 2013 J. Phys.:Condens. Matter 25 056001

    [33]

    Franco V, Blzquez J S, Conde A 2006 Appl. Phys. Lett. 89 222512

    [34]

    Dong Q Y, Zhang H W, Sun J R, Shen B G, Franco V 2008 J. Appl. Phys. 103 116101

  • [1]

    Clausen K, Rhyne J J, Lebech B, Koon N C 1982 J. Phys. C 15 3587

    [2]

    Rhyne J J 1987 J. Magn. Magn. Mater. 70 88

    [3]

    Eriksson O, Nordstrm L, Brooks M S S, Brje J 1988 Phys. Rev. Lett. 60 2523

    [4]

    Franse J J M, Radwanski R J 1993 Handbook of Magnetic Materials (Vol. 7) (Amsterdam:Elsevier Press) p207

    [5]

    Paolasini L, Dervenagas P, Vulliet P, Sanchez J P, Lander G H, Hiess A, Panchula A, Canfield P 1998 Phys. Rev. B 58 12117

    [6]

    Paolasini L, Lander G H, Shapiro S M, Caciuffo R, Lebech B, Regnault L P, Roessli B, Fournier J M 1996 Phys. Rev. B 54 7222

    [7]

    Paolasini L, Caciuffo R, Roessli B, Lander G H, Myers K, Canfield P 1999 Phys. Rev. B 59 6867

    [8]

    Haldar A, Suresh K G, Nigam A K 2010 J. Phys. D:Appl. Phys. 43 285004

    [9]

    Fukuda H, Fujii H, Kamura H, Hasegawa Y, Ekino T, Kikogawa N, Suzuki T, Fujita T 2001 Phys. Rev. B 63 054405

    [10]

    Roy S B, Coles B R 1989 J. Phys.:Condens. Matter 1 419

    [11]

    Manekar M A, Chaudhary S, Chattopadhyay M K, Singh K J, Roy S B, Chaddah P 2001 Phys. Rev. B 64 104416

    [12]

    Grover A K, Pillay R G, Balasubramanian V, Tandon P N 1988 Solid State Commun. 67 1223

    [13]

    Matsuura M, Kim S H, Sakurai M, Suzuki K 1995 Physica B 208-209 283

    [14]

    Roy S B, Coles B R 1987 J. Phys. F:Met. Phys. 17 L215

    [15]

    Fukuda H, Kamura H, Ekino T, Fujii H, Kikugawa N, Suzuki T, Fujita T 2000 Physica B 281-282 92

    [16]

    Manekar M, Roy S B, Chaddah P 2000 J. Phys.:Condens. Matter 12 L409

    [17]

    Roy S B, Perkins G K, Chattopadhyay M K, Nigam A K, Sokhey K J S, Chaddah P, Caplin A D, Cohen L F 2004 Phys. Rev. Lett. 92 147203

    [18]

    Roy S B, Coles B R 1989 Phys. Rev. B 39 9360

    [19]

    Chattopadhyay M K, Manekar M A, Roy S B 2006 J. Phys. D:Appl. Phys. 39 1006

    [20]

    Rajarajan A K, Roy S B, Chaddah P 1997 Phys. Rev. B 56 7808

    [21]

    Paolasini L, Ouladdiaf B, Bernhoeft N, Sanchez J P, Vulliet P, Lander G H, Canfield P 2003 Phys. Rev. Lett. 90 057201

    [22]

    Haldar A, Suresh K G, Nigam A K 2008 Phys. Rev. B 78 144429

    [23]

    Haldar A, Das A, Hoser A, Hofmann T, Nayak A K, Suresh K G, Nigam A K 2001 J. Appl. Phys. 109 07E125

    [24]

    Haldar A, Suresh K G, Nigam A K 2010 Intermetallics 18 1772

    [25]

    Yamada H, Fukamichi K, Goto T 2001 Phys. Rev. B 65 024413

    [26]

    Fan J Y, Ling L S, Hong B, Zhang L, Pi L, Zhang Y H 2010 Phys. Rev. B 81 144426

    [27]

    Sahana M, Rssler U K, Ghosh N, Elizabeth S, Bhat H L, Drr K, Eckert D, Wolf M, Mller K H 2003 Phys. Rev. B 68 144408

    [28]

    Kouvel J S, Fisher M E 1964 Phys. Rev. 136 A1626

    [29]

    Kaul S N 1985 J. Magn. Magn. Mater. 3 5

    [30]

    Widom B 1965 J. Chem. Phys. 43 3892

    [31]

    Kim D, Revaz B, Zink B L, Hellman F, Rhyne J J, Mitchell J F 2002 Phys. Rev. Lett. 89 227202

    [32]

    Shamba P, Wang J L, Debnath J C, Kennedy S J, Zeng R, Din M F, Hong F, Cheng Z X, Studer A J, Dou S X 2013 J. Phys.:Condens. Matter 25 056001

    [33]

    Franco V, Blzquez J S, Conde A 2006 Appl. Phys. Lett. 89 222512

    [34]

    Dong Q Y, Zhang H W, Sun J R, Shen B G, Franco V 2008 J. Appl. Phys. 103 116101

  • [1] 周文力, 卓伟伟, 蒋依然, 马文杰, 董宝君. 水平管内超临界R1234ze(E)冷却传热性能的神经网络预测. 物理学报, 2024, 73(12): 120702. doi: 10.7498/aps.73.20240283
    [2] 彭嘉欣, 唐本镇, 陈棋鑫, 李冬梅, 郭小龙, 夏雷, 余鹏. 非晶态Gd45Ni30Al15Co10合金的制备与磁热性能. 物理学报, 2022, 71(2): 026102. doi: 10.7498/aps.70.20211530
    [3] 瞿立建. 浸没于带电纳米粒子溶液中的聚电解质刷: 强拉伸理论. 物理学报, 2020, 69(14): 148201. doi: 10.7498/aps.69.20200432
    [4] 吴晨旭, 严大东, 邢向军, 厚美瑛. 软物质主要理论综述. 物理学报, 2016, 65(18): 186102. doi: 10.7498/aps.65.186102
    [5] 黄逸佳, 张国营, 胡风, 夏往所, 刘海顺. PrNi2的磁和磁热性能研究. 物理学报, 2014, 63(22): 227501. doi: 10.7498/aps.63.227501
    [6] 徐新河, 肖绍球, 甘月红, 王秉中. 周期性磁谐振材料本构参数的理论分析. 物理学报, 2013, 62(10): 104105. doi: 10.7498/aps.62.104105
    [7] 刘建业, 郭文军, 左 维, 李希国. 核子-核子碰撞截面对同位素标度参数α的同位旋效应. 物理学报, 2008, 57(9): 5458-5463. doi: 10.7498/aps.57.5458
    [8] 刘建业, 郝焕锋, 左 维, 李希国. 核子-核子碰撞截面对同位素标度参数α的介质效应. 物理学报, 2008, 57(4): 2136-2140. doi: 10.7498/aps.57.2136
    [9] 刘志峰, 赖远庭, 赵 刚, 张有为, 刘正锋, 王晓宏. 随机多孔介质逾渗模型渗透率的临界标度性质. 物理学报, 2008, 57(4): 2011-2015. doi: 10.7498/aps.57.2011
    [10] 敬 超, 李 哲, 陈继萍, 鲁玉明, 曹世勋, 张金仓. 哈斯勒合金Ni-Mn-Sn的马氏体相变与反磁热性质. 物理学报, 2008, 57(6): 3780-3785. doi: 10.7498/aps.57.3780
    [11] 郑小平, 张佩峰, 范多旺, 李发伸, 郝 远. Tb0.3Dy0.7-xPrx(Fe0.9Al0.1)1.95合金的磁致伸缩、自旋重取向和穆斯堡尔谱研究. 物理学报, 2007, 56(1): 535-540. doi: 10.7498/aps.56.535
    [12] 李国峰, 孙克忱, 梁 科, 郑 旭, 马志翘, 王 锦. 磁多极场场参数的理论计算与分析. 物理学报, 2007, 56(8): 4523-4534. doi: 10.7498/aps.56.4523
    [13] 王庆学, 杨建荣, 魏彦锋. HgCdTe外延薄膜临界厚度的理论分析. 物理学报, 2005, 54(12): 5814-5819. doi: 10.7498/aps.54.5814
    [14] 高永华, 何明中, 段春贵. 推广x重新标度模型重标度参数公式与轻子-核DIS过程的核效应. 物理学报, 2003, 52(1): 39-41. doi: 10.7498/aps.52.39
    [15] 钟立军, 陶瑞宝. FeRh合金顺磁到铁磁相变的对称理论. 物理学报, 1992, 41(12): 2003-2007. doi: 10.7498/aps.41.2003
    [16] 王光瑞, 陈式刚. 超临界圆映象的混沌测度及其标度律. 物理学报, 1990, 39(11): 1705-1713. doi: 10.7498/aps.39.1705
    [17] 蔡俊道, 吉光达, 吴杭生, 蔡建华, 龚昌德. 超导临界温度理论(Ⅲ). 物理学报, 1979, 28(3): 393-405. doi: 10.7498/aps.28.393
    [18] 龚昌德, 吴杭生, 蔡建华, 蔡俊道, 吉光达. 超导临界温度理论(Ⅱ). 物理学报, 1978, 27(1): 85-93. doi: 10.7498/aps.27.85
    [19] 吴杭生, 蔡建华, 龚昌德, 吉光达, 蔡俊道. 超导临界温度理论(Ⅰ). 物理学报, 1977, 26(6): 509-520. doi: 10.7498/aps.26.509
    [20] 吴杭生. 合金薄膜的临界磁场. 物理学报, 1965, 21(1): 132-139. doi: 10.7498/aps.21.132
计量
  • 文章访问数:  5977
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-26
  • 修回日期:  2018-08-03
  • 刊出日期:  2018-10-05

/

返回文章
返回