-
A method of using energy loss to reconstruct the density is presented with protons at intermediate and high energy for proton radiography, and the equation and condition of density reconstruction are given based on the Bethe-Bolch formula. For the intermediate and high energy proton radiography, the stopping power of material is changed slowly within a certain energy range, and the stopping power can be approximated as a constant, then the multi-material object can be reconstructed by using the energy loss information. In this work, the protons at 1.6 GeV which can be obtained by China Spallation Neutron Source are used in the radiography, and the energy loss information is used in the reconstruction, and the Geant 4 is applied to Monte Carlo simulation. From the theoretical calculation and the Geant4 simulation, it can be seen that when the protons energy ranges from 1.45 GeV to 1.6 GeV the stopping power of material can be approximately constant, and the relative change of material stopping power is less than 1%, thus the stopping power of material is only dependent on the incident proton energy, and the density of the multimaterial object can be reconstructed by the energy loss information. The proton scanning imaging system which can avoid blurring image caused by multiple coulomb scattering at the receiving plane is used in the proton radiography to obtain the energy loss information. In the imaging system, two energy detectors are employed to record the incident energy and exit energy of protons, the object is scanned by the protons with a certain step length, and the object is rotated 180 or 360. The energy loss distribution of the object can be obtained by the scanning imaging system, and the density of the object can be reconstructed by solving corresponding equations. The Geant 4 is used to simulate the proton scanning imaging system. In the simulation, the object is the scaling french test object (FTO) that the areal density is 113 g/cm2, the protons are monoenergetic at 1.6 GeV, the scanning interval is 0.5 mm, and the rotation angle is 0.9. The results of the density reconstruction of the scaling FTO are in good agreement with the true values.
-
Keywords:
- energy loss /
- density reconstruction /
- Monte Carlo simulation /
- Geant 4
[1] Burtsev V V, Lebedev A I, Mikhailov A L, et al. 2011 Combust. Explo. Shock Waves 47 627
[2] Morris C L, Ables E, Alrick K R, et al. 2011 J. Appl. Phys. 109 104905
[3] Antipov Y M, Afonin A G, Gusev I A, et al. 2013 At. Energy 114 359
[4] Antipov Y M, Afonin A G, Vasilevskii A V, et al. 2010 Instrum. Exp. Tech. 53 319
[5] Varentsov D, Antonov O, Bakhmutova A, et al. 2016 Rev. Sci. Instrum. 87 023303
[6] Teng J, Hong W, Zhao Z Q, Wu S C, Qin X Z, He Y L, Gu Y Q, Ding Y K 2009 Acta Phys. Sin. 58 1635 (in Chinese)[滕建, 洪伟, 赵宗清, 巫顺超, 秦孝尊, 何颖玲, 谷渝秋, 丁永坤 2009 物理学报 58 1635]
[7] Teng J, Zhao Z Q, Zhu B, et al. 2011 Chin. Phys. Lett. 28 035203
[8] Xu H B, Zheng N 2015 Chin. Phys. C 39 078201
[9] Wu X J, Wang X F, Chen X H 2016 Chin. Phys. Lett. 33 065201
[10] Yang S Q, Zhou W M, Wang S M, Jiao J L, Zhang Z M, Cao L F, Gu Y Q, Zhang B H 2017 Acta Phys. Sin. 66 184101 (in Chinese)[杨思谦, 周维民, 王思明, 矫金龙, 张智猛, 曹磊峰, 谷渝秋, 张保汉 2017 物理学报 66 184101]
[11] Yang J J, Zhen X, Wei S M, Lv Y L, Wang F, Zhang Y W, Wen L P, Liu J Y, Cai H R, Ge T, Zhang S P, Cao L, Zhang T J, Li Z G 2016 CYC 2016 Proceedings of the 21st International Conference on Cyclotrons and their Applications Zurich, September 11-16, 2016 p401
[12] Merrill F E 2015 Rev. Accl. Sci. Tech. 8 165
[13] Sheng L, Zhao Y, Yang G, et al. 2014 Laser Part. Beams 32 651
[14] Wei T, Yang G J, Li Y D, Long J D, He X Z, Zhang X D, Jiang X G, Ma C F, Zhao L C, Yang X L, Zhang Z, Wang Y, Pang J, Li H, Li W F, Zhou F X, Shi J S, Zhang K Z, Li J, Zhang L W, Deng J J 2014 Chin. Phys. C 38 087003
[15] Teng J, Hong W, He S K, Deng Z G, Zhu B, Zhang T K, Yu M H, Qian F, Zhang B, Qi W, Zhang Z M, Bi B, Shan L Q, Zhang F Q, Yang L, Lu F, Zhang F, Li J, Chen T, Wu Y C, Cui B, Zhou W M, Cao L F, Gu Y Q 2017 High. Pow. Las. Part. Beam. 29 092001 (in Chinese)[滕建, 洪伟, 贺书凯, 邓志刚, 朱斌, 张天奎, 于明海, 钱凤, 张博, 齐伟, 张智猛, 毕碧, 单连强, 张发强, 杨雷, 卢峰, 张锋, 李晋, 陈韬, 吴玉迟, 崔波, 周维民, 曹磊峰, 谷渝秋 2017 强激光与粒子束 29 092001]
[16] Mottershead C T, Zumbro J D 1997 Particle Accelerator Conference Vancouver, May 16, 1997 p1397
[17] Hanson K M, Bradbury J N, Koeppe R A, Macek R J, Machen D R, Morgado R, Paciotti M A, Sandford S A, Steward V W 1982 Phys. Med. Biol. 27 25
[18] Schulte R W, Bashkirov V, Loss K M C, Li T F, Wroe A J, Evseev I, Williams D C, Satogata T 2005 Med. Phys. 32 1035
[19] Groom D 1993 PDG 06
[20] Bohr N 1948 Freshwater Biol. 44 213
[21] Agostinelli S, Allison J, Amako K A, et al. 2003 Nucl. Instrum. Methods Phys. Res. Sect. A 506 250
[22] Allison J, Amako K, Apostolakis J, et al. 2006 IEEE Trans. Nucl. Sci. 53 270
-
[1] Burtsev V V, Lebedev A I, Mikhailov A L, et al. 2011 Combust. Explo. Shock Waves 47 627
[2] Morris C L, Ables E, Alrick K R, et al. 2011 J. Appl. Phys. 109 104905
[3] Antipov Y M, Afonin A G, Gusev I A, et al. 2013 At. Energy 114 359
[4] Antipov Y M, Afonin A G, Vasilevskii A V, et al. 2010 Instrum. Exp. Tech. 53 319
[5] Varentsov D, Antonov O, Bakhmutova A, et al. 2016 Rev. Sci. Instrum. 87 023303
[6] Teng J, Hong W, Zhao Z Q, Wu S C, Qin X Z, He Y L, Gu Y Q, Ding Y K 2009 Acta Phys. Sin. 58 1635 (in Chinese)[滕建, 洪伟, 赵宗清, 巫顺超, 秦孝尊, 何颖玲, 谷渝秋, 丁永坤 2009 物理学报 58 1635]
[7] Teng J, Zhao Z Q, Zhu B, et al. 2011 Chin. Phys. Lett. 28 035203
[8] Xu H B, Zheng N 2015 Chin. Phys. C 39 078201
[9] Wu X J, Wang X F, Chen X H 2016 Chin. Phys. Lett. 33 065201
[10] Yang S Q, Zhou W M, Wang S M, Jiao J L, Zhang Z M, Cao L F, Gu Y Q, Zhang B H 2017 Acta Phys. Sin. 66 184101 (in Chinese)[杨思谦, 周维民, 王思明, 矫金龙, 张智猛, 曹磊峰, 谷渝秋, 张保汉 2017 物理学报 66 184101]
[11] Yang J J, Zhen X, Wei S M, Lv Y L, Wang F, Zhang Y W, Wen L P, Liu J Y, Cai H R, Ge T, Zhang S P, Cao L, Zhang T J, Li Z G 2016 CYC 2016 Proceedings of the 21st International Conference on Cyclotrons and their Applications Zurich, September 11-16, 2016 p401
[12] Merrill F E 2015 Rev. Accl. Sci. Tech. 8 165
[13] Sheng L, Zhao Y, Yang G, et al. 2014 Laser Part. Beams 32 651
[14] Wei T, Yang G J, Li Y D, Long J D, He X Z, Zhang X D, Jiang X G, Ma C F, Zhao L C, Yang X L, Zhang Z, Wang Y, Pang J, Li H, Li W F, Zhou F X, Shi J S, Zhang K Z, Li J, Zhang L W, Deng J J 2014 Chin. Phys. C 38 087003
[15] Teng J, Hong W, He S K, Deng Z G, Zhu B, Zhang T K, Yu M H, Qian F, Zhang B, Qi W, Zhang Z M, Bi B, Shan L Q, Zhang F Q, Yang L, Lu F, Zhang F, Li J, Chen T, Wu Y C, Cui B, Zhou W M, Cao L F, Gu Y Q 2017 High. Pow. Las. Part. Beam. 29 092001 (in Chinese)[滕建, 洪伟, 贺书凯, 邓志刚, 朱斌, 张天奎, 于明海, 钱凤, 张博, 齐伟, 张智猛, 毕碧, 单连强, 张发强, 杨雷, 卢峰, 张锋, 李晋, 陈韬, 吴玉迟, 崔波, 周维民, 曹磊峰, 谷渝秋 2017 强激光与粒子束 29 092001]
[16] Mottershead C T, Zumbro J D 1997 Particle Accelerator Conference Vancouver, May 16, 1997 p1397
[17] Hanson K M, Bradbury J N, Koeppe R A, Macek R J, Machen D R, Morgado R, Paciotti M A, Sandford S A, Steward V W 1982 Phys. Med. Biol. 27 25
[18] Schulte R W, Bashkirov V, Loss K M C, Li T F, Wroe A J, Evseev I, Williams D C, Satogata T 2005 Med. Phys. 32 1035
[19] Groom D 1993 PDG 06
[20] Bohr N 1948 Freshwater Biol. 44 213
[21] Agostinelli S, Allison J, Amako K A, et al. 2003 Nucl. Instrum. Methods Phys. Res. Sect. A 506 250
[22] Allison J, Amako K, Apostolakis J, et al. 2006 IEEE Trans. Nucl. Sci. 53 270
计量
- 文章访问数: 5974
- PDF下载量: 87
- 被引次数: 0