搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

相位角对容性耦合电非对称放电特性的影响

胡艳婷 张钰如 宋远红 王友年

引用本文:
Citation:

相位角对容性耦合电非对称放电特性的影响

胡艳婷, 张钰如, 宋远红, 王友年

Effect of phase angle on plasma characteristics in electrically asymmetric capacitive discharge

Hu Yan-Ting, Zhang Yu-Ru, Song Yuan-Hong, Wang You-Nian
PDF
导出引用
  • 电非对称效应作为一种新兴技术,被广泛用于对离子能量和离子通量的独立调控.此外,在改善等离子体的径向均匀性方面,电非对称效应也发挥了重要作用.本文采用二维流体力学模型,并耦合麦克斯韦方程组,系统地研究了容性耦合氢等离子体中当放电由多谐波叠加驱动时,不同谐波阶数k下的电非对称效应,重点观察了相位角θn对自偏压以及等离子体径向均匀性的影响.模拟结果表明:在同一谐波阶数下,自偏压随相位角θn的变化趋势不尽相同,且当k增大(k>3)时,自偏压随最高频相位角θk的变化范围逐渐减小.此外,通过调节相位角θn,可以改变轴向功率密度和径向功率密度的相对关系,进而实现对等离子体径向均匀性的调节.研究结果对于利用电非对称效应优化等离子体工艺过程具有一定的指导意义.
    In addition to the separate control of the ion energy and ion flux, the so-called electrical asymmetry effect (EAE) also plays an important role in improving the plasma radial uniformity. In this work, a two-dimensional fluid model combined with a full set of Maxwell equations is used to investigate the plasma characteristics in an electrically asymmetric capacitive discharge sustained by multiple consecutive harmonics. The effects of the phase angle θn on the dc self-bias (Vdc) and on the plasma radial uniformity for different numbers of consecutive harmonics k are discussed. The simulation results indicate that the phase angles of different harmonics θn have different influences on the dc self-bias Vdc. For instance, Vdc varies almost linearly with θ1 with a period π in dual frequency discharge, and the period is 2π for other discharge conditions. Besides, the modulation of Vdc becomes less obvious by changing the phase angle of the highest harmonic θk, especially for k>3. In addition, both the axial component of the power density Pz and the radial component of the power density Pr vary with θn, thus the plasma radial uniformity can be adjusted. When the total power density at the radial edge becomes comparable to that in the discharge center, the plasma distribution becomes uniform. For instance, when k=2, the plasma radial uniformity is the best at the phase angle θ1=π/2 and θ2=π. However, for k=3, the best radial uniformity is observed at θ1=3π/2, and the nonuniformity degree α is only 0.41% under this condition. It is worth noting that at k=8, the maximum of α is seven times higher than the minimum by changing the phase angles θ1 and θ2, which means that the plasma radial uniformity can be adjusted effectively. However, the modulation induced by θk(k>3) becomes less obvious, especially for k=8. Indeed, the electron density shows an edge-high profile, and the radial uniformity is always bad for all θ8 investigated. The results obtained in this work can help us to gain an insight into the optimization the plasma process by utilizing the EAE.
      通信作者: 张钰如, yrzhang@dlut.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11405019,11675036,11335004)和中国博士后科学基金(批准号:2015T80244)资助的课题.
      Corresponding author: Zhang Yu-Ru, yrzhang@dlut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11405019, 11675036, 11335004) and the China Postdoctoral Science Foundation (Grant No. 2015T80244).
    [1]

    Lieberman M A, Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing (New York: Wiley) pp1-5

    [2]

    Lee J K, Manuilenko O V, Babaeva N Y, Kim H C, Shon J W 2005 Plasma Sources Sci. Technol. 14 89

    [3]

    Schulze J, Donko Z, Luggenholscher D, Czarnetzki U 2009 Plasma Sources Sci. Technol. 18 034011

    [4]

    Kawamura E, Lieberman M A, Lichtenberg A J 2006 Phys. Plasmas 13 053506

    [5]

    Turner M M, Chabert P 2006 Phys. Rev. Lett. 96 205001

    [6]

    Booth J P, Curley G, Maric D, Chabert P 2010 Plasma Sources Sci. Technol. 19 015005

    [7]

    SchulzeJ, Donko Z, Schungel E, Czarnetzki U 2011 Plasma Sources Sci. Technol. 20 045007

    [8]

    Donko Z, Schulze J, Hartmann P, Korolov I, Czarnetzki U, Schungel E 2010 Appl. Phys. Lett. 97 081501

    [9]

    Heil B G, Czarnetzki U, Brinkmann R P, Mussenbrock T 2008 J. Phys. D: Appl. Phys. 41 165202

    [10]

    Donko Z, Schulze J, Heil B G, Czarnetzki U 2009 J. Phys. D: Appl. Phys. 42 025205

    [11]

    Czarnetzki U, Heil B G, Schulze J, Donko Z, Mussenbrock T, Brinkmann R P 2009 J. Phys.: Conf. Ser. 162 012010

    [12]

    Schulze J, Schungel E, Czarnetzki U 2009 J. Phys. D: Appl. Phys. 42 092005

    [13]

    Schungel E, Mohr S, Schulze J, Czarnetzki U, Kushner M J 2014 Plasma Sources Sci. Technol. 23 015001

    [14]

    SchulzeJ, Schungel E, Czarnetzki U, Gebhardt M, Brinkmann R P, Mussenbrock T 2011 Appl. Phys. Lett. 98 031501

    [15]

    Schulze J, Schungel E, Czarnetzki U, Donko Z 2009 J. Appl. Phys. 106 063307

    [16]

    Schulze J, Schungel E, Donko Z, Czarnetzki U 2011 Plasma Sources Sci. Technol. 20 015017

    [17]

    Lafleur T, Delattre P A, Johnson E V, Booth J P 2012 Appl. Phys. Lett. 101 124104

    [18]

    Zhang Q Z, Jiang W, Hou L J, Wang Y N 2011 J. Appl. Phys. 109 013308

    [19]

    Schungel E, Zhang Q Z, Iwashita S, Schulze J, Hou L J, Wang Y N, Czarnetzki U 2011 J. Phys. D: Appl. Phys. 44 285205

    [20]

    Zhang Q Z, Zhao S X, Jiang W, Wang Y N 2012 J. Phys. D: Appl. Phys. 45 305203

    [21]

    Zhang Y T, Zafar A, Coumou D J, Shannon S C, Kushner M J 2015 J. Phys. D: Appl. Phys. 117 233302

    [22]

    Schungel E, Mohr S, Schulze J, Czarnetzki U 2015 Appl. Phys. Lett. 106 054108

    [23]

    Zhang Y R, Hu Y T, Gao F, Song Y H, Wang Y N 2018 Plasma Sources Sci. Technol. 27 055003

    [24]

    Zhang Y R, Xu X, Bogaerts A, Wang Y N 2012 J. Phys. D: Appl. Phys. 45 015202

    [25]

    Zhang Y R, Xu X, Bogaerts A, Wang Y N 2012 J. Phys. D: Appl. Phys. 45 015203

    [26]

    Yoon J S, Song M Y, Han J M, Hwang S H, Chang W S, Lee B J, Itikawab Y 2008 J. Phys. Chem. Ref. Data 37 913

    [27]

    Tawara H, Itikawa Y, Nishimura H, Yoshino M 1990 J. Phys. Chem. Ref. Data 19 617

    [28]

    Salabas A, Brinkmann R P 2005 Plasma Sources Sci.Technol. 14 S53

    [29]

    Chen Z, Rauf S, Collins K 2010 J. Appl. Phys. 108 073301

    [30]

    Schungel E, Schulze J, Donko Z, Czarnetzki U 2011 Phys. Plasmas 18 013503

  • [1]

    Lieberman M A, Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing (New York: Wiley) pp1-5

    [2]

    Lee J K, Manuilenko O V, Babaeva N Y, Kim H C, Shon J W 2005 Plasma Sources Sci. Technol. 14 89

    [3]

    Schulze J, Donko Z, Luggenholscher D, Czarnetzki U 2009 Plasma Sources Sci. Technol. 18 034011

    [4]

    Kawamura E, Lieberman M A, Lichtenberg A J 2006 Phys. Plasmas 13 053506

    [5]

    Turner M M, Chabert P 2006 Phys. Rev. Lett. 96 205001

    [6]

    Booth J P, Curley G, Maric D, Chabert P 2010 Plasma Sources Sci. Technol. 19 015005

    [7]

    SchulzeJ, Donko Z, Schungel E, Czarnetzki U 2011 Plasma Sources Sci. Technol. 20 045007

    [8]

    Donko Z, Schulze J, Hartmann P, Korolov I, Czarnetzki U, Schungel E 2010 Appl. Phys. Lett. 97 081501

    [9]

    Heil B G, Czarnetzki U, Brinkmann R P, Mussenbrock T 2008 J. Phys. D: Appl. Phys. 41 165202

    [10]

    Donko Z, Schulze J, Heil B G, Czarnetzki U 2009 J. Phys. D: Appl. Phys. 42 025205

    [11]

    Czarnetzki U, Heil B G, Schulze J, Donko Z, Mussenbrock T, Brinkmann R P 2009 J. Phys.: Conf. Ser. 162 012010

    [12]

    Schulze J, Schungel E, Czarnetzki U 2009 J. Phys. D: Appl. Phys. 42 092005

    [13]

    Schungel E, Mohr S, Schulze J, Czarnetzki U, Kushner M J 2014 Plasma Sources Sci. Technol. 23 015001

    [14]

    SchulzeJ, Schungel E, Czarnetzki U, Gebhardt M, Brinkmann R P, Mussenbrock T 2011 Appl. Phys. Lett. 98 031501

    [15]

    Schulze J, Schungel E, Czarnetzki U, Donko Z 2009 J. Appl. Phys. 106 063307

    [16]

    Schulze J, Schungel E, Donko Z, Czarnetzki U 2011 Plasma Sources Sci. Technol. 20 015017

    [17]

    Lafleur T, Delattre P A, Johnson E V, Booth J P 2012 Appl. Phys. Lett. 101 124104

    [18]

    Zhang Q Z, Jiang W, Hou L J, Wang Y N 2011 J. Appl. Phys. 109 013308

    [19]

    Schungel E, Zhang Q Z, Iwashita S, Schulze J, Hou L J, Wang Y N, Czarnetzki U 2011 J. Phys. D: Appl. Phys. 44 285205

    [20]

    Zhang Q Z, Zhao S X, Jiang W, Wang Y N 2012 J. Phys. D: Appl. Phys. 45 305203

    [21]

    Zhang Y T, Zafar A, Coumou D J, Shannon S C, Kushner M J 2015 J. Phys. D: Appl. Phys. 117 233302

    [22]

    Schungel E, Mohr S, Schulze J, Czarnetzki U 2015 Appl. Phys. Lett. 106 054108

    [23]

    Zhang Y R, Hu Y T, Gao F, Song Y H, Wang Y N 2018 Plasma Sources Sci. Technol. 27 055003

    [24]

    Zhang Y R, Xu X, Bogaerts A, Wang Y N 2012 J. Phys. D: Appl. Phys. 45 015202

    [25]

    Zhang Y R, Xu X, Bogaerts A, Wang Y N 2012 J. Phys. D: Appl. Phys. 45 015203

    [26]

    Yoon J S, Song M Y, Han J M, Hwang S H, Chang W S, Lee B J, Itikawab Y 2008 J. Phys. Chem. Ref. Data 37 913

    [27]

    Tawara H, Itikawa Y, Nishimura H, Yoshino M 1990 J. Phys. Chem. Ref. Data 19 617

    [28]

    Salabas A, Brinkmann R P 2005 Plasma Sources Sci.Technol. 14 S53

    [29]

    Chen Z, Rauf S, Collins K 2010 J. Appl. Phys. 108 073301

    [30]

    Schungel E, Schulze J, Donko Z, Czarnetzki U 2011 Phys. Plasmas 18 013503

  • [1] 杨振宇, 张元哲, 范威, 杨广杰, 韩先伟. 磁等离子体发动机中磁喷管分离过程的流体模拟. 物理学报, 2024, 73(10): 105201. doi: 10.7498/aps.73.20231862
    [2] 段蒙悦, 贾文柱, 张莹莹, 张逸凡, 宋远红. 容性耦合硅烷等离子体尘埃颗粒空间分布的二维流体模拟. 物理学报, 2023, 72(16): 165202. doi: 10.7498/aps.72.20230686
    [3] 陈龙, 王迪雅, 陈俊宇, 段萍, 杨叶慧, 檀聪琦. 霍尔推力器放电通道低频振荡特性及抑制方法. 物理学报, 2023, 72(17): 175201. doi: 10.7498/aps.72.20230680
    [4] 宋柳琴, 贾文柱, 董婉, 张逸凡, 戴忠玲, 宋远红. 容性耦合放电等离子体增强氧化硅薄膜沉积模拟研究. 物理学报, 2022, 71(17): 170201. doi: 10.7498/aps.71.20220493
    [5] 黄华, 李江涛, 王倩男, 孟令彪, 齐伟, 洪伟, 张智猛, 张博, 贺书凯, 崔波, 伍艺通, 张航, 吉亮亮, 周维民, 胡建波. 星光III装置上材料动态压缩过程的激光质子照相实验研究. 物理学报, 2022, 71(19): 195202. doi: 10.7498/aps.71.20220919
    [6] 操礼阳, 马晓萍, 邓丽丽, 卢曼婷, 辛煜. 射频容性耦合Ar/O2等离子体的轴向诊断. 物理学报, 2021, 70(11): 115204. doi: 10.7498/aps.70.20202113
    [7] 王丽, 温德奇, 田崇彪, 宋远红, 王友年. 容性耦合等离子体中电子加热过程及放电参数控制. 物理学报, 2021, 70(9): 095214. doi: 10.7498/aps.70.20210473
    [8] 董婉, 徐海文, 戴忠玲, 宋远红, 王友年. 电非对称双频容性耦合CF4/Ar放电电极间距对放电模式和刻蚀剖面的影响. 物理学报, 2021, 70(9): 095213. doi: 10.7498/aps.70.20210546
    [9] 周瑜, 操礼阳, 马晓萍, 邓丽丽, 辛煜. 脉冲射频容性耦合氩等离子体的发射探针诊断. 物理学报, 2020, 69(8): 085201. doi: 10.7498/aps.69.20191864
    [10] 高书涵, 王绪成, 张远涛. 脉冲调制条件下介质阻挡特高频放电特性的数值模拟. 物理学报, 2020, 69(11): 115204. doi: 10.7498/aps.69.20191853
    [11] 杨郁, 唐成双, 赵一帆, 虞一青, 辛煜. 甚高频激发的容性耦合Ar+O2等离子体电负特性研究. 物理学报, 2017, 66(18): 185202. doi: 10.7498/aps.66.185202
    [12] 杨政权, 李成, 雷奕安. 锥形腔等离子体压缩的磁流体模拟. 物理学报, 2016, 65(20): 205201. doi: 10.7498/aps.65.205201
    [13] 王俊, 王涛, 唐成双, 辛煜. 甚高频激发容性耦合氩等离子体的电子能量分布函数的演变. 物理学报, 2016, 65(5): 055203. doi: 10.7498/aps.65.055203
    [14] 郝莹莹, 孟秀兰, 姚福宝, 赵国明, 王敬, 张连珠. N2-H2容性耦合等离子体电非对称效应的particle-in-cell/Monte Carlo模拟. 物理学报, 2014, 63(18): 185205. doi: 10.7498/aps.63.185205
    [15] 杜永权, 刘文耀, 朱爱民, 李小松, 赵天亮, 刘永新, 高飞, 徐勇, 王友年. 双频容性耦合等离子体相分辨发射光谱诊断. 物理学报, 2013, 62(20): 205208. doi: 10.7498/aps.62.205208
    [16] 洪布双, 苑涛, 邹帅, 唐中华, 徐东升, 虞一青, 王栩生, 辛煜. 电负性气体的掺入对容性耦合Ar等离子体的影响. 物理学报, 2013, 62(11): 115202. doi: 10.7498/aps.62.115202
    [17] 邹帅, 唐中华, 吉亮亮, 苏晓东, 辛煜. 悬浮型微波共振探针在电负性容性耦合等离子体中电子密度的测量. 物理学报, 2012, 61(7): 075204. doi: 10.7498/aps.61.075204
    [18] 蒋相站, 刘永新, 毕振华, 陆文琪, 王友年. 双频容性耦合等离子体密度径向均匀性研究. 物理学报, 2012, 61(1): 015204. doi: 10.7498/aps.61.015204
    [19] 袁强华, 辛 煜, 黄晓江, 孙 恺, 宁兆元. 13.56 MHz 低频功率对60 MHz射频容性耦合等离子体的电特性的影响. 物理学报, 2008, 57(11): 7038-7043. doi: 10.7498/aps.57.7038
    [20] 宋法伦, 曹金祥, 王舸. 电磁波在径向非均匀球对称等离子体中的衰减. 物理学报, 2004, 53(4): 1110-1115. doi: 10.7498/aps.53.1110
计量
  • 文章访问数:  6969
  • PDF下载量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-22
  • 修回日期:  2018-09-28
  • 刊出日期:  2019-11-20

/

返回文章
返回