-
基于带电粒子活化测谱方法在SGⅡ-U装置上开展了皮秒激光靶背鞘场机制质子加速实验研究,对靶参数进行了优化.利用带电粒子活化测谱方法测量了相同激光条件、不同Cu薄膜靶厚度情况下靶背鞘场加速质子的最高截止能量、角分布、总产额以及激光能量到质子的转化效率等关键参数.实验发现,SGⅡ-U皮秒激光靶背鞘场加速机制的最佳Cu薄膜靶厚度为10 μm,对应质子最高能量接近40 MeV,质子(>4 MeV)总产额约4×1012个,激光能量到质子的转化效率约2%.薄膜靶更厚或者更薄都会降低加速质子的最高截止能量;当靶厚减薄至1 μm时,皮秒激光的预脉冲开始对靶背鞘场产生显著影响,质子最高截止能量急剧下降,高能质子束斑呈现空心结构;而当靶厚增加至35 μm时,虽然质子束的能量有所降低,但是质子束斑的均匀性更好.The laser-driven proton acceleration experiment is carried out on the SGⅡ-U device based on charged particle activation method, and the target parameters are optimized. The charged particle method is used to measure the maximum cutoff energy of proton, angular profile, total yield and conversion efficiency of laser energy to proton energy for different copper film thickness under the same laser condition. It is found that the optimal copper film thickness for the SGⅡ-U picoseond laser-driven proton experiment is 10 μm, the highest proton energy obtained is about 40 MeV, and the total yield of protons (>4 MeV) is about 4×1012, the conversion efficiency of laser energy to proton energy is about 2%. Thicker or thinner copper film can reduce the maximum cut-off energy of accelerated proton; when the target thickness is reduced to 1 μm, the pre-pulse of the laser begins to have a significant effect on the target normal sheath acceleration (TNSA) proton, proton energy drops sharply, the proton beam porfile exhibits a hollow structure; when the target thickness is increased to 35 μm, although the energy of the proton is reduced, the proton beam spot is more uniform. According to our experimental results, when using SGⅡ-U picosecond laser to generate protons as a backlight diagnostics, a thicker Cu film can be selected which can supply more uniform proton beams. When the target is too thin, the TNSA proton itself has a modulation structure which will cause interference to yield the photographic results; when the protons generated by the SGⅡ-U picosecond are used to generate neutron source, the higher proton energy and yield are required, and 10 μm Cu film is suitable. The further enhancing the TNSA accelerated proton energy and quantity of the SGⅡ-U picosecond laser requires the further improving of the laser contrast.
-
Keywords:
- charged particle activation analysis /
- laser-driven proton source /
- laser-proton conversion efficiency /
- target normal sheath acceleration
[1] Tajima T, Dawson J M 1979 Phys. Rev. Lett. 43 267
[2] Snavely R A, Key M H, Hatchett S P, Cowan T E, Roth M, Phillips T W, Stoyer M A, Henry E A, Sangster T C, Singh M S, Wilks S C, MacKinnon A, Offenberger A, Pennington D M, Yasuike K, Langdon A B, Lasinski B F, Johnson J, Perry M D, Campbell E M 2000 Phys. Rev. Lett. 85 2945
[3] Daido H, Nishiuchi M, Pirozhkov A S 2012 Rep. Prog. Phys. 75 056401
[4] Roth M, Cowan T E, Gauthier J C, Vehn J M, Allen M, Audebert P, Blazevic A, Fuchs J, Geissel M, Hegelich M, Karsch S, Pukhov A, Schlegel T 2002 Phys. Rev. ST Accel. Beams 5 061301
[5] Roth M, Brambrink E, Audeert P, Basko M, Blazevic A, Clarke R, Cobble J, Cowan T E, Fernandez J, Fuchs J, Hegelich M, Ledingham K, Logan B G, Neely D, Ruhl H, Schollmeier M 2005 Plasma Phys. Control. Fusion 47 B841
[6] Wilks S C, Langdon A B, Cowan T E, Roth M, Singh M, Hatchett S, Key M H, Pennington D, Mackinnon A, Snavely R A 2001 Phys. Plasmas 8 2
[7] Ceccotti T, Levy A, Popescu H, Reau F, Oliveira P D, Monot P, Geindre J P, Lefebvre E, Martin P 2007 Phys. Rev. Lett. 99 185002
[8] Robson L, Simpson P T, Clarke R J, Ledingham K W D, Lindau F, Lundh O, McCanny T, Mora P, Neely D, Wahlstrom C G, Zepf M, McKenna P 2007 Nature Phys. 3 58
[9] Cowan T E, Fuchs J, Ruhl H, Kemp A, Audebert P, Roth M, Stephens R, Barton I, Blazevic A, Brambrink E, Cobble J, Fernandez J, Gauthier J C, Geissel M, Hegelich M, Kaae J, Karsch S, LeSage G P, Letzring S, Manclossi M, Meyroneinc S, Newkirk A, Pepin H, Renard-LeGalloudec N 2004 Phys. Rev. Lett. 92 204801
[10] Patel P K, Mackinnon A J, Key M H, Cowan T E, Foord M E, Allen M, Price D F, Ruhl H, Springer P T, Stephens R 2003 Phys. Rev. Lett. 91 125004
[11] Yin L, Albright B J, Bowers K J, Jung D, Fernandez J C, Hegelich B M 2011 Phys. Rev. Lett. 107 045003
[12] Yin L, Albright B J, Jung D, Shah R C, Palaniyappan S, Bowers K J, Henig A, Fernandez J C, Hegelich B M 2011 Phys. Plasmas 18 063103
[13] Yin L, Albright B J, Hegelich B M, Fernandez J C 2006 Laser and Particle Beams 24 291
[14] Jung D, Yin L, Gautier D C, Wu H C, Letzring S 2013 Phys. Plasmas 20 083103
[15] Yan X Q, Lin C, Sheng Z M, Guo Z Y, Liu B C, Lu Y R, Fang J X, Chen J E 2008 Phys. Rev. Lett. 100 175003
[16] Esirkepov T Z, Borghesi M, Bulanov S V, Mourou G, Tajima T 2004 Phys. Rev. Lett. 92 175003
[17] Klimo O, Psikal J, Limpouch J, Tikhonchuk V T 2008 Phys. Rev. ST Accel. Beams 11 031301
[18] Jiao J L, He S K, Deng Z G, Lu F, Zhang Y, Yang L, Zhang F Q, Dong K G, Wang S Y, Zhang B, Teng J, Hong W, Gu Y Q 2017 Acta Phys. Sin. 66 085201 (in Chinese) [矫金龙, 贺书凯, 邓志刚, 卢峰, 张镱, 杨雷, 张发强, 董克攻, 王少义, 张博, 滕建, 洪伟, 谷渝秋 2017 物理学报 66 085201]
[19] Zhang H, Shen B F, Wang W P, Xu Y, Liu Y Q, Liang X Y, Leng Y X, Li R X, Yan X Q, Chen J E, Xu Z Z 2015 Phys. Plasmas 22 013113
[20] Wagner F, Deppert O, Brabetz C, Fiala P, Kleinschmidt A, Poth P, Schanz V A, Tebartz A, Zielbauer B, Roth M, Stohlker T, Bagnoud V 2016 Phys. Rev. Lett. 116 205002
[21] Shan L Q, Cai H B, Zhang W S, Tang Q, Zhang F, Song Z F, Bi B, Ge F J, Chen J B, Liu D X, Wang W W, Yang Z H, Qi W, Tian C, Yuan Z Q, Zhang B, Yang L, Jiao J L, Cui B, Zhou W M, Cao L F, Zhou C T, Gu Y Q, Zhang B H, Zhu S P, He X T 2018 Phys. Rev. Lett. 120 195001
[22] He S K, Liu D X, Jiao J L, Deng Z G, Teng J, Zhang B, Zhang Z M, Hong W, Gu Y Q 2017 Acta Phys. Sin. 66 205201 (in Chinese) [贺书凯, 刘东晓, 矫金龙, 邓志刚, 滕建, 张博, 张智猛, 洪伟, 谷渝秋 2017 物理学报 66 205201]
[23] Meadows J W 1953 Phys. Rev. 91 885
-
[1] Tajima T, Dawson J M 1979 Phys. Rev. Lett. 43 267
[2] Snavely R A, Key M H, Hatchett S P, Cowan T E, Roth M, Phillips T W, Stoyer M A, Henry E A, Sangster T C, Singh M S, Wilks S C, MacKinnon A, Offenberger A, Pennington D M, Yasuike K, Langdon A B, Lasinski B F, Johnson J, Perry M D, Campbell E M 2000 Phys. Rev. Lett. 85 2945
[3] Daido H, Nishiuchi M, Pirozhkov A S 2012 Rep. Prog. Phys. 75 056401
[4] Roth M, Cowan T E, Gauthier J C, Vehn J M, Allen M, Audebert P, Blazevic A, Fuchs J, Geissel M, Hegelich M, Karsch S, Pukhov A, Schlegel T 2002 Phys. Rev. ST Accel. Beams 5 061301
[5] Roth M, Brambrink E, Audeert P, Basko M, Blazevic A, Clarke R, Cobble J, Cowan T E, Fernandez J, Fuchs J, Hegelich M, Ledingham K, Logan B G, Neely D, Ruhl H, Schollmeier M 2005 Plasma Phys. Control. Fusion 47 B841
[6] Wilks S C, Langdon A B, Cowan T E, Roth M, Singh M, Hatchett S, Key M H, Pennington D, Mackinnon A, Snavely R A 2001 Phys. Plasmas 8 2
[7] Ceccotti T, Levy A, Popescu H, Reau F, Oliveira P D, Monot P, Geindre J P, Lefebvre E, Martin P 2007 Phys. Rev. Lett. 99 185002
[8] Robson L, Simpson P T, Clarke R J, Ledingham K W D, Lindau F, Lundh O, McCanny T, Mora P, Neely D, Wahlstrom C G, Zepf M, McKenna P 2007 Nature Phys. 3 58
[9] Cowan T E, Fuchs J, Ruhl H, Kemp A, Audebert P, Roth M, Stephens R, Barton I, Blazevic A, Brambrink E, Cobble J, Fernandez J, Gauthier J C, Geissel M, Hegelich M, Kaae J, Karsch S, LeSage G P, Letzring S, Manclossi M, Meyroneinc S, Newkirk A, Pepin H, Renard-LeGalloudec N 2004 Phys. Rev. Lett. 92 204801
[10] Patel P K, Mackinnon A J, Key M H, Cowan T E, Foord M E, Allen M, Price D F, Ruhl H, Springer P T, Stephens R 2003 Phys. Rev. Lett. 91 125004
[11] Yin L, Albright B J, Bowers K J, Jung D, Fernandez J C, Hegelich B M 2011 Phys. Rev. Lett. 107 045003
[12] Yin L, Albright B J, Jung D, Shah R C, Palaniyappan S, Bowers K J, Henig A, Fernandez J C, Hegelich B M 2011 Phys. Plasmas 18 063103
[13] Yin L, Albright B J, Hegelich B M, Fernandez J C 2006 Laser and Particle Beams 24 291
[14] Jung D, Yin L, Gautier D C, Wu H C, Letzring S 2013 Phys. Plasmas 20 083103
[15] Yan X Q, Lin C, Sheng Z M, Guo Z Y, Liu B C, Lu Y R, Fang J X, Chen J E 2008 Phys. Rev. Lett. 100 175003
[16] Esirkepov T Z, Borghesi M, Bulanov S V, Mourou G, Tajima T 2004 Phys. Rev. Lett. 92 175003
[17] Klimo O, Psikal J, Limpouch J, Tikhonchuk V T 2008 Phys. Rev. ST Accel. Beams 11 031301
[18] Jiao J L, He S K, Deng Z G, Lu F, Zhang Y, Yang L, Zhang F Q, Dong K G, Wang S Y, Zhang B, Teng J, Hong W, Gu Y Q 2017 Acta Phys. Sin. 66 085201 (in Chinese) [矫金龙, 贺书凯, 邓志刚, 卢峰, 张镱, 杨雷, 张发强, 董克攻, 王少义, 张博, 滕建, 洪伟, 谷渝秋 2017 物理学报 66 085201]
[19] Zhang H, Shen B F, Wang W P, Xu Y, Liu Y Q, Liang X Y, Leng Y X, Li R X, Yan X Q, Chen J E, Xu Z Z 2015 Phys. Plasmas 22 013113
[20] Wagner F, Deppert O, Brabetz C, Fiala P, Kleinschmidt A, Poth P, Schanz V A, Tebartz A, Zielbauer B, Roth M, Stohlker T, Bagnoud V 2016 Phys. Rev. Lett. 116 205002
[21] Shan L Q, Cai H B, Zhang W S, Tang Q, Zhang F, Song Z F, Bi B, Ge F J, Chen J B, Liu D X, Wang W W, Yang Z H, Qi W, Tian C, Yuan Z Q, Zhang B, Yang L, Jiao J L, Cui B, Zhou W M, Cao L F, Zhou C T, Gu Y Q, Zhang B H, Zhu S P, He X T 2018 Phys. Rev. Lett. 120 195001
[22] He S K, Liu D X, Jiao J L, Deng Z G, Teng J, Zhang B, Zhang Z M, Hong W, Gu Y Q 2017 Acta Phys. Sin. 66 205201 (in Chinese) [贺书凯, 刘东晓, 矫金龙, 邓志刚, 滕建, 张博, 张智猛, 洪伟, 谷渝秋 2017 物理学报 66 205201]
[23] Meadows J W 1953 Phys. Rev. 91 885
计量
- 文章访问数: 5790
- PDF下载量: 82
- 被引次数: 0