-
单层FeSe/SrTiO3界面增强超导的发现为理解高温超导机理提供了一个新的途径,也为实现新的高温超导体开拓了新思路.本文通过在SrTiO3(001)表面高温沉积Mg进而沉积单层FeSe薄膜,制备出了FeSe/MgO双层/SrTiO3异质结.利用扫描隧道显微镜研究了异质结的电学及超导特性,观测到约1415 meV的超导能隙,比体相FeSe超导能隙值增大了56倍,与K掺杂双层FeSe/SrTiO3的超导能隙值相当.这一结果可理解为能带弯曲造成的界面电荷转移和界面处电声耦合共同作用导致的超导增强.FeSe/MgO界面是继FeSe/TiO2之后的一个新界面超导体系,为研究界面高温超导机理提供了新载体.
-
关键词:
- FeSe/MgO界面 /
- 界面超导增强 /
- 扫描隧道显微镜 /
- 扫描透射电子显微镜
We report on the observation of a superconducting gap of about 14-15 meV, significantly enlarged compared with the value of 2.2 meV for bulk FeSe, in monolayer FeSe film interfaced with MgO epitaxial on SrTiO3(001) substrate by using the scanning tunneling microscopy. While the MgO exhibits the same work function as SrTiO3 substrate, the gap magnitude is in coincidence with that of surface K-doped two-unit-cell FeSe film on SrTiO3(001), suggesting that the interface enhanced superconductivity might be attributed to cooperation of interface charge transfer driven by band bending with interface electron-phonon coupling as discovered at FeSe/TiO2 interfaces. On the other hand, the observation of such an enlarged superconducting gap, complementary to our previous transport observation of an onset superconducting transition temperature of 18 K in monolayer FeSe film on a bulk MgO substrate, implies that FeSe/MgO interface is likely to be a new interface high-temperature superconducting system, providing a new platform for investigating the mechanism of interface hightemperature superconductivity.-
Keywords:
- FeSe/MgO /
- interface enhanced superconductivity /
- scanning tunneling microscopy /
- scanning transmission electron microscopy
[1] Wang Q Y, Li Z, Zhang W H, et al. 2012 Chin. Phys. Lett. 29 037402
[2] Song C L, Wang Y L, Cheng P, et al. 2011 Science 332 1410
[3] Zhang W H, Sun Y, Zhang J S, et al. 2014 Chin. Phys. Lett. 31 017401
[4] Zhang Z, Wang Y H, Song Q, et al. 2015 Sci. Bull. 60 1301
[5] Ge J F, Liu Z L, Liu C, et al. 2015 Nat. Mater. 14 285
[6] Peng R, Xu H C, Tan S Y, et al. 2014 Nat. Commun. 5 5044
[7] Zhou G, Zhang D, Liu C, et al. 2016 Appl. Phys. Lett. 108 202603
[8] Zhang P, Peng X L, Qian T, et al. 2016 Phys. Rev. B 94 104510
[9] Zhang C, Liu Z, Chen Z, et al. 2017 Nat. Commun. 8 14468
[10] Ding H, Lv Y F, Zhao K, et al. 2016 Phys. Rev. Lett. 117 067001
[11] Rebec S N, Jia T, Zhang C, et al. 2017 Phys. Rev. Lett. 118 067002
[12] Wang L, Ma X C, Xue Q K 2016 Supercond. Sci. Technol. 29 123001
[13] Wang L, Xue Q K 2017 AAPPS Bull. 27 4
[14] Maletz J, Zabolotnnyy V B, Evtushinsky D V, et al. 2014 Phys. Rev. B 89 220506(R)
[15] He S, He J, Zhang W, et al. 2013 Nat. Mater. 12 605
[16] Tan S, Zhang Y, Xia M, et al. 2013 Nat. Mater. 12 634
[17] Lee J J, Schmitt F T, Moore R G, et al. 2014 Nature 515 245
[18] Song C L, Zhang H M, Zhong Y, et al. 2016 Phys. Rev. Lett. 116 157001
[19] Guo J, Jin S, Wang G, et al. 2010 Phys. Rev. B 82 180520
[20] Lu X F, Wang N Z, Wu H, et al. 2015 Nat. Mater. 14 325
[21] Shiogai J, Ito Y, Mitsuhashi T, et al. 2015 Nat. Phys. 12 42
[22] Lei B, Cui J H, Xiang Z J, et al. 2016 Phys. Rev. Lett. 116 077002
[23] Hanzawa K, Sato H, Hiramatsu H, et al. 2016 Proc. Natl. Acad. Sci. U.S.A. 113 3986
[24] Zhang S, Guan J, Jia X, et al. 2016 Phys. Rev. B 94 081116
[25] Zhang H, Zhang D, Lu X, et al. 2017 Nat. Commun. 8 214
[26] Tang C, Liu C, Zhou G, et al. 2016 Phys. Rev. B 93 020507
[27] Zhang W H, Liu X, Wen C H, et al. 2016 Nano Lett. 16 1969
[28] Xie Y, Cao H Y, Zhou Y, et al. 2015 Sci. Rep. 5 10011
[29] Wang Y, Linscheid A, Berlijn T, et al. 2016 Phys. Rev. B 93 134513
[30] Li Z X, Wang F, Yao H, et al. 2016 Sci. Bull. 61 925
[31] Lee D H 2018 Ann. Rev. Conden. Matter Phys. 9 261
[32] Chu C W, Deng L Z, Lv B 2015 Physica C 514 290
[33] Kamihara Y, Watanabe T, Hirano M, et al. 2008 J. Am. Chem. Soc. 130 3296
[34] Ren Z, Lu W, Yang J, et al. 2008 Chin. Phys. Lett. 25 2215
[35] Dingle R, Stormer H L, Gossard A C, Wiegmann W 1978 Appl. Phys. Lett. 33 665
[36] Zhou G, Zhang Q, Zheng F, et al. 2018 Sci. Bull. 63 747
[37] Binnig G, Rohrer H 1983 Surf. Sci. 126 236
[38] Lim J Y, Oh J S, Ko B D, et al. 2003 J. Appl. Phys. 94 764
[39] Susaki T, Shigaki N, Matsuzaki K, et al. 2014 Phys. Rev. B 90 035453
[40] Li F, Zhang Q, Tang C, et al. 2016 2D Mater. 3 024002
[41] Choubey P, Berlijn T, Kreisel A, et al. 2014 Phys. Rev. B 90 134520
[42] Liu C, Mao J, Ding H, et al. 2018 Phys. Rev. B 97 024502
[43] Zhang W, Li Z, Li F, et al. 2014 Phys. Rev. B 89 060506
[44] Parlinski K, Łazewski J, Kawazoe Y 2000 J. Phys. Chem. Solids 61 87
[45] Wang Y, Liu Z K, Chen L Q, et al. 2006 J. Appl. Phys. 100 023533
[46] Oshima C, Aizawa T, Souda R, et al. 1990 Solid State Commun. 73 731
[47] Coh S, Lee D H, Louie S G, et al. 2016 Phys. Rev. B 93 245138
[48] Niu F, Meier A L, Wessels B W 2006 J. Vac. Sci. Technol. B 24 2586
-
[1] Wang Q Y, Li Z, Zhang W H, et al. 2012 Chin. Phys. Lett. 29 037402
[2] Song C L, Wang Y L, Cheng P, et al. 2011 Science 332 1410
[3] Zhang W H, Sun Y, Zhang J S, et al. 2014 Chin. Phys. Lett. 31 017401
[4] Zhang Z, Wang Y H, Song Q, et al. 2015 Sci. Bull. 60 1301
[5] Ge J F, Liu Z L, Liu C, et al. 2015 Nat. Mater. 14 285
[6] Peng R, Xu H C, Tan S Y, et al. 2014 Nat. Commun. 5 5044
[7] Zhou G, Zhang D, Liu C, et al. 2016 Appl. Phys. Lett. 108 202603
[8] Zhang P, Peng X L, Qian T, et al. 2016 Phys. Rev. B 94 104510
[9] Zhang C, Liu Z, Chen Z, et al. 2017 Nat. Commun. 8 14468
[10] Ding H, Lv Y F, Zhao K, et al. 2016 Phys. Rev. Lett. 117 067001
[11] Rebec S N, Jia T, Zhang C, et al. 2017 Phys. Rev. Lett. 118 067002
[12] Wang L, Ma X C, Xue Q K 2016 Supercond. Sci. Technol. 29 123001
[13] Wang L, Xue Q K 2017 AAPPS Bull. 27 4
[14] Maletz J, Zabolotnnyy V B, Evtushinsky D V, et al. 2014 Phys. Rev. B 89 220506(R)
[15] He S, He J, Zhang W, et al. 2013 Nat. Mater. 12 605
[16] Tan S, Zhang Y, Xia M, et al. 2013 Nat. Mater. 12 634
[17] Lee J J, Schmitt F T, Moore R G, et al. 2014 Nature 515 245
[18] Song C L, Zhang H M, Zhong Y, et al. 2016 Phys. Rev. Lett. 116 157001
[19] Guo J, Jin S, Wang G, et al. 2010 Phys. Rev. B 82 180520
[20] Lu X F, Wang N Z, Wu H, et al. 2015 Nat. Mater. 14 325
[21] Shiogai J, Ito Y, Mitsuhashi T, et al. 2015 Nat. Phys. 12 42
[22] Lei B, Cui J H, Xiang Z J, et al. 2016 Phys. Rev. Lett. 116 077002
[23] Hanzawa K, Sato H, Hiramatsu H, et al. 2016 Proc. Natl. Acad. Sci. U.S.A. 113 3986
[24] Zhang S, Guan J, Jia X, et al. 2016 Phys. Rev. B 94 081116
[25] Zhang H, Zhang D, Lu X, et al. 2017 Nat. Commun. 8 214
[26] Tang C, Liu C, Zhou G, et al. 2016 Phys. Rev. B 93 020507
[27] Zhang W H, Liu X, Wen C H, et al. 2016 Nano Lett. 16 1969
[28] Xie Y, Cao H Y, Zhou Y, et al. 2015 Sci. Rep. 5 10011
[29] Wang Y, Linscheid A, Berlijn T, et al. 2016 Phys. Rev. B 93 134513
[30] Li Z X, Wang F, Yao H, et al. 2016 Sci. Bull. 61 925
[31] Lee D H 2018 Ann. Rev. Conden. Matter Phys. 9 261
[32] Chu C W, Deng L Z, Lv B 2015 Physica C 514 290
[33] Kamihara Y, Watanabe T, Hirano M, et al. 2008 J. Am. Chem. Soc. 130 3296
[34] Ren Z, Lu W, Yang J, et al. 2008 Chin. Phys. Lett. 25 2215
[35] Dingle R, Stormer H L, Gossard A C, Wiegmann W 1978 Appl. Phys. Lett. 33 665
[36] Zhou G, Zhang Q, Zheng F, et al. 2018 Sci. Bull. 63 747
[37] Binnig G, Rohrer H 1983 Surf. Sci. 126 236
[38] Lim J Y, Oh J S, Ko B D, et al. 2003 J. Appl. Phys. 94 764
[39] Susaki T, Shigaki N, Matsuzaki K, et al. 2014 Phys. Rev. B 90 035453
[40] Li F, Zhang Q, Tang C, et al. 2016 2D Mater. 3 024002
[41] Choubey P, Berlijn T, Kreisel A, et al. 2014 Phys. Rev. B 90 134520
[42] Liu C, Mao J, Ding H, et al. 2018 Phys. Rev. B 97 024502
[43] Zhang W, Li Z, Li F, et al. 2014 Phys. Rev. B 89 060506
[44] Parlinski K, Łazewski J, Kawazoe Y 2000 J. Phys. Chem. Solids 61 87
[45] Wang Y, Liu Z K, Chen L Q, et al. 2006 J. Appl. Phys. 100 023533
[46] Oshima C, Aizawa T, Souda R, et al. 1990 Solid State Commun. 73 731
[47] Coh S, Lee D H, Louie S G, et al. 2016 Phys. Rev. B 93 245138
[48] Niu F, Meier A L, Wessels B W 2006 J. Vac. Sci. Technol. B 24 2586
计量
- 文章访问数: 9847
- PDF下载量: 466
- 被引次数: 0