搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有感觉记忆的忆阻器模型

邵楠 张盛兵 邵舒渊

引用本文:
Citation:

具有感觉记忆的忆阻器模型

邵楠, 张盛兵, 邵舒渊

Mathematical model of memristor with sensory memory

Shao Nan, Zhang Sheng-Bing, Shao Shu-Yuan
PDF
导出引用
  • 人类记忆的形成包括感觉记忆、短期记忆、长期记忆三个阶段,类似的记忆形成过程在不同材料忆阻器的实验研究中有过多次报道.这类忆阻器的记忆形成过程存在有、无感觉记忆的两种情况,已报道的这类忆阻器的数学模型仅能够描述无感觉记忆的忆阻器.本文在已有模型的基础上,根据有感觉记忆的忆阻器的研究文献中所报道的实验现象,设计了具有感觉记忆的忆阻器模型.对所设计模型的仿真分析验证了该模型对于存在感觉记忆的这类忆阻器特性的描述能力:对忆阻器施加连续脉冲激励,在初始若干脉冲作用时忆阻器无明显的记忆形成,此时忆阻器处于感觉记忆阶段,后续的脉冲作用下忆阻器将逐渐形成短期、长期记忆,并且所施加脉冲的幅值越大、宽度越大、间隔越小,则感觉记忆阶段所经历的脉冲数量越少.模型状态变量的物理意义可用连通两电极的导电通道在外加电压作用下的形成与消失来给出解释.
    In Atkinson-Shiffrin model, the formation of human memory includes three stages:sensory memory (SM), short-term memory (STM), and long-term memory (LTM). A similar memory formation process has been observed and reported in the experimental studies of memristors fabricated by different materials. In these reported experiments, the increase and decrease of the memristance (resistance of a memristor) would normally be regarded as the loss and formation of the memory of the device. These memristors can be divided into two types based on the memory formation process. The memory formation of some memristors consists of only STM and LTM, and these memristors in this paper are called STM → LTM memristors; the memory formation of other memristors contains all three stages like human memory, and these memristors here are named SM → STM → LTM memristors. The existing mathematical model of this kind of memristor can only describe the STM → LTM memristor. Three state variables are included in this model:w describes the memory of the device, wmin describes the long-term memory, and τw0 is the time constant of the forgetting curve of the short-term memory. In this paper, a phenomenological memristor model is proposed for SM → STM → LTM memristors. The model is designed by redefining a+, a constant in the existing STM → LTM memristor model, as a state variable, and the design of corresponding state equation is based on the reported experimentally observed behaviors of SM → STM → LTM memristors during the SM period. Simulations of the proposed model show its ability to describe the behavior of SM → STM → LTM memristors. Stimulated by repeated positive pulses starting from the high-memristance state, the memristor stays in the SM state during the stimulation of first several pulses, and no obvious memory is formed during this period; STM and LTM would be gradually formed when the following pulses are applied. A faster memory formation speed can be achieved by applying pulses with longer duration, shorter interval, or higher amplitude. The formation and annihilation of the conductive channel between two electrodes of a memristor is a commonly used explanation for the change of the memristance. In this model, w can be understood as the normalized area index of the conductive channel, wmin is the normalized area index of the stable part of the conductive channel, τw0 describes the amount of time taken by the annihilation of the unstable part, and a+ determines the variation of the conductive channel when different positive voltages are applied.
    [1]

    Atkinson R C, Shiffrin R M 1968 The Psychology of Learning and Motivation: Advances in Research and Theory (Vol. 2) (New York: Academic Press) pp89-195

    [2]

    Chang T, Jo S H, Lu W 2011 ACS Nano 5 7669

    [3]

    Yang R, Terabe K, Yao Y P, Tsuruoka T, Hasegawa T, Gimzewski J K, Aono M 2013 Nanotechnology 24 384003

    [4]

    Wang Z Q, Xu H Y, Li X H, Yu H, Liu Y C, Zhu X J 2012 Adv. Funct. Mater. 22 2759

    [5]

    Li S Z, Zeng F, Chen C, Liu H Y, Tang G S, Gao S, Song C, Lin Y S, Pan F, Guo D 2013 J. Mater. Chem. C 1 5292

    [6]

    Lei Y, Liu Y, Xia Y D, Gao X, Xu B, Wang S D, Yin J, Liu Z G 2014 AIP Adv. 4 077105

    [7]

    Xiao Z G, Huang J S 2016 Adv. Electron. Mater. 2 1600100

    [8]

    Kim M K, Lee J S 2018 ACS Nano 12 1680

    [9]

    Liu G, Wang C, Zhang W B, Pan L, Zhang C C, Yang X, Fan F, Chen Y, Li R W 2016 Adv. Electron. Mater. 2 1500298

    [10]

    Zhang C C, Tai Y T, Shang J, Liu G, Wang K L, Hsu C, Yi X H, Yang X, Xue W H, Tan H W, Guo S S, Pan L, Li R W 2016 J. Mater. Chem. C 4 3217

    [11]

    Luo W Q, Yuan F Y, Wu H Q, Pan L Y, Deng N, Zeng F, Wei R S, Cai X J 2015 15th Non-Volatile Memory Technology Symposium (NVMTS) Beijing, China, October 12–14, 2015 p7457490

    [12]

    Wang L G, Zhang W, Chen Y, Cao Y Q, Li A D, Wu D 2017 Nanoscale Res. Lett. 12 65

    [13]

    Zhang B, Wang C, Wang L X, Chen Y 2018 J. Mater. Chem. C 6 4023

    [14]

    La Barbera S, Vuillaume D, Alibart F 2015 ACS Nano 9 941

    [15]

    Park Y, Lee J S 2017 ACS Nano 11 8962

    [16]

    Kim H J, Park D, Yang P, Beom K, Kim M J, Shin C, Kang C J, Yoon T S 2018 Nanotechnology 29 265204

    [17]

    Ohno T, Hasegawa T, Tsuruoka T, Terabe K, Gimzewski J K, Aono M 2011 Nat. Mater. 10 591

    [18]

    Nayak A, Ohno T, Tsuruoka T, Terabe K, Hasegawa T, Gimzewski J K, Aono M 2012 Adv. Funct. Mater. 22 3606

    [19]

    Ohno T, Hasegawa T, Nayak A, Tsuruoka T, Gimzewski J K, Aono M 2011 Appl. Phys. Lett. 99 203108

    [20]

    Chen L, Li C D, Huang T W, Chen Y R, Wen S P, Qi J T 2013 Phys. Lett. A 377 3260

    [21]

    Chen L, Li C D, Huang T W, Ahmad H G, Chen Y R 2014 Phys. Lett. A 378 2924

    [22]

    Chen L, Li C D, Huang T W, Hu X F, Chen Y R 2016 Neurocomputing 171 1637

    [23]

    Shao N, Zhang S B, Shao S Y 2017 Chin. Phys. B 26 118501

    [24]

    Chang T, Jo S H, Kim K H, Sheridan P, Gaba S, Lu W 2011 Appl. Phys. A 102 857

  • [1]

    Atkinson R C, Shiffrin R M 1968 The Psychology of Learning and Motivation: Advances in Research and Theory (Vol. 2) (New York: Academic Press) pp89-195

    [2]

    Chang T, Jo S H, Lu W 2011 ACS Nano 5 7669

    [3]

    Yang R, Terabe K, Yao Y P, Tsuruoka T, Hasegawa T, Gimzewski J K, Aono M 2013 Nanotechnology 24 384003

    [4]

    Wang Z Q, Xu H Y, Li X H, Yu H, Liu Y C, Zhu X J 2012 Adv. Funct. Mater. 22 2759

    [5]

    Li S Z, Zeng F, Chen C, Liu H Y, Tang G S, Gao S, Song C, Lin Y S, Pan F, Guo D 2013 J. Mater. Chem. C 1 5292

    [6]

    Lei Y, Liu Y, Xia Y D, Gao X, Xu B, Wang S D, Yin J, Liu Z G 2014 AIP Adv. 4 077105

    [7]

    Xiao Z G, Huang J S 2016 Adv. Electron. Mater. 2 1600100

    [8]

    Kim M K, Lee J S 2018 ACS Nano 12 1680

    [9]

    Liu G, Wang C, Zhang W B, Pan L, Zhang C C, Yang X, Fan F, Chen Y, Li R W 2016 Adv. Electron. Mater. 2 1500298

    [10]

    Zhang C C, Tai Y T, Shang J, Liu G, Wang K L, Hsu C, Yi X H, Yang X, Xue W H, Tan H W, Guo S S, Pan L, Li R W 2016 J. Mater. Chem. C 4 3217

    [11]

    Luo W Q, Yuan F Y, Wu H Q, Pan L Y, Deng N, Zeng F, Wei R S, Cai X J 2015 15th Non-Volatile Memory Technology Symposium (NVMTS) Beijing, China, October 12–14, 2015 p7457490

    [12]

    Wang L G, Zhang W, Chen Y, Cao Y Q, Li A D, Wu D 2017 Nanoscale Res. Lett. 12 65

    [13]

    Zhang B, Wang C, Wang L X, Chen Y 2018 J. Mater. Chem. C 6 4023

    [14]

    La Barbera S, Vuillaume D, Alibart F 2015 ACS Nano 9 941

    [15]

    Park Y, Lee J S 2017 ACS Nano 11 8962

    [16]

    Kim H J, Park D, Yang P, Beom K, Kim M J, Shin C, Kang C J, Yoon T S 2018 Nanotechnology 29 265204

    [17]

    Ohno T, Hasegawa T, Tsuruoka T, Terabe K, Gimzewski J K, Aono M 2011 Nat. Mater. 10 591

    [18]

    Nayak A, Ohno T, Tsuruoka T, Terabe K, Hasegawa T, Gimzewski J K, Aono M 2012 Adv. Funct. Mater. 22 3606

    [19]

    Ohno T, Hasegawa T, Nayak A, Tsuruoka T, Gimzewski J K, Aono M 2011 Appl. Phys. Lett. 99 203108

    [20]

    Chen L, Li C D, Huang T W, Chen Y R, Wen S P, Qi J T 2013 Phys. Lett. A 377 3260

    [21]

    Chen L, Li C D, Huang T W, Ahmad H G, Chen Y R 2014 Phys. Lett. A 378 2924

    [22]

    Chen L, Li C D, Huang T W, Hu X F, Chen Y R 2016 Neurocomputing 171 1637

    [23]

    Shao N, Zhang S B, Shao S Y 2017 Chin. Phys. B 26 118501

    [24]

    Chang T, Jo S H, Kim K H, Sheridan P, Gaba S, Lu W 2011 Appl. Phys. A 102 857

  • [1] 郭慧朦, 梁燕, 董玉姣, 王光义. 蔡氏结型忆阻器的简化及其神经元电路的硬件实现. 物理学报, 2023, 72(7): 070501. doi: 10.7498/aps.72.20222013
    [2] 胡炜, 廖建彬, 杜永乾. 一种适用于大规模忆阻网络的忆阻器单元解析建模策略. 物理学报, 2021, 70(17): 178505. doi: 10.7498/aps.70.20210116
    [3] 邓文, 汪礼胜, 刘嘉宁, 余雪玲, 陈凤翔. 光电协控多层MoS2记忆晶体管的阻变行为与机理研究. 物理学报, 2021, 70(21): 217302. doi: 10.7498/aps.70.20210750
    [4] 史晨阳, 闵光宗, 刘向阳. 蛋白质基忆阻器研究进展. 物理学报, 2020, 69(17): 178702. doi: 10.7498/aps.69.20200617
    [5] 徐威, 王钰琪, 李岳峰, 高斐, 张缪城, 连晓娟, 万相, 肖建, 童祎. 新型忆阻器神经形态电路的设计及其在条件反射行为中的应用. 物理学报, 2019, 68(23): 238501. doi: 10.7498/aps.68.20191023
    [6] 邵楠, 张盛兵, 邵舒渊. 具有经验学习特性的忆阻器模型分析. 物理学报, 2019, 68(19): 198502. doi: 10.7498/aps.68.20190808
    [7] 吴洁宁, 王丽丹, 段书凯. 基于忆阻器的时滞混沌系统及伪随机序列发生器. 物理学报, 2017, 66(3): 030502. doi: 10.7498/aps.66.030502
    [8] 阮静雅, 孙克辉, 牟俊. 基于忆阻器反馈的Lorenz超混沌系统及其电路实现. 物理学报, 2016, 65(19): 190502. doi: 10.7498/aps.65.190502
    [9] 俞亚娟, 王在华. 一个分数阶忆阻器模型及其简单串联电路的特性. 物理学报, 2015, 64(23): 238401. doi: 10.7498/aps.64.238401
    [10] 孟凡一, 段书凯, 王丽丹, 胡小方, 董哲康. 一种改进的WOx忆阻器模型及其突触特性分析. 物理学报, 2015, 64(14): 148501. doi: 10.7498/aps.64.148501
    [11] 郭羽泉, 段书凯, 王丽丹. 纳米级尺寸参数对钛氧化物忆阻器的特性影响. 物理学报, 2015, 64(10): 108502. doi: 10.7498/aps.64.108502
    [12] 袁泽世, 李洪涛, 朱晓华. 基于忆阻器的数模混合随机数发生器. 物理学报, 2015, 64(24): 240503. doi: 10.7498/aps.64.240503
    [13] 董哲康, 段书凯, 胡小方, 王丽丹. 两类纳米级非线性忆阻器模型及串并联研究. 物理学报, 2014, 63(12): 128502. doi: 10.7498/aps.63.128502
    [14] 徐晖, 田晓波, 步凯, 李清江. 温度改变对钛氧化物忆阻器导电特性的影响. 物理学报, 2014, 63(9): 098402. doi: 10.7498/aps.63.098402
    [15] 刘玉东, 王连明. 基于忆阻器的spiking神经网络在图像边缘提取中的应用. 物理学报, 2014, 63(8): 080503. doi: 10.7498/aps.63.080503
    [16] 田晓波, 徐晖, 李清江. 横截面积参数对钛氧化物忆阻器导电特性的影响. 物理学报, 2014, 63(4): 048401. doi: 10.7498/aps.63.048401
    [17] 李志军, 曾以成, 李志斌. 改进型细胞神经网络实现的忆阻器混沌电路. 物理学报, 2014, 63(1): 010502. doi: 10.7498/aps.63.010502
    [18] 刘东青, 程海峰, 朱玄, 王楠楠, 张朝阳. 忆阻器及其阻变机理研究进展. 物理学报, 2014, 63(18): 187301. doi: 10.7498/aps.63.187301
    [19] 许碧荣. 一种最简的并行忆阻器混沌系统. 物理学报, 2013, 62(19): 190506. doi: 10.7498/aps.62.190506
    [20] 贾林楠, 黄安平, 郑晓虎, 肖志松, 王玫. 界面效应调制忆阻器研究进展. 物理学报, 2012, 61(21): 217306. doi: 10.7498/aps.61.217306
计量
  • 文章访问数:  7377
  • PDF下载量:  210
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-22
  • 修回日期:  2018-11-15
  • 刊出日期:  2019-01-05

/

返回文章
返回