搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

锑烯吸附金属Li原子的密度泛函研究

栾晓玮 孙建平 王凡嵩 韦慧兰 胡艺凡

引用本文:
Citation:

锑烯吸附金属Li原子的密度泛函研究

栾晓玮, 孙建平, 王凡嵩, 韦慧兰, 胡艺凡

Density functional study of metal lithium atom adsorption on antimonene

Luan Xiao-Wei, Sun Jian-Ping, Wang Fan-Song, Wei Hui-Lan, Hu Yi-Fan
PDF
HTML
导出引用
  • 锑烯(antimonene)是继石墨烯和磷烯之后出现的新型二维材料, 在锂离子电池等领域受到关注. 本文基于第一性原理的密度泛函理论, 计算研究了锑烯对Li原子的吸附特性, 包括Li原子的最稳定吸附构型、吸附密度以及吸附Li原子的扩散路径. 结果表明: Li原子最稳定的吸附位置位于谷位, 即底层Sb原子之上、顶层三个Sb原子中心位置, 吸附能为1.69 eV, 吸附距离为2.81 Å; 能带计算发现, 锑烯为带隙宽度1.08 eV的间接带隙半导体, 吸附Li原子后费米能级上升进入导带, 呈现出金属性; 原子分波态密度分析发现, Sb原子的p电子态和Li原子的p和s电子态形成明显的共振交叠, 表现出杂化成键的特征; 随着吸附Li原子数量增加, 锑烯晶格结构和电子结构发生较大变化. 通过微动弹性带方法计算发现, Li原子在锑烯表面的扩散势垒为0.07 eV, 较小的势垒高度有利于快速充放电过程.
    Since the discovery of graphene, researchers have been being increasingly attracted by the emerging of a bunch of two-dimensional (2D) materials, such as BN, MoS2 and black phosphorene. These materials possess outstanding physical and chemical properties, which could find great potential applications in nanoelectronics, energy conversion or storage, photocatalysts, etc. Recently, a theoretically predicted pucker layered material consisting of Sb atoms, antimonene, has been prepared, and is attracting the attention in the field of lithium ion batteries. In this paper, based on first-principle density functional theory, the adsorption characteristics of Li atoms on antimony are studied, including the most stable adsorption configuration, the adsorption density and the diffusion path of Li atom on antimonene. The results show that the most stable adsorption configuration of Li atom is in the valley site, i.e. the center of the three Sb atoms in the top layer and one Sb in the bottom layer. The adsorption energy is 1.69 eV and the adsorption distance is 2.81 Å. The band structure shows that antimony is an indirect band gap semiconductor with a band gap of 1.08 eV. After the absorption of Li atom, the Fermi level enters into the conduction band, which shows an electronic property similar to metal. The analysis of density of states shows that the p-electronic state of Sb atom and the p and s electronic state of Li atom possess distinct resonance peaks, showing hybrid bonding characteristics. With the increase of the number of Li atoms adsorbed, the lattice structure and electronic structure of antimonene change greatly. The nudged elastic band calculation shows that the diffusion barrier of Li atom on antimony surface is 0.07 eV, and a smaller barrier height is beneficial to the rapid charge-discharge process. To sum up, antimony has a good potential as an anode material for lithium ion batteries.
      通信作者: 孙建平, sunjp@ncepu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61372050)资助的课题.
      Corresponding author: Sun Jian-Ping, sunjp@ncepu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61372050).
    [1]

    Tarascon J M, Armand M 2001 Nature 414 6861

    [2]

    Li Y, Mi Y, Sun G 2015 J. Mater. Chem. 03 12

    [3]

    Geim A K 2009 Science 324 5934

    [4]

    Geim A K, Novoselov K S 2007 Nature Mat. 6 3Google Scholar

    [5]

    Yao Q, Huang C, Yuan Y 2015 J. Phys. Chem. C 119 12

    [6]

    Hussain A, Ullah S, Farhan M A 2017 J. Mater. Chem. 41 19

    [7]

    孙建平, 周科良, 梁晓东 2016 物理学报 65 018201

    Sun J P, Zhou K L, Liang X D 2016 Acta Phys. Sin. 65 018201

    [8]

    孙建平, 缪应蒙, 曹相春 2013 物理学报 62 036301

    Sun J P, Miu Y M, Cao X C 2013 Acta Phys. Sin. 62 036301

    [9]

    高云雷, 赵东林, 白利忠, 张霁明, 孔莹 2012 中国科技论文 7 413

    Gao Y L, Zhao D L, Bai L Z, Zhang J M, Kong Y 2012 China Sciencepaper 7 413

    [10]

    朱晋潇, 刘晓东, 薛敏钊, 陈长鑫 2017 物理化学学报 33 2153Google Scholar

    Zhu J X, Liu X D, Xue M Z, Chen C X 2017 Acta Physico-Chimica Sinica 33 2153Google Scholar

    [11]

    Peng B, Xu Y L, Fokko M M 2017 Acta Physico-Chimica Sinica 33 2127

    [12]

    Li L K, Yu Y J, Ye G J, Ge Q Q, Ou X D, Wu H, Feng D L, Chen X H, Zhang Y B 2014 J. Nat. Nano 9 372Google Scholar

    [13]

    Liu H, Neal A T, Zhu Z, Luo Z, Xu X F, Tomanek D, Ye P D 2017 ACS Nano 8 4033

    [14]

    Yao Q, Huang C, Yuan Y 2015 J. Phys. Chem. C 119 12

    [15]

    Qiao J S, Kong X H, Hu Z X, Yang F, Ji W 2014 Nat. Com. 5 128

    [16]

    He Y, Xia F, Shao Z 2015 J. Phys. Chem. C. Lett. 6 23

    [17]

    Haldar S, Mukherjee S, Ahmed F 2017 J. Hyd. Ene. 42 36

    [18]

    Wang G, Pandey R, Karna S P 2015 ACS Appl. Mat. Int. 6 21

    [19]

    Zhang S L, Yan Z, Li Y F, Chen Z F, Zeng H B 2015 Ang. Chem. Int. Edi. 54 3112Google Scholar

    [20]

    Ji J P, Song X F, Liu J Z, Yan Z, Huo C X , Zhang S L, Su M, Liao L, Wang W H, Ni Z H, Hao Y F, Zeng H B 2016 Nat. Com. 6 133

    [21]

    Ares P, Aguilar-Galindo F, Rodriguez-San-Miguel D, Aldave D A, Diaz-Tendero S, Alcami M, Martin F, Gomez-Herrero J, Zamora F 2016 Adv. Mat. 28 30

    [22]

    Gibaja C, Rodriguez-San-Miguel D, Ares P 2016 Ang. Chem. 55 46

    [23]

    Üzengi Aktürk O, Aktürk E, Ciraci S 2016 Phys. Rev. 93 3

    [24]

    Zhao M W, Zhang X M, Li L Y 2015 Sci. Rep. 5 161

    [25]

    Zhou Y G, Lin X D 2018 Appl. Sur. Sci. 458 572Google Scholar

    [26]

    Xie M, Zhang S, Cai B 2016 RSC Adv. 6 18Google Scholar

  • 图 1  本征锑烯 (a) 俯视图; (b) 侧视图; (c) 能带图; (d) 态密度图

    Fig. 1.  Pristine antimonene: (a) The top view; (b) the side view; (c) the band structure; (d) the density of states.

    图 2  (a)和(c)分别为谷位吸附结构初始构型的俯视图和侧视图; (b)和(d)分别为其优化构型的俯视图和侧视图

    Fig. 2.  The antimonene structure of Li adsorbed on vacancy site: (a) The top view before optimization; (b) the top view after optimization; (c) the side view before optimization; (d) the side view after optimization.

    图 3  (a) 和 (c) 分别为顶位吸附结构初始构型的俯视图和侧视图; (b) 和 (d) 分别为其优化构型的俯视图和侧视图

    Fig. 3.  The antimonene structure of Li adsorbed on top site: (a) The top view before optimization; (b) the top view after optimization; (c) the side view before optimization; (d) the side view after optimization.

    图 4  谷位吸附构型 (a)能带图; (b)总态密度; (c) Sb分波态密度; (d) Li分波态密度

    Fig. 4.  The band structure and density of Li adsorbed antimonene: (a) The band structure; (b) the total density of states; (c) the partial density of states of Sb atom; (d) the partial density of states view of Li atom.

    图 5  顶位吸附结构态密度图 (a)总态密度; (b) Sb分波态密度; (c) Li分波态密度

    Fig. 5.  The density of states of the Li adsorbed structure: (a) The total density of states; (b) the partial density of states of Sb atom; (c) the partial density of states view of Li atom.

    图 6  谷位差分电荷密度

    Fig. 6.  The differential charge density of the Li adsorbed structure.

    图 7  (a)和(c)分别为锑烯吸附3个Li原子结构初始构型的俯视图和侧视图; (b)和(d)分别为其优化构型的俯视图和侧视图

    Fig. 7.  The configurations of antimonene adsorbing three lithium atoms: (a) The top view before optimization; (b) the top view after optimization; (c) the side view before optimization; (d) the side view after optimization.

    图 8  (a)和(c)分别为锑烯吸附九个Li原子结构初始构型的俯视图和侧视图; (b)和(d)分别为其优化构型的俯视图和侧视图

    Fig. 8.  The configurations of antimonene adsorbing nine lithium atoms: (a) The top view before optimization; (b) the top view after optimization; (c) the side view before optimization; (d) the side view after optimization.

    图 9  锑烯吸附三个Li原子态密度图 (a) 吸附结构的总态密度图; (b) Sb原子的分波态密度; (c) Li原子的分波态密度

    Fig. 9.  The density of states of antimonene adsorbing three lithium atoms: (a) The total density of states of the structure; (b) the partial density of states of Sb atom; (c) the partial density of states view of Li atom.

    图 10  锑烯吸附九个Li原子态密度图 (a) 吸附体系的总态密度图; (b) 体系中Sb原子的分波态密度; (c) 体系中Li原子的分波态密度

    Fig. 10.  The density of states of antimonene adsorbing nine lithium atoms: (a) The total density of states of the structure ; (b) the partial density of states of Sb atom; (c) the partial density of states view of Li atom.

    图 11  Li原子扩散迁移路径 (a) 俯视图; (b) 侧视图

    Fig. 11.  The Li diffusion path on antimonene: (a) The top view; (b) the side view.

    图 12  Li原子扩散迁移势垒

    Fig. 12.  The diffusion energy barrier of Li atom.

    表 1  锑烯吸附Li原子的两种结构的特性

    Table 1.  Properties of two Li adsorbed antimonene configurations.

    Ead/eV Sb—Li/Å Barder(Sb)/Δq Barder(Li)/Δq
    顶位 1.67 2.83 0.31 −1.00
    谷位 1.69 2.81 0.32 −0.99
    注: Ead表示吸附能, Sb—Li表示在吸附后的Sb—Li键长.
    下载: 导出CSV
  • [1]

    Tarascon J M, Armand M 2001 Nature 414 6861

    [2]

    Li Y, Mi Y, Sun G 2015 J. Mater. Chem. 03 12

    [3]

    Geim A K 2009 Science 324 5934

    [4]

    Geim A K, Novoselov K S 2007 Nature Mat. 6 3Google Scholar

    [5]

    Yao Q, Huang C, Yuan Y 2015 J. Phys. Chem. C 119 12

    [6]

    Hussain A, Ullah S, Farhan M A 2017 J. Mater. Chem. 41 19

    [7]

    孙建平, 周科良, 梁晓东 2016 物理学报 65 018201

    Sun J P, Zhou K L, Liang X D 2016 Acta Phys. Sin. 65 018201

    [8]

    孙建平, 缪应蒙, 曹相春 2013 物理学报 62 036301

    Sun J P, Miu Y M, Cao X C 2013 Acta Phys. Sin. 62 036301

    [9]

    高云雷, 赵东林, 白利忠, 张霁明, 孔莹 2012 中国科技论文 7 413

    Gao Y L, Zhao D L, Bai L Z, Zhang J M, Kong Y 2012 China Sciencepaper 7 413

    [10]

    朱晋潇, 刘晓东, 薛敏钊, 陈长鑫 2017 物理化学学报 33 2153Google Scholar

    Zhu J X, Liu X D, Xue M Z, Chen C X 2017 Acta Physico-Chimica Sinica 33 2153Google Scholar

    [11]

    Peng B, Xu Y L, Fokko M M 2017 Acta Physico-Chimica Sinica 33 2127

    [12]

    Li L K, Yu Y J, Ye G J, Ge Q Q, Ou X D, Wu H, Feng D L, Chen X H, Zhang Y B 2014 J. Nat. Nano 9 372Google Scholar

    [13]

    Liu H, Neal A T, Zhu Z, Luo Z, Xu X F, Tomanek D, Ye P D 2017 ACS Nano 8 4033

    [14]

    Yao Q, Huang C, Yuan Y 2015 J. Phys. Chem. C 119 12

    [15]

    Qiao J S, Kong X H, Hu Z X, Yang F, Ji W 2014 Nat. Com. 5 128

    [16]

    He Y, Xia F, Shao Z 2015 J. Phys. Chem. C. Lett. 6 23

    [17]

    Haldar S, Mukherjee S, Ahmed F 2017 J. Hyd. Ene. 42 36

    [18]

    Wang G, Pandey R, Karna S P 2015 ACS Appl. Mat. Int. 6 21

    [19]

    Zhang S L, Yan Z, Li Y F, Chen Z F, Zeng H B 2015 Ang. Chem. Int. Edi. 54 3112Google Scholar

    [20]

    Ji J P, Song X F, Liu J Z, Yan Z, Huo C X , Zhang S L, Su M, Liao L, Wang W H, Ni Z H, Hao Y F, Zeng H B 2016 Nat. Com. 6 133

    [21]

    Ares P, Aguilar-Galindo F, Rodriguez-San-Miguel D, Aldave D A, Diaz-Tendero S, Alcami M, Martin F, Gomez-Herrero J, Zamora F 2016 Adv. Mat. 28 30

    [22]

    Gibaja C, Rodriguez-San-Miguel D, Ares P 2016 Ang. Chem. 55 46

    [23]

    Üzengi Aktürk O, Aktürk E, Ciraci S 2016 Phys. Rev. 93 3

    [24]

    Zhao M W, Zhang X M, Li L Y 2015 Sci. Rep. 5 161

    [25]

    Zhou Y G, Lin X D 2018 Appl. Sur. Sci. 458 572Google Scholar

    [26]

    Xie M, Zhang S, Cai B 2016 RSC Adv. 6 18Google Scholar

  • [1] 徐思源, 张召富, 王俊, 刘雪飞, 郭宇铮. MoSi2N4的本征点缺陷以及掺杂特性的第一性原理计算研究. 物理学报, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20231931
    [2] 段秀铭, 易志军. 介电环境屏蔽效应对二维InX (X = Se, Te)激子结合能调控机制的理论研究. 物理学报, 2023, 72(14): 147102. doi: 10.7498/aps.72.20230528
    [3] 陈思钰, 叶小娟, 刘春生. 二维锗醚在钠离子电池方面的理论研究. 物理学报, 2022, 71(22): 228202. doi: 10.7498/aps.71.20220572
    [4] 刘天瑶, 刘灿, 刘开辉. 表界面调控米级二维单晶原子制造. 物理学报, 2022, 71(10): 108103. doi: 10.7498/aps.71.20212399
    [5] 祝裕捷, 蒋涛, 叶小娟, 刘春生. 新型二维拉胀材料SiGeS的理论预测及其光电性质. 物理学报, 2022, 71(15): 153101. doi: 10.7498/aps.71.20220407
    [6] 施斌, 袁荔, 唐天宇, 陆利敏, 赵先豪, 魏晓楠, 唐延林. 特丁基对苯二酚的光谱及密度泛函研究. 物理学报, 2021, 70(5): 053102. doi: 10.7498/aps.70.20201555
    [7] 陈旭凡, 杨强, 胡小会. 过渡金属原子掺杂对二维CrBr3电磁学性能的调控. 物理学报, 2021, 70(24): 247401. doi: 10.7498/aps.70.20210936
    [8] 刘子媛, 潘金波, 张余洋, 杜世萱. 原子尺度构建二维材料的第一性原理计算研究. 物理学报, 2021, 70(2): 027301. doi: 10.7498/aps.70.20201636
    [9] 崔树稳, 李璐, 魏连甲, 钱萍. 双层石墨烯层间限域CO氧化反应的密度泛函研究. 物理学报, 2019, 68(21): 218101. doi: 10.7498/aps.68.20190447
    [10] 史若宇, 王林锋, 高磊, 宋爱生, 刘艳敏, 胡元中, 马天宝. 基于滑动势能面的二维材料原子尺度摩擦行为的量化计算. 物理学报, 2017, 66(19): 196802. doi: 10.7498/aps.66.196802
    [11] 张凤春, 李春福, 张丛雷, 冉曾令. H2S, HS自由基以及S原子在Fe(111)表面吸附的密度泛函研究. 物理学报, 2014, 63(12): 127101. doi: 10.7498/aps.63.127101
    [12] 温俊青, 张建民, 姚攀, 周红, 王俊斐. PdnAl(n=18)二元团簇的密度泛函理论研究. 物理学报, 2014, 63(11): 113101. doi: 10.7498/aps.63.113101
    [13] 袁健美, 郝文平, 李顺辉, 毛宇亮. Ni(111)表面C原子吸附的密度泛函研究. 物理学报, 2012, 61(8): 087301. doi: 10.7498/aps.61.087301
    [14] 解晓东, 郝玉英, 章日光, 王宝俊. Li掺杂8-羟基喹啉铝的密度泛函理论研究. 物理学报, 2012, 61(12): 127201. doi: 10.7498/aps.61.127201
    [15] 高虹, 朱卫华, 唐春梅, 耿芳芳, 姚长达, 徐云玲, 邓开明. 内掺氮富勒烯N2@C60的几何结构和电子性质的密度泛函计算研究. 物理学报, 2010, 59(3): 1707-1711. doi: 10.7498/aps.59.1707
    [16] 蒙大桥, 罗文华, 李赣, 陈虎翅. Pu(100)表面吸附CO2的密度泛函研究. 物理学报, 2009, 58(12): 8224-8229. doi: 10.7498/aps.58.8224
    [17] 林峰, 郑法伟, 欧阳方平. H2O在SrTiO3-(001)TiO2表面上吸附和解离的密度泛函理论研究. 物理学报, 2009, 58(13): 193-S198. doi: 10.7498/aps.58.193
    [18] 杨培芳, 胡娟梅, 滕波涛, 吴锋民, 蒋仕宇. Rh在单壁碳纳米管上吸附的密度泛函理论研究. 物理学报, 2009, 58(5): 3331-3337. doi: 10.7498/aps.58.3331
    [19] 陈玉红, 康 龙, 张材荣, 罗永春, 蒲忠胜. (Li3N)n(n=1—5)团簇结构与性质的密度泛函研究. 物理学报, 2008, 57(7): 4174-4181. doi: 10.7498/aps.57.4174
    [20] 曾振华, 邓辉球, 李微雪, 胡望宇. O在Au(111)表面吸附的密度泛函理论研究. 物理学报, 2006, 55(6): 3157-3164. doi: 10.7498/aps.55.3157
计量
  • 文章访问数:  8572
  • PDF下载量:  113
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-03
  • 修回日期:  2018-11-23
  • 上网日期:  2019-01-01
  • 刊出日期:  2019-01-20

/

返回文章
返回