-
集成化导光板下表面微结构分布是影响背光模组出射光均匀性的关键因素, 因此是背光模组设计的重点之一. 本文针对微棱镜一维分布设计中存在的大面积同一性影响背光模组亮度均匀性的问题, 提出一种集成化导光板下表面微棱镜二维分布的设计思想, 以提高背光模组的亮度均匀性. 利用光学软件Lighttools对5.0英寸集成化导光板下表面微棱镜结构的较佳二维分布进行优化探索, 通过与较佳的一维分布仿真结果对比分析可知, 优化后的二维分布模式下, 背光模组的光能利用率、照度均匀性、亮度均匀性分别达到92.03%, 87.07%和91.94%, 满足行业标准; 其中, 照度均匀性比一维分布提高了10%; 同时, 从亮度图观察, 背光模组的整体亮度均匀性得到了有效提升. 该研究结果对于背光模组轻薄化、集成化开发具有一定的参考价值.The microstructure distribution on the bottom surface of the partial integrated light guide plate (PILGP) is the key to affecting the uniformity of the output light from the backlight module (BLM), which is one of the important factors in the BLM design. Based on the development trend of the BLM in light-weight and integration, many research institutes have realized the requirement for high luminance and luminance uniformity in the BLM by setting micro-prism structure on the surface of the light guide plate (LGP). In most of these studies, the length of the micro-prism structure is the same as the width of the LGP, and the optimization of the micro-prism distribution is performed only in the length direction of the LGP, which is a one-dimensional distribution. So, the long strip micro-prism structure cannot modulate the light in the axial direction, resulting in large area identity in the width direction of the LGP, thereby the luminance uniformity of the BLM is affected. In this paper, a design idea of two-dimensional distribution of the micro-prism on the bottom surface of the PILGP, which improves the luminance uniformity of the BLM, is proposed to solve the problem that the luminance uniformity is affected by large area identity caused by one-dimensional distribution design of the micro-prism. The small length micro-prism structure is used to break the limit of the axial distribution of the long strip micro-prism structure, and it can modulate the light in the axial direction. The Lighttools software is used to optimize the two-dimensional distribution of the micro-prism on the bottom surface of a 5.0-inch PILGP. Comparing with the PILGP with one-dimensional distribution of the micro-prism on the bottom surface, the simulation results show that the utilization of light energy, illuminance uniformity and luminance uniformity in the BLM with optimized two-dimensional distribution of the micro-prism on the bottom surface of the PILGP respectively reach 92.03%, 87.07% and 91.94%, which meet industry standards. And the illuminance uniformity increases by 10%. Meanwhile, the luminance diagram shows that the overall luminance uniformity of the BLM is improved effectively. Moreover, the distribution principle of the micro-prism on the bottom surface of the PILGP is analyzed and the physical mechanism is reasonably explained . The simulation results above show that the design concept of the two-dimensional distribution of micro-prism is feasible. The study results have a certain referential value for the development of the BLM in light-weight and integration.
-
Keywords:
- optical design /
- partial integrated light guide plate /
- two-dimensional distribution /
- micro-prism
[1] Li C J, Fang Y C, Cheng M C 2008 Proceedings of SPIE Optical Systems Design Glasgow, Scotland, United Kingdom, September 2−5, 2008 p71030L
[2] Xu P, Huang Y Y, Su Z J, Zhang X L 2014 Appl. Opt. 53 1322Google Scholar
[3] Xu P, Huang Y Y, Su Z J, Zhang X L, Luo T Z, Peng W D 2015 Opt. Express 23 4887Google Scholar
[4] Lin S F, Su C Y, Feng Z Y, Li X D 2017 J. Phys. D: Appl. Phys. 50 1Google Scholar
[5] Wang Y J, Ouyang S H, Chao W C, Lu J G, Shieh D H P 2015 Opt. Express 23 1567Google Scholar
[6] Wang Y J, Lu J G, Chao W C, Shieh D H P 2015 Opt. Express 23 21443Google Scholar
[7] Oh S W, Kim N, Kim E S, An J W 2010 Korean J. Opt. Photon. 21 247Google Scholar
[8] Chen C F, Kuo S H 2014 J. Disp. Technol. 10 1030Google Scholar
[9] Fang Y C, Tzeng Y F, Wu K Y 2014 J. Disp. Technol. 10 840Google Scholar
[10] Joo B Y, Ko J H 2015 J. Opt. Soc. Korea 19 159Google Scholar
[11] Li C Y, Pan J W 2014 Appl. Opt. 53 1503Google Scholar
[12] Chen B T, Pan J W 2015 Appl. Opt. 54 E80Google Scholar
[13] Lee K L, He K Y 2011 J. Lightwave Technol. 29 3327Google Scholar
[14] Xu P, Yan Z L, Wan L L, Huang H X 2004 Proceedings of SPIE Holography Diffractive Optics and Applications II Beijing, China, November 8−11, 2004 p66
[15] Xu P, Huang H X, Wang K, Ruan S C, Yang J, Wan L L, Chen X X, Liu J Y 2007 Opt. Express 15 809Google Scholar
[16] 黄海璇, 徐平, 阮双琛, 杨拓, 袁霞, 黄燕燕 2015 物理学报 64 154212Google Scholar
Huang H X, Xu P, Ruan S C, Yang T, Yuan X, Huang Y Y 2015 Acta Phys. Sin. 64 154212Google Scholar
[17] Huang H X, Ruan S C, Yang T, Xu P 2015 Nano-Micro Lett. 7 177Google Scholar
[18] Xu P, Hong C Q, Cheng G X, Zhou L, Sun Z L 2015 Opt. Express 23 6773Google Scholar
[19] Xu P, Yuan X, Huang H X, Yang T, Huang Y Y, Zhu T F, Tang S T, Peng W D 2016 Nanoscale Res. Lett. 11 485Google Scholar
[20] 徐平, 袁霞, 杨拓, 黄海璇, 唐少拓, 黄燕燕, 肖钰斐, 彭文达 2017 物理学报 66 124201Google Scholar
Xu P, Yuan X, Yang T, Huang H X, Tang S T, Huang Y Y, Xiao Y F, Peng W D 2017 Acta Phys. Sin. 66 124201Google Scholar
[21] 徐平, 唐少拓, 袁霞, 黄海璇, 杨拓, 罗统政, 喻珺 2018 物理学报 67 024202Google Scholar
Xu P, Tang S T, Yuan X, Huang H X, Yang T, Luo T Z, Yu J 2018 Acta Phys. Sin. 67 024202Google Scholar
[22] 徐平, 黄燕燕, 张旭琳, 黄洁锋, 李贝贝, 叶恩, 段守富, 苏志杰 2013 深圳大学理工学报 30 428Google Scholar
Xu P, Huang Y Y, Zhang X L, Huang J F, Li B B, Ye E, Duan S F, Su Z J 2013 J. Shenzhen Univ. Sci. Eng. 30 428Google Scholar
[23] 陈祥贤, 徐平, 黄洁锋, 张旭琳, 王冰, 李贝贝 2009 光学学报 29 2516Google Scholar
Chen X X, Xu P, Huang J F, Zhang X L, Wang B, Li B B 2009 Acta Opt. Sin. 29 2516Google Scholar
[24] Xu P, Huang Y Y, Zhang X L, Huang J F, Li B B, Ye E, Duan S F, Su Z J 2013 Opt. Express 21 20159Google Scholar
[25] Xu P, Luo T Z, Zhang X L, Su Z J, Huang Y Y, Li X C, Zou Y 2018 Opt. Commun. 427 589Google Scholar
[26] Kim Y C 2013 Optik 124 2171Google Scholar
[27] 罗松保 2007 航空精密制造技术 43 1Google Scholar
Luo S B 2007 Aviat. Precis. Manuf. Technol. 43 1Google Scholar
[28] 史俊锋, 张光国, 王东生 2004 微纳电子技术 41 38Google Scholar
Shi J F, Zhang G G, Wang D S 2004 Micronano Electron. Technol. 41 38Google Scholar
-
图 3 PILGP下表面微棱镜分布分别为一维、二维时, 背光模组的出射光照度图、亮度图 (a), (b)微棱镜一维分布时的照度图和亮度图; (c), (d)微棱镜二维分布时的照度图和亮度图
Fig. 3. Simulation results of illuminance and luminance diagram of the output light from partial integrated backlight module with one-dimensional and two-dimensional distribution of micro-prism on the bottom surface of PILGP: (a) and (b) is respectively illuminance and luminance diagram with one-dimensional distribution of micro-prism; (c) and (d) is respectively illuminance and luminance diagram of two-dimensional distribution of micro-prism.
表 1 集成化背光模组结构参数
Table 1. Structural parameters of partial integrated backlight module.
项目 结构参数 PILGP材料和尺寸 PMMA, 116.3 mm × 68.7 mm × 0.5 mm PILGP上表面结构 高88.6 ${\text{μ}{\rm m}}$、宽180 ${\text{μ}{\rm m}}$、长116 mm的ASCMCS阵列, 密排 PILGP下表面结构 底宽49 ${\text{μ}{\rm m}}$、长0.1 mm、$\alpha$ = 50°、$\beta$ = 90°的微棱镜单元 LED发光强度和尺寸 6.6646 lm, 朗伯分布, 发散角110°, 1.2 mm × 2.5 mm × 0.4 mm LED数量和间隔 10个, 6.56 mm, 等间距分布于PILGP的短边 RF反射率 95% 表 2 PILGP下表面微棱镜分布为一维、二维时的背光模组仿真结果
Table 2. Simulation results of partial integrated backlight modules with one-dimensional and two-dimensional distribution of micro-prism on the bottom surface of PILGP.
性能参数 微棱镜分布模式 一维 二维 光能利用率/% 91.61 92.03 平均照度/Lux 8519.0 8571.0 平均亮度/Nit 6859.7 6394.6 照度均匀性/% 76.71 87.07 亮度均匀性/% 91.14 91.94 -
[1] Li C J, Fang Y C, Cheng M C 2008 Proceedings of SPIE Optical Systems Design Glasgow, Scotland, United Kingdom, September 2−5, 2008 p71030L
[2] Xu P, Huang Y Y, Su Z J, Zhang X L 2014 Appl. Opt. 53 1322Google Scholar
[3] Xu P, Huang Y Y, Su Z J, Zhang X L, Luo T Z, Peng W D 2015 Opt. Express 23 4887Google Scholar
[4] Lin S F, Su C Y, Feng Z Y, Li X D 2017 J. Phys. D: Appl. Phys. 50 1Google Scholar
[5] Wang Y J, Ouyang S H, Chao W C, Lu J G, Shieh D H P 2015 Opt. Express 23 1567Google Scholar
[6] Wang Y J, Lu J G, Chao W C, Shieh D H P 2015 Opt. Express 23 21443Google Scholar
[7] Oh S W, Kim N, Kim E S, An J W 2010 Korean J. Opt. Photon. 21 247Google Scholar
[8] Chen C F, Kuo S H 2014 J. Disp. Technol. 10 1030Google Scholar
[9] Fang Y C, Tzeng Y F, Wu K Y 2014 J. Disp. Technol. 10 840Google Scholar
[10] Joo B Y, Ko J H 2015 J. Opt. Soc. Korea 19 159Google Scholar
[11] Li C Y, Pan J W 2014 Appl. Opt. 53 1503Google Scholar
[12] Chen B T, Pan J W 2015 Appl. Opt. 54 E80Google Scholar
[13] Lee K L, He K Y 2011 J. Lightwave Technol. 29 3327Google Scholar
[14] Xu P, Yan Z L, Wan L L, Huang H X 2004 Proceedings of SPIE Holography Diffractive Optics and Applications II Beijing, China, November 8−11, 2004 p66
[15] Xu P, Huang H X, Wang K, Ruan S C, Yang J, Wan L L, Chen X X, Liu J Y 2007 Opt. Express 15 809Google Scholar
[16] 黄海璇, 徐平, 阮双琛, 杨拓, 袁霞, 黄燕燕 2015 物理学报 64 154212Google Scholar
Huang H X, Xu P, Ruan S C, Yang T, Yuan X, Huang Y Y 2015 Acta Phys. Sin. 64 154212Google Scholar
[17] Huang H X, Ruan S C, Yang T, Xu P 2015 Nano-Micro Lett. 7 177Google Scholar
[18] Xu P, Hong C Q, Cheng G X, Zhou L, Sun Z L 2015 Opt. Express 23 6773Google Scholar
[19] Xu P, Yuan X, Huang H X, Yang T, Huang Y Y, Zhu T F, Tang S T, Peng W D 2016 Nanoscale Res. Lett. 11 485Google Scholar
[20] 徐平, 袁霞, 杨拓, 黄海璇, 唐少拓, 黄燕燕, 肖钰斐, 彭文达 2017 物理学报 66 124201Google Scholar
Xu P, Yuan X, Yang T, Huang H X, Tang S T, Huang Y Y, Xiao Y F, Peng W D 2017 Acta Phys. Sin. 66 124201Google Scholar
[21] 徐平, 唐少拓, 袁霞, 黄海璇, 杨拓, 罗统政, 喻珺 2018 物理学报 67 024202Google Scholar
Xu P, Tang S T, Yuan X, Huang H X, Yang T, Luo T Z, Yu J 2018 Acta Phys. Sin. 67 024202Google Scholar
[22] 徐平, 黄燕燕, 张旭琳, 黄洁锋, 李贝贝, 叶恩, 段守富, 苏志杰 2013 深圳大学理工学报 30 428Google Scholar
Xu P, Huang Y Y, Zhang X L, Huang J F, Li B B, Ye E, Duan S F, Su Z J 2013 J. Shenzhen Univ. Sci. Eng. 30 428Google Scholar
[23] 陈祥贤, 徐平, 黄洁锋, 张旭琳, 王冰, 李贝贝 2009 光学学报 29 2516Google Scholar
Chen X X, Xu P, Huang J F, Zhang X L, Wang B, Li B B 2009 Acta Opt. Sin. 29 2516Google Scholar
[24] Xu P, Huang Y Y, Zhang X L, Huang J F, Li B B, Ye E, Duan S F, Su Z J 2013 Opt. Express 21 20159Google Scholar
[25] Xu P, Luo T Z, Zhang X L, Su Z J, Huang Y Y, Li X C, Zou Y 2018 Opt. Commun. 427 589Google Scholar
[26] Kim Y C 2013 Optik 124 2171Google Scholar
[27] 罗松保 2007 航空精密制造技术 43 1Google Scholar
Luo S B 2007 Aviat. Precis. Manuf. Technol. 43 1Google Scholar
[28] 史俊锋, 张光国, 王东生 2004 微纳电子技术 41 38Google Scholar
Shi J F, Zhang G G, Wang D S 2004 Micronano Electron. Technol. 41 38Google Scholar
计量
- 文章访问数: 7034
- PDF下载量: 47
- 被引次数: 0