搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铯原子激发态双色偏振光谱

张锦芳 任雅娜 王军民 杨保东

引用本文:
Citation:

铯原子激发态双色偏振光谱

张锦芳, 任雅娜, 王军民, 杨保东

Investigation of the two-color polarization spectroscopy between the excited states based on cesium atoms

Zhang Jin-Fang, Ren Ya-Na, Wang Jun-Min, Yang Bao-Dong
PDF
HTML
导出引用
  • 基于铯原子阶梯型6S1/2-6P3/2-8S1/2 (852.3 nm + 794.6 nm)能级系统, 一束波长为852.3 nm的圆偏振光作为抽运光, 将室温下气室中的铯原子由基态6S1/2激发到中间激发态6P3/2并极化, 另一束波长为794.6 nm的线偏振光作为探测光, 其频率在6P3/2—8S1/2态之间扫描, 经过原子气室后差分探测便可获得铯原子激发态6P3/2—8S1/2能级跃迁之间的双色偏振光谱. 实验上系统地测量、分析了抽运光频率失谐、偏振, 以及抽运光与探测光同反向实验构型对双色偏振光谱的影响, 并将其用于794.6 nm半导体激光器的稳频, 锁频之后, 225 s内的残余频率起伏约为0.5 MHz.
    Two-color polarization spectroscopy (TCPS) of cesium 6S1/2-6P3/2-8S1/2 (852.3 nm + 794.6 nm) ladder-type system in a room-temperature vapor cell are investigated. The frequency of 852.3 nm laser used as a pump beam is locked on one of the hyperfine transitions between the ground state 6S1/2 and excited state 6P3/2 by the saturated absorption spectroscopy technique, which can populate some atoms on the 6P3/2 excited state and induce anisotropy in the atomic medium. The frequency of 794.6 nm laser serving as a probe beam is scanned across the whole 6P3/2→8S1/2 transition to ascertain this anisotropy, and thus the TCPS is obtained. In experiment, we measure and analyse the influence of frequency detuning of 852.3 nm pump laser on TCPS, and especially reveal that some of hyperfine energy levels of intermediate excited state 6P3/2, which has no direct interaction with the 852.3 nm pump laser, are also populated by a small fraction of atoms with a specific speed in the direction of pump laser beam due to Doppler effect, so they also have contribution to the TCPS when the 794.6 nm probe laser is scanned to the resonance transition line between the 6P3/2 and 8S1/2 states after the Doppler frequency shift has been considered. In addition, we prove that the atomic coherence like electromagnetically induced transparency effect obviously results in a narrower line width of TCPS in the case of counter-propagating experimental configuration than that in the case of pump beam co-propagating with the probe beam in the Cs vapor cell. Finally, we apply the TCPS with dispersive shaped feature to frequency stabilization with no modulation, and the frequency fluctuations of 794.6 nm laser are ~0.5 MHz and ~9.2 MHz for the frequency-locking and free running in ~225 s, respectively. The above research work is expected to play a role in precisely measuring the atomic energy level structure and its related hyperfine structure constant (magnetic dipole and electric quadrupole coupling constants), and also in stabilizing the laser frequency to the excited state transition especially for the optical fiber communication, two-color laser cooling/trapping neutral atoms, optical filter, etc.
      通信作者: 杨保东, ybd@sxu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11774210, 11104172, 61575112)和国家重点研发计划(批准号: 2017YFA0304502)资助的课题.
      Corresponding author: Yang Bao-Dong, ybd@sxu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11774210, 11104172, 61575112) and the National Key Research and Development Program of China (Grant No. 2017YFA0304502).
    [1]

    Sun Q Q, Hong Y L, Zhuang W, Liu Z W, Chen J B 2012 Appl. Phys. Lett. 101 211102Google Scholar

    [2]

    Wu S J, Plisson T, Brown R C, Phillips W D, Porto J V 2009 Phys. Rev. Lett. 103 173003Google Scholar

    [3]

    Akulshin A M, Orel A A, McLean R J 2012 J. Phys. B: At. Mol. Opt. Phys. 45 015401Google Scholar

    [4]

    Wang J, Liu H F, Yang G, Yang B D, Wang J M 2014 Phys. Rev. A 90 052505Google Scholar

    [5]

    任雅娜, 杨保东, 王杰, 杨光, 王军民 2016 物理学报 65 073103Google Scholar

    Ren Y N, Yang B D, Wang J, Yang G, Wang J M 2016 Acta Phys. Sin. 65 073103Google Scholar

    [6]

    Mohapatra K, Jackson T R, Adams C S 2007 Phys. Rev. Lett. 98 113003Google Scholar

    [7]

    Parniak M, Leszczyński A, Wasilewski W 2016 Appl. Phys. Lett. 108 161103Google Scholar

    [8]

    Sasada H 1992 IEEE Photonics Technol. Lett. 4 1307Google Scholar

    [9]

    Moon H S, Lee W K, Lee L, Kim J B 2004 Appl. Phys. Lett. 85 3965Google Scholar

    [10]

    Yang B D, Zhao J Y, Zhang T C, Wang J M 2009 J. Phys. D: Appl. Phys. 42 085111Google Scholar

    [11]

    Carr C, Adams C S, Weatherill K J 2012 Opt. Lett. 37 118Google Scholar

    [12]

    Yang B D, Wang J, Liu H F, He J, Wang J M 2014 Opt. Commun. 319 174Google Scholar

    [13]

    Wieman C, Hänsch T W 1976 Phys. Rev. Lett. 36 1170Google Scholar

    [14]

    Kulatunga P, Busch H C, Andrews L R, Sukenik C I 2012 Opt. Commun. 285 2851Google Scholar

    [15]

    Noh H R 2012 Opt. Express 20 21784Google Scholar

    [16]

    Cha E H, Jeong T, Noh H R 2014 Opt. Commun. 326 175Google Scholar

    [17]

    Moon H S, Lee L, Kim J B 2008 Opt. Express 16 12163Google Scholar

    [18]

    Becerra F E, Willis R T, Rolston S L, Orozco L A 2009 J. Opt. Soc. Am. B 26 1315Google Scholar

    [19]

    Yang B D, Gao J, Zhang T C, Wang J M 2011 Phys. Rev. A 83 013818Google Scholar

    [20]

    Yang B D, Liang Q B, He J, Zhang T C, Wang J M 2010 Phys. Rev. A 81 043803Google Scholar

    [21]

    Yang B D, Liang Q B, He J, Wang J M 2012 Opt. Express 20 11944Google Scholar

    [22]

    Yang B D, Wang J, Wang J M 2016 Chin. Opt. Lett. 14 040201Google Scholar

    [23]

    Song M, Yoon T H 2011 Phys. Rev. A 83 033814Google Scholar

    [24]

    Moon H S 2008 Appl. Opt. 47 1097Google Scholar

  • 图 1  (a) 与实验相关的铯原子6S1/2-6P3/2-8S1/2超精细能级图; (b)双色偏振光谱原理示意图

    Fig. 1.  (a) The related hyperfine energy levels of Cs atoms 6S1/2-6P3/2-8S1/2; (b) schematic diagram of the two-color polarization spectroscopy (TCPS).

    图 2  实验装置示意图 DL为 852和795 nm光栅外腔反馈半导体激光器, OI 为光隔离器, SAS为饱和吸收光谱装置, PID为比例积分微分放大器, HWP为1/2波片, QWP为1/4波片, M为45°高反镜, PBS为立方偏振分光棱镜, Cs Cell为 25 mm × 50 mm 铯原子泡, DF为双色镜, BD为挡光板, PD为光电探测器

    Fig. 2.  Schematic diagram of experimental setup for the TCPS. Keys to the figure: DL, external-cavity diode laser; OI, optical isolator; SAS, saturated absorption spectroscopy; PID, proportion-integration-differentiation controller; HWP, half-wave plate; QWP, quarter-wave plate; M, mirror; PBS, polarization beam splitter cube; Cs cell, cesium vapor cell; DF, dichroic filter; BD, beam dump; PD, photodiode.

    图 3  同向传输实验构型, 852.3 nm抽运光频率锁于6S1/2 (F = 3)→6P3/2 (F′ = 2, 3, 4)时, 794.6 nm激光作为探测光的TCPS

    Fig. 3.  The TCPS for the co-propagation configuration when the 794.6 nm probe laser is scanned over the whole 6P3/2→8S1/2 transition, and the frequency of 852.3 nm pump laser is locked on the 6S1/2 (F = 3)→6P3/2 (F' = 2, 3, 4) transition, respectively.

    图 4  反向传输实验构型, 852.3 nm抽运光频率锁于6S1/2 (F = 3)→6P3/2 (F' = 2, 3, 4)时, 794.6 nm激光作为探测光的TCPS

    Fig. 4.  The TCPS for the counter-propagation configuration when the 794.6 nm probe laser is scanned over the whole 6P3/2→8S1/2 transition, and the frequency of 852.3 nm pump laser is locked on the 6S1/2 (F = 3)→6P3/2 (F' = 2, 3, 4) transition, respectively.

    图 5  同向传输实验构型, 852.3 nm抽运光频率锁于6S1/2 (F = 4)→6P3/2 (F' = 3, 4, 5)时, 794.6 nm激光作为探测光的双色偏振光谱

    Fig. 5.  The TCPS for the co-propagation configuration when the 794.6 nm probe laser is scanned, and the frequency of 852.3 nm pump laser is locked on the 6S1/2 (F = 4)→6P3/2 (F' = 3, 4, 5) transition, respectively.

    图 6  反向传输实验构型, 852.3 nm抽运光频率锁于6S1/2 (F = 4)—6P3/2 (F' = 3, 4, 5)时, 794.6nm激光作为探测光的双色偏振光谱

    Fig. 6.  The TCPS for the counter-propagation configuration when the 794.6 nm probe laser is scanned, and the frequency of 852.3 nm pump laser is locked on the 6S1/2(F = 4)→6P3/2(F' = 3, 4, 5) transition, respectively.

    图 7  相位相反的双色偏振光谱TCPS, 红色(上) TCPS对应的λ/4波片位置读数为131°, 黑色(下) TCPS对应的λ/4波片位置读数为180°

    Fig. 7.  The TCPS with opposite phase, (upper TCPS) angle of λ/4 wave plate is set to 131°; (lower TCPS) angle of λ/4 wave plate is set to 180°.

    图 8  794.6 nm激光器自由运转和锁频后的频率起伏

    Fig. 8.  The frequency fluctuation of 794.6 nm laser for free-running and locking on in 225 seconds, respectively.

  • [1]

    Sun Q Q, Hong Y L, Zhuang W, Liu Z W, Chen J B 2012 Appl. Phys. Lett. 101 211102Google Scholar

    [2]

    Wu S J, Plisson T, Brown R C, Phillips W D, Porto J V 2009 Phys. Rev. Lett. 103 173003Google Scholar

    [3]

    Akulshin A M, Orel A A, McLean R J 2012 J. Phys. B: At. Mol. Opt. Phys. 45 015401Google Scholar

    [4]

    Wang J, Liu H F, Yang G, Yang B D, Wang J M 2014 Phys. Rev. A 90 052505Google Scholar

    [5]

    任雅娜, 杨保东, 王杰, 杨光, 王军民 2016 物理学报 65 073103Google Scholar

    Ren Y N, Yang B D, Wang J, Yang G, Wang J M 2016 Acta Phys. Sin. 65 073103Google Scholar

    [6]

    Mohapatra K, Jackson T R, Adams C S 2007 Phys. Rev. Lett. 98 113003Google Scholar

    [7]

    Parniak M, Leszczyński A, Wasilewski W 2016 Appl. Phys. Lett. 108 161103Google Scholar

    [8]

    Sasada H 1992 IEEE Photonics Technol. Lett. 4 1307Google Scholar

    [9]

    Moon H S, Lee W K, Lee L, Kim J B 2004 Appl. Phys. Lett. 85 3965Google Scholar

    [10]

    Yang B D, Zhao J Y, Zhang T C, Wang J M 2009 J. Phys. D: Appl. Phys. 42 085111Google Scholar

    [11]

    Carr C, Adams C S, Weatherill K J 2012 Opt. Lett. 37 118Google Scholar

    [12]

    Yang B D, Wang J, Liu H F, He J, Wang J M 2014 Opt. Commun. 319 174Google Scholar

    [13]

    Wieman C, Hänsch T W 1976 Phys. Rev. Lett. 36 1170Google Scholar

    [14]

    Kulatunga P, Busch H C, Andrews L R, Sukenik C I 2012 Opt. Commun. 285 2851Google Scholar

    [15]

    Noh H R 2012 Opt. Express 20 21784Google Scholar

    [16]

    Cha E H, Jeong T, Noh H R 2014 Opt. Commun. 326 175Google Scholar

    [17]

    Moon H S, Lee L, Kim J B 2008 Opt. Express 16 12163Google Scholar

    [18]

    Becerra F E, Willis R T, Rolston S L, Orozco L A 2009 J. Opt. Soc. Am. B 26 1315Google Scholar

    [19]

    Yang B D, Gao J, Zhang T C, Wang J M 2011 Phys. Rev. A 83 013818Google Scholar

    [20]

    Yang B D, Liang Q B, He J, Zhang T C, Wang J M 2010 Phys. Rev. A 81 043803Google Scholar

    [21]

    Yang B D, Liang Q B, He J, Wang J M 2012 Opt. Express 20 11944Google Scholar

    [22]

    Yang B D, Wang J, Wang J M 2016 Chin. Opt. Lett. 14 040201Google Scholar

    [23]

    Song M, Yoon T H 2011 Phys. Rev. A 83 033814Google Scholar

    [24]

    Moon H S 2008 Appl. Opt. 47 1097Google Scholar

  • [1] 冯卓, 索兵兵, 韩慧仙, 李安阳. CaSH分子高精度电子结构计算及用于激光制冷目标分子的理论分析. 物理学报, 2024, 73(2): 023301. doi: 10.7498/aps.73.20230742
    [2] 李多多, 张嵩. 五氟吡啶激发态非绝热弛豫过程中的分子结构. 物理学报, 2024, 73(4): 043101. doi: 10.7498/aps.73.20231570
    [3] 庞晓娟, 赵凯玥, 何航宇, 张宁波, 蒋臣威. 靛红双氮二苯腙分子开关的光致异构化机理. 物理学报, 2024, 73(17): 173101. doi: 10.7498/aps.73.20240461
    [4] 贾韫哲, 孟胜. 光激发下水体系的超快动力学. 物理学报, 2024, 73(8): 084204. doi: 10.7498/aps.73.20240047
    [5] 邢凤竹, 崔建坡, 王艳召, 顾建中. 激发态丰质子核的双质子发射. 物理学报, 2022, 71(6): 062301. doi: 10.7498/aps.71.20211839
    [6] 赵翠兰, 王丽丽, 赵丽丽. 有限深抛物势量子盘中极化子的激发态性质. 物理学报, 2015, 64(18): 186301. doi: 10.7498/aps.64.186301
    [7] 刘晓军, 苗凤娟, 李瑞, 张存华, 李奇楠, 闫冰. GeO分子激发态的电子结构和跃迁性质的组态相互作用方法研究. 物理学报, 2015, 64(12): 123101. doi: 10.7498/aps.64.123101
    [8] 张会云, 刘蒙, 张玉萍, 申端龙, 吴志心, 尹贻恒, 李德华. 连续波抽运气体波导产生太赫兹激光的理论研究. 物理学报, 2014, 63(2): 020702. doi: 10.7498/aps.63.020702
    [9] 田原野, 郭福明, 曾思良, 杨玉军. 原子激发态在高频强激光作用下的光电离研究. 物理学报, 2013, 62(11): 113201. doi: 10.7498/aps.62.113201
    [10] 李楠, 黄凯凯, 陆璇辉. 提高激光抽运铯原子磁力仪灵敏度的研究. 物理学报, 2013, 62(13): 133201. doi: 10.7498/aps.62.133201
    [11] 高峰, 王叶兵, 田晓, 许朋, 常宏. 锶原子三重态谱线的观测及在光钟中的应用. 物理学报, 2012, 61(17): 173201. doi: 10.7498/aps.61.173201
    [12] 高双红, 任兆玉, 郭平, 郑继明, 杜恭贺, 万丽娟, 郑琳琳. 石墨烯量子点的磁性及激发态性质. 物理学报, 2011, 60(4): 047105. doi: 10.7498/aps.60.047105
    [13] 周业宏, 蔡绍洪. 氯乙烯在外电场下的激发态结构研究. 物理学报, 2010, 59(11): 7749-7755. doi: 10.7498/aps.59.7749
    [14] 徐国亮, 夏要争, 刘雪峰, 张现周, 刘玉芳. 外电场作用下TiO光激发特性研究. 物理学报, 2010, 59(11): 7762-7768. doi: 10.7498/aps.59.7762
    [15] 杜润昌, 陈杰华, 刘朝阳, 顾思洪. CPT原子频标实验研究. 物理学报, 2009, 58(9): 6117-6121. doi: 10.7498/aps.58.6117
    [16] 徐国亮, 吕文静, 刘玉芳, 朱遵略, 张现周, 孙金锋. 外电场作用下二氧化硅分子的光激发特性研究. 物理学报, 2009, 58(5): 3058-3063. doi: 10.7498/aps.58.3058
    [17] 宗楠, 崔大复, 李成明, 彭钦军, 许祖彦, 秦莉, 李特, 宁永强, 晏长岭, 王立军. 光抽运垂直扩展腔面发射激光器腔内倍频理论研究. 物理学报, 2009, 58(6): 3903-3908. doi: 10.7498/aps.58.3903
    [18] 张宝武, 张文涛, 马 艳, 李同保. 大预准直狭缝的铬原子束一维多普勒激光准直. 物理学报, 2008, 57(9): 5485-5490. doi: 10.7498/aps.57.5485
    [19] 徐国亮, 肖小红, 耿振铎, 刘玉芳, 朱正和. 甲基乙烯基硅酮在外场作用下的光激发特性研究. 物理学报, 2007, 56(9): 5196-5201. doi: 10.7498/aps.56.5196
    [20] 徐国亮, 朱正和, 马美仲, 谢安东. 甲烷在外场作用下的光激发特性研究. 物理学报, 2005, 54(7): 3087-3093. doi: 10.7498/aps.54.3087
计量
  • 文章访问数:  11040
  • PDF下载量:  131
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-19
  • 修回日期:  2019-04-02
  • 上网日期:  2019-06-01
  • 刊出日期:  2019-06-05

/

返回文章
返回