搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光子重吸收对硅片的光载流子辐射特性影响的理论研究

王谦 刘卫国 巩蕾 王利国 李亚清 刘蓉

引用本文:
Citation:

光子重吸收对硅片的光载流子辐射特性影响的理论研究

王谦, 刘卫国, 巩蕾, 王利国, 李亚清, 刘蓉

Theoretical study on influence of photon reabsorption on photocarrier radiometric characteristics of silicon wafers

Wang Qian, Liu Wei-Guo, Gong Lei, Wang Li-Guo, Li Ya-Qing, Liu Rong
科大讯飞全文翻译 (iFLYTEK Translation)
PDF
HTML
导出引用
  • 光载流子辐射技术已广泛应用于半导体材料性能的表征, 本文基于一种包含光子重吸收效应的光载流子辐射理论模型, 对单晶硅中光子重吸收效应对光载流子辐射信号的影响进行了详细的理论分析. 分析结果表明, 光子重吸收效应对光载流子辐射信号的影响主要取决于样品掺杂浓度、过剩载流子浓度和过剩载流子的分布. 由于过剩载流子浓度及其分布与材料电子输运特性密切相关, 电子输运参数的变化将导致光子重吸收效应的影响随之变化. 进一步分析了光子重吸收效应对具有不同电子输运特性的样品的电子输运参数的影响, 并提出了减小光子重吸收效应影响的方法.
    In microelectronic and photovoltaic industry, semiconductors are the base materials in which impurities or defects have a serious influence on the properties of semiconductor-based devices. The determination of the electronic transport properties, i.e., the carrier bulk lifetime ($\tau $), diffusion coefficient (D) and front surface recombination velocity (S1), is important in the evaluation of semiconductor materials. In this paper, the influence of reabsorption of spontaneously emitted photons within silicon wafers on conventional frequency domain photocarrier radiometric (PCR) is theoretically analyzed. The model with photon reabsorption, proposed by our previous paper, in which both band-to-band absorption and free carrier absorption are taken into account, is used. It is shown that the influence strongly depends on not only the doping level, but also the excess carrier density and its distribution, which are sensitive to the electronic transport properties. The influences of photon reabsorption on PCR amplitude and phase increase with doping level and carrier lifetime increasing. While, as the diffusion coefficient and the front surface recombination velocity increase, the influence of photon reabsorption on PCR amplitude decreases but on PCR phase increases. If photon reabsorption is ignored in the determination of the electronic transport parameters for high-doping silicon wafers via multi-parameter fitting, there are large errors for the fitted results. For a sample with $\tau $ = 50 μs, D = 20 cm2/s, and S1 = 10 m/s, if the effect of photon reabsorption is ignored, the fitting results with conventional PCR model are 55.66 μs, 19.98 cm2/s, and 11.94 m/s, and the corresponding deviations from the true value are 11.33%, 0.10%, and 19.40%, respectively. In addition, simulation results show the effect of photon reabsorption can be greatly reduced with a suitable filter in front of the detector, while still enabling the majority of the emitted signal to be captured. For example, with a 1100 nm long-pass filter, the fitted results for the same sample above are 51.43 μs, 20.19 cm2/s, and 9.88 m/s with the relative errors of 2.86%, 0.95%, and 1.23%, respectively. It should be pointed out that an infinitely steep cut-on edge of the long-pass filter is assumed in our simulations, while in fact the influences of the filter on PCR signal and the fitted results should be further considered.
      通信作者: 王谦, qian_wang521@163.com
    • 基金项目: 国家自然科学基金青年科学基金(批准号: 61704132, 61501363)、西安市智能探视感知重点实验室项目(批准号: 201805061ZD12CG45)和西安工业大学校长基金(批准号: XAGDXJJ16007, XAGDXJJ18001)资助的课题.
      Corresponding author: Wang Qian, qian_wang521@163.com
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant Nos. 61704132, 61501363), Xi'an Intelligent Visiting Perception Key Laboratory Project (Grant No. 201805061ZD12CG45), and Principal Fund from Xi'an Technological University (Grant Nos. XAGDXJJ16007, XAGDXJJ18001).
    [1]

    Schroder D K 2006 Semiconductor Material and Device Characterization Third Edition (New York: Wiley) pp 389-390

    [2]

    Drummond P J, Bhatia D, Kshirsagar A, Ramani S, Ruzyllo J 2011 Thin Solid Films 519 7621Google Scholar

    [3]

    Guidotti D, Batchelder J S, Finkel A, Gerber P D 1989 J. Appl. Phys. 66 2542Google Scholar

    [4]

    Wang K, Kampwerth H 2014 J. Appl. Phys. 115 173103Google Scholar

    [5]

    Ikari T, Salnick A, Mandelis A 1999 J. Appl. Phys. 85 7392Google Scholar

    [6]

    Cheng J, Zhang S 1991 J. Appl. Phys. 70 6999Google Scholar

    [7]

    Zhang X, Li B, Gao C 2006 Appl. Phys. Lett. 89 112120Google Scholar

    [8]

    王谦, 刘卫国, 巩蕾, 王利国, 李亚清 2018 物理学报 67 217201Google Scholar

    Wang Q, Liu W G, Gong L, Wang L G, Li Y Q 2018 Acta Phys. Sin. 67 217201Google Scholar

    [9]

    Mandelis A, Batista J, Shaughnessy D 2003 Phys. Rev. B 67 205208Google Scholar

    [10]

    Li B C, Shaughnessy D, Mandelis A 2005 J. Appl. Phys. 97 023701Google Scholar

    [11]

    Sun Q M, Melnikov A, Mandelis A, Pagliar R H 2018 Appl. Phys. Lett. 112 012105Google Scholar

    [12]

    刘俊岩, 宋鹏, 秦雷, 王飞, 王扬 2015 物理学报 64 087804

    Liu J Y, Song P, Qin L, Wang F, Wang Y 2015 Acta Phys. Sin. 64 087804

    [13]

    Wang Q, Li B C 2015 J. Appl.Phys. 118 215707Google Scholar

    [14]

    Li B C, Shaughnessy D, Mandelis A, Batista J 2004 J. Appl. Phys. 95 7832Google Scholar

    [15]

    Wang Q, Li B C, Ren S D, Wang Q 2015 Int. J. Thermophys. 36 1173Google Scholar

    [16]

    Tai R, Wang C, Hu J, Mandelis A 2014 J. Appl. Phys. 116 033706Google Scholar

    [17]

    Melnikov A, Mandelis A, Tolev J, Chen P, Huq S 2010 J. Appl. Phys. 107 114513Google Scholar

    [18]

    Liu J Y, Song P, Wang F, Wang Y 2015 Chin. Phys. B 24 97801Google Scholar

    [19]

    Liu J Y, Mandelis A 2010 J. Phys. Conf. Ser. 214 012107Google Scholar

    [20]

    Wang J, Mandelis A, Melnikov A, Hoogland S, Sargent E H 2013 J. Phys. Chem. C 117 23333Google Scholar

    [21]

    Hu, L L, Liu M X, Mandelis A, Sun Q M, Melnikov A, Sargent E H 2018 Sol. Energy Mater. Sol. Cells 174 405Google Scholar

    [22]

    Trupke T 2006 J. Appl. Phys. 100 063531Google Scholar

    [23]

    Schinke C, Hinken D, Schmidt J, Bothe K, Brendel R 2013 IEEE J. Photovoltaics 3 1038Google Scholar

    [24]

    Nguyen H T, Rougieux F E, Baker-Finch S C, Macdonald D 2015 IEEE J. Photovoltaics 5 77Google Scholar

    [25]

    Diab H, Arnold C, Lédée F, Trippé-Allard G, Delport G, Vilar C, Bretenaker F, Barjon J, Lauret J, Deleporte E, Garrot D 2017 J. Phys. Chem. Lett. 8 2977Google Scholar

    [26]

    Giesecke J A, Kasemann M, Schubert M C, Würfel P, Warta W 2010 Prog. Photovoltaics Res. Appl. 18 10Google Scholar

    [27]

    Mitchell B, Trupke T, Weber J W, Nyhus J 2011 J. Appl. Phys. 109 083111Google Scholar

    [28]

    Pazos-Outón L M, Szumilo M, Lamboll R, Richter J M, Crespo-Quesada M, Abdi-Jalebi M, Beeson H J, Vrućinić M, Alsari M, Snaith H J, Ehrler B, Friend R H, Deschler F 2016 Science 351 1430Google Scholar

    [29]

    Xu Y, Tennyson E M, Kim J, Barik S, Murray J, Waks E, Leite M S, Munday J N 2018 Adv. Optical Mater. 6 1701323Google Scholar

    [30]

    Wang Q, Liu W G 2017 J. Appl. Phys. 122 165702Google Scholar

    [31]

    Zhang X R, Li B C, Liu X M 2008 J. Appl. Phys. 104 103705Google Scholar

  • 图 1  PCR技术原理示意图

    Fig. 1.  Schematic diagram of PCR technique.

    图 2  单晶硅样品的带间吸收系数和自由载流子吸收系数及仿真的未考虑PR效应的PL谱

    Fig. 2.  Absorption coefficients ${\rm{\alpha }}$BB and ${\rm{\alpha }}$FCA for a silicon wafer and a simulated PL without PR.

    图 4  重吸收对PL谱的影响 (a)振幅; (b)相位

    Fig. 4.  Influence of PR on PL spectrum: (a) Amplitude; (b) phase.

    图 3  PR对PCR信号的影响 (a)振幅; (b)相位; (c)相对误差

    Fig. 3.  Influence of PR on PCR signal: (a) Amplitude; (b) phase; (c) relative error.

    图 5  r = 0 μm时 (a) 过剩载流子浓度纵向分布; (b)平均深度与调制频率的关系

    Fig. 5.  (a) Vertical excess carrier density distribution and (b) mean depth as a function of the modulation frequency at r = 0 μm.

    图 6  载流子寿命变化时, PR效应对PCR信号的影响

    Fig. 6.  Influence of PR on PCR signal for silicon wafers with different carrier lifetimes.

    图 7  载流子扩散系数变化时, PR效应对PCR信号的影响

    Fig. 7.  Influence of PR on PCR signal for silicon wafers with different diffusion coefficients.

    图 8  前表面复合速率变化时, PR效应对PCR信号的影响

    Fig. 8.  Influence of PR on PCR signal for silicon wafers with different front surface recombination velocities.

    图 9  掺杂浓度变化时, PR效应对PCR信号的影响

    Fig. 9.  Influence of PR on PCR signal for silicon wafers with different doping densities.

    图 10  p型单晶硅中PR对拟合的电子输运参数的影响 (a) $\tau $; (b) D; (c) S1

    Fig. 10.  Influence of PR on the fitted electronic transport parameters for p-type silicon wafers: (a) $\tau $; (b) D; (c) S1.

    图 11  n型单晶硅中PR对拟合的电子输运参数的影响 (a) $\tau $; (b) D; (c) S1

    Fig. 11.  Influence of PR on the fitted electronic transport parameters for n-type silicon wafers: (a) $\tau $; (b) D; (c) S1.

    图 12  加入滤光片前后PR对PCR信号的影响

    Fig. 12.  Influence of PR on PCR signal with and without the filter.

  • [1]

    Schroder D K 2006 Semiconductor Material and Device Characterization Third Edition (New York: Wiley) pp 389-390

    [2]

    Drummond P J, Bhatia D, Kshirsagar A, Ramani S, Ruzyllo J 2011 Thin Solid Films 519 7621Google Scholar

    [3]

    Guidotti D, Batchelder J S, Finkel A, Gerber P D 1989 J. Appl. Phys. 66 2542Google Scholar

    [4]

    Wang K, Kampwerth H 2014 J. Appl. Phys. 115 173103Google Scholar

    [5]

    Ikari T, Salnick A, Mandelis A 1999 J. Appl. Phys. 85 7392Google Scholar

    [6]

    Cheng J, Zhang S 1991 J. Appl. Phys. 70 6999Google Scholar

    [7]

    Zhang X, Li B, Gao C 2006 Appl. Phys. Lett. 89 112120Google Scholar

    [8]

    王谦, 刘卫国, 巩蕾, 王利国, 李亚清 2018 物理学报 67 217201Google Scholar

    Wang Q, Liu W G, Gong L, Wang L G, Li Y Q 2018 Acta Phys. Sin. 67 217201Google Scholar

    [9]

    Mandelis A, Batista J, Shaughnessy D 2003 Phys. Rev. B 67 205208Google Scholar

    [10]

    Li B C, Shaughnessy D, Mandelis A 2005 J. Appl. Phys. 97 023701Google Scholar

    [11]

    Sun Q M, Melnikov A, Mandelis A, Pagliar R H 2018 Appl. Phys. Lett. 112 012105Google Scholar

    [12]

    刘俊岩, 宋鹏, 秦雷, 王飞, 王扬 2015 物理学报 64 087804

    Liu J Y, Song P, Qin L, Wang F, Wang Y 2015 Acta Phys. Sin. 64 087804

    [13]

    Wang Q, Li B C 2015 J. Appl.Phys. 118 215707Google Scholar

    [14]

    Li B C, Shaughnessy D, Mandelis A, Batista J 2004 J. Appl. Phys. 95 7832Google Scholar

    [15]

    Wang Q, Li B C, Ren S D, Wang Q 2015 Int. J. Thermophys. 36 1173Google Scholar

    [16]

    Tai R, Wang C, Hu J, Mandelis A 2014 J. Appl. Phys. 116 033706Google Scholar

    [17]

    Melnikov A, Mandelis A, Tolev J, Chen P, Huq S 2010 J. Appl. Phys. 107 114513Google Scholar

    [18]

    Liu J Y, Song P, Wang F, Wang Y 2015 Chin. Phys. B 24 97801Google Scholar

    [19]

    Liu J Y, Mandelis A 2010 J. Phys. Conf. Ser. 214 012107Google Scholar

    [20]

    Wang J, Mandelis A, Melnikov A, Hoogland S, Sargent E H 2013 J. Phys. Chem. C 117 23333Google Scholar

    [21]

    Hu, L L, Liu M X, Mandelis A, Sun Q M, Melnikov A, Sargent E H 2018 Sol. Energy Mater. Sol. Cells 174 405Google Scholar

    [22]

    Trupke T 2006 J. Appl. Phys. 100 063531Google Scholar

    [23]

    Schinke C, Hinken D, Schmidt J, Bothe K, Brendel R 2013 IEEE J. Photovoltaics 3 1038Google Scholar

    [24]

    Nguyen H T, Rougieux F E, Baker-Finch S C, Macdonald D 2015 IEEE J. Photovoltaics 5 77Google Scholar

    [25]

    Diab H, Arnold C, Lédée F, Trippé-Allard G, Delport G, Vilar C, Bretenaker F, Barjon J, Lauret J, Deleporte E, Garrot D 2017 J. Phys. Chem. Lett. 8 2977Google Scholar

    [26]

    Giesecke J A, Kasemann M, Schubert M C, Würfel P, Warta W 2010 Prog. Photovoltaics Res. Appl. 18 10Google Scholar

    [27]

    Mitchell B, Trupke T, Weber J W, Nyhus J 2011 J. Appl. Phys. 109 083111Google Scholar

    [28]

    Pazos-Outón L M, Szumilo M, Lamboll R, Richter J M, Crespo-Quesada M, Abdi-Jalebi M, Beeson H J, Vrućinić M, Alsari M, Snaith H J, Ehrler B, Friend R H, Deschler F 2016 Science 351 1430Google Scholar

    [29]

    Xu Y, Tennyson E M, Kim J, Barik S, Murray J, Waks E, Leite M S, Munday J N 2018 Adv. Optical Mater. 6 1701323Google Scholar

    [30]

    Wang Q, Liu W G 2017 J. Appl. Phys. 122 165702Google Scholar

    [31]

    Zhang X R, Li B C, Liu X M 2008 J. Appl. Phys. 104 103705Google Scholar

  • [1] 方宇, 吴幸智, 陈永强, 杨俊义, 宋瑛林. Ge掺杂GaN晶体双光子诱导超快载流子动力学的飞秒瞬态吸收光谱研究. 物理学报, 2020, 69(16): 168701. doi: 10.7498/aps.69.20200397
    [2] 陶泽华, 董海明, 段益峰. 太赫兹辐射场下的石墨烯光生载流子和光子发射. 物理学报, 2018, 67(2): 027801. doi: 10.7498/aps.67.20171730
    [3] 王谦, 刘卫国, 巩蕾, 王利国, 李亚清. 双波长自由载流子吸收技术测量半导体载流子体寿命和表面复合速率. 物理学报, 2018, 67(21): 217201. doi: 10.7498/aps.67.20181509
    [4] 齐佳红, 胡建民, 盛延辉, 吴宜勇, 徐建文, 王月媛, 杨晓明, 张子锐, 周扬. 电子辐照下GaAs/Ge太阳电池载流子输运机理研究. 物理学报, 2015, 64(10): 108802. doi: 10.7498/aps.64.108802
    [5] 方少寅, 陆海铭, 赖天树. 自旋极化度对GaAs量子阱中吸收饱和效应与载流子复合动力学的影响研究. 物理学报, 2015, 64(15): 157201. doi: 10.7498/aps.64.157201
    [6] 杨哲, 张祥, 肖思, 何军, 顾兵. 双光子激发ZnSe自由载流子超快动力学研究. 物理学报, 2015, 64(17): 177901. doi: 10.7498/aps.64.177901
    [7] 刘俊岩, 秦雷, 宋鹏, 龚金龙, 王扬, A. Mandelis. 硅太阳能电池的调制载流子红外辐射动态响应与参数分析. 物理学报, 2014, 63(22): 227801. doi: 10.7498/aps.63.227801
    [8] 曾湘安, 艾斌, 邓幼俊, 沈辉. 硅片及其太阳电池的光衰规律研究. 物理学报, 2014, 63(2): 028803. doi: 10.7498/aps.63.028803
    [9] 张希仁, 高椿明. 方波调制下自由载流子吸收测量半导体载流子输运参数的时域模型. 物理学报, 2014, 63(13): 137801. doi: 10.7498/aps.63.137801
    [10] 刘军辉, 李国凤, 王渊旭. 一种芴衍生物的三光子吸收光稳幅效应及三光子吸收拟合方法研究. 物理学报, 2013, 62(1): 017801. doi: 10.7498/aps.62.017801
    [11] 王同喜, 关宝璐, 郭霞, 沈光地. 载流子输运和寄生参数对隧道再生双有源区垂直腔面发射激光器调制特性的影响. 物理学报, 2009, 58(3): 1694-1699. doi: 10.7498/aps.58.1694
    [12] 王锐, 杨建军, 梁春永, 王洪水, 韩伟, 杨阳. 飞秒激光在空气和水中对硅片烧蚀加工的实验研究. 物理学报, 2009, 58(8): 5429-5435. doi: 10.7498/aps.58.5429
    [13] 李巍, 李斌成. 半导体特性的调制自由载流子吸收变距频率扫描方法研究. 物理学报, 2009, 58(9): 6506-6511. doi: 10.7498/aps.58.6506
    [14] 张希仁, 李斌成, 刘显明. 调制自由载流子吸收测量半导体载流子输运参数的三维理论. 物理学报, 2008, 57(11): 7310-7316. doi: 10.7498/aps.57.7310
    [15] 潘葳, 沈文忠. 六方InN薄膜的载流子输运特性研究. 物理学报, 2004, 53(5): 1501-1506. doi: 10.7498/aps.53.1501
    [16] 董国义, 李晓苇, 韦志仁, 杨少鹏, 韩 理, 傅广生. 微波吸收法研究Mn,Cu掺杂对ZnS:Mn,Cu光生载流子复合过程的影响. 物理学报, 2003, 52(3): 745-750. doi: 10.7498/aps.52.745
    [17] 李标, 褚君浩, 石晓红, 陈新强, 曹菊英, 汤定元. Hg1-xCdxTe外延薄膜的自由载流子吸收. 物理学报, 1996, 45(9): 1430-1437. doi: 10.7498/aps.45.1430
    [18] 何林生, 江海河, 柳尚青, 夏宇兴. 压缩态光场在双光子吸收介质中的演化. 物理学报, 1991, 40(5): 718-725. doi: 10.7498/aps.40.718
    [19] 谭淞生, 陈沛然. 多极管中正偏pn结光注入载流子的作用. 物理学报, 1980, 29(10): 1237-1244. doi: 10.7498/aps.29.1237
    [20] 霍裕平. 强光与自由电子的相互作用——半导体中载流子的多光子过程. 物理学报, 1965, 21(1): 37-50. doi: 10.7498/aps.21.37
计量
  • 文章访问数:  11010
  • PDF下载量:  93
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-23
  • 修回日期:  2018-12-19
  • 上网日期:  2019-02-01
  • 刊出日期:  2019-02-20

/

返回文章
返回