搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于二维声子晶体的大尺寸夹心式换能器的优化设计

王莎 林书玉

引用本文:
Citation:

基于二维声子晶体的大尺寸夹心式换能器的优化设计

王莎, 林书玉

Optimal design of large-sized sandwich transducer based on two-dimensional phononic crystal

Wang Sha, Lin Shu-Yu
PDF
HTML
导出引用
  • 夹心式换能器应用极为广泛, 但当其横向尺寸过大时, 存在耦合振动, 影响其辐射面的位移分布. 本文通过在大尺寸夹心式换能器的前盖板中加工周期排列的槽, 来形成一种二维声子晶体结构. 随后, 采用有限元法对基于二维声子晶体的大尺寸夹心式换能器的振动传输特性、共振频率以及发射电压响应进行仿真模拟, 讨论了开槽高度和开槽宽度对其带隙、共振与反共振频率、带宽以及辐射面位移分布的影响. 研究结果表明, 通过在大尺寸夹心式换能器中应用声子晶体结构可对其进行优化设计. 当大尺寸夹心式换能器的工作频率位于其带隙范围内时, 二维声子晶体结构能有效地抑制其横向振动, 从而改善换能器辐射面位移分布的均匀程度. 此外, 在大尺寸夹心式换能器的前盖板中加工二维声子晶体结构, 能有效提升换能器的带宽, 进而拓宽大尺寸夹心式换能器的工作频带.
    Sandwich transducers are extremely versatile, but when the lateral dimension is too large, the displacement of the radiating surface is uneven due to the coupling vibration. Due to the unique vibrational band gap characteristics of phononic crystal, vibrations in the bandgap range can be prohibited from propagating for infinite periodic structure or suppressed for finite periodic structure, which makes it widely used in the field of vibration suppression. In this paper, a two-dimensional phononic crystal structure is formed by processing periodically aligned grooves in the front cover of a large-sized sandwich transducer. Since the periodic grooves are formed in the radial direction, the radial waves cannot propagate, and thus the lateral vibration is suppressed. Subsequently, the finite element method is used to simulate the vibration transmission characteristic, resonance frequency and emission voltage response of a large-sized sandwich transducer based on two-dimensional phononic crystal. The effects of slot height and slot width on its bandgap, resonance and anti-resonant frequency, bandwidth, and displacement profile of the radiating surface are discussed. The results show that the phonon crystal structure can be optimized by using a large-sized sandwich transducer. The large-sized sandwich transducer based on two-dimensional phononic crystal has a lateral band gap. When the operating frequency of the large-sized sandwich transducer is within the band gap range, the two-dimensional phononic crystal structure can effectively suppress the lateral vibration, and the uniformity of the displacement distribution of the radiating surface of the transducer is improved. In addition, when the slot width is constant, the bandwidth of the large-sized sandwich transducer based on the two-dimensional phononic crystal increases as the slot height increases. Similarly, when the slot height is constant, the bandwidth of the large-sized sandwich transducer based on the two-dimensional phononic crystal increases as the slot width increases. The two-dimensional phononic crystal structure is processed in the front cover of the large-sized sandwich transducer, and the working frequency band of the large-sized sandwich transducer is effectively broadened.
      通信作者: 林书玉, sylin@snnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11474192, 11674206, 11874253)资助的课题.
      Corresponding author: Lin Shu-Yu, sylin@snnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11474192, 11674206, 11874253).
    [1]

    Lin S Y 2005 J. Acoust. Soc. Am. 117 653Google Scholar

    [2]

    Lin S Y 2006 Ultrasonics 44 109Google Scholar

    [3]

    Li X, Yao Z 2016 Smart Mater. Struct. 25 075026Google Scholar

    [4]

    Wei X, Yang Y, Yao W, Zhang L 2017 Sensors 17 2253Google Scholar

    [5]

    Zhang Q, Shi S, Chen W 2016 Ultrasonics 66 18Google Scholar

    [6]

    左斌, 邵华 2013 机械设计与研究 29 26Google Scholar

    Zuo B, Shao H 2013 Machine Design & Research 29 26Google Scholar

    [7]

    林书玉 2004 超声换能器的原理及设计 (北京: 科学出版社) 第98页

    Lin S Y 2004 The Theory and Design of Ultrasonic Transducers (Beijing: Science Press) p98 (in Chinese)

    [8]

    林书玉 1993 声学与电子工程 2 34

    Lin S Y 1993 Acoust. Electron. Engin. 2 34

    [9]

    林书玉, 张福成 1994 应用声学 3 30Google Scholar

    Lin S Y, Zhang F Z 1994 J. Appl. Acoust. 3 30Google Scholar

    [10]

    Kushwaha M S, Halevi P, Dobrzynski L, Djafari-Rouhani B 1993 Phys. Rev. Lett. 73 2022

    [11]

    唐一璠, 林书玉 2016 物理学报 65 164202Google Scholar

    Tang Y F, Lin S Y 2016 Acta Phys. Sin. 65 164202Google Scholar

    [12]

    张思文, 吴九汇 2013 物理学报 62 134302Google Scholar

    Zhang W S,Wu J H 2013 Acta Phys. Sin. 62 134302Google Scholar

    [13]

    Liu Z, Chan C T, Sheng P 2005 Phys. Rev. B 71 014103Google Scholar

    [14]

    温激鸿 2005 博士学位论文(长沙: 国防科学技术大学)

    Wen J H 2005 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)

    [15]

    温熙森, 温激鸿, 郁殿龙, 王刚, 刘耀宗, 韩小云 2004 声子晶体 (北京: 国防工业出版社) 第244页

    Wen X S, Wen J H, Yu D L, Wang G, Liu Y Z, Han X Y 2004 Phononic Crystals (Beijing: National Defense Industry Press) p244 (in Chinese)

    [16]

    Ronda S, Aragón J L, Iglesias E, Montero de E F 2017 Sensors 17 729Google Scholar

    [17]

    Aragón J L, Quinterotorres R, Domínguezjuárez J L, Iglesias E, Ronda S, Montero de E F 2016 Ultrasonics 71 177Google Scholar

    [18]

    Wen J H, Wang G, Yu D L, Zhao H G, Liu Y Z 2005 J. Appl. Phys. 97 141

    [19]

    Wen J H, Yu D L, Liu J W, Xiao Y, Wen X S 2009 Chin. Phys. B 18 2404Google Scholar

    [20]

    Zhao S Q, Liu B X, Wang Y Q, Chen H L 2013 Adv. Mater. Res. 694 354

  • 图 1  大尺寸夹心式换能器示意图 (a)未开槽; (b)开槽, 插图为开槽方式示意图

    Fig. 1.  Schematic diagram of a large-size sandwich transducer: (a) Not grooved; (b) grooved. Inset is a schematic diagram of the grooved method.

    图 2  大尺寸夹心式换能器振型图

    Fig. 2.  Large-size sandwich transducer vibration diagram.

    图 3  大尺寸夹心式换能器的振动传输特性曲线 (a)改变槽高; (b)改变槽宽

    Fig. 3.  Vibration transmission characteristic curves of large-size sandwich transducer: (a) Change the groove height; (b) change the groove width.

    图 4  大尺寸夹心式换能器的共振及反共振频率 (a)改变槽高; (b)改变槽宽

    Fig. 4.  Resonance and anti-resonance frequency of a large-size sandwich transducer: (a) Change the groove height; (b) change the groove width.

    图 5  换能器的发射电压响应曲线示意图

    Fig. 5.  Schematic diagram of the emission voltage response curve of the transducer.

    图 6  大尺寸夹心式换能器的带宽 (a)改变槽高; (b)改变槽宽

    Fig. 6.  Bandwidth of a large-size sandwich transducer: (a) Change the groove height; (b) change the groove width.

    图 7  大尺寸夹心式换能器辐射面截线示意图

    Fig. 7.  Schematic diagram of the radiation surface section of the large-size sandwich transducer.

    图 8  大尺寸夹心式换能器的端面位移分布 (a)改变槽高; (b)改变槽宽

    Fig. 8.  End face displacement distribution of large-size sandwich transducer: (a) Change the groove height; (b) change the groove width.

    表 1  大尺寸夹心式换能器的带隙分布情况

    Table 1.  Band gap distribution of large-size sandwich transducers.

    开槽高度/mm开槽宽度/mm带隙范围/kHz
    10815.3—16.8
    15815.1—16.5
    20814.9—16.1
    25814.8—15.6
    20615.3—16.3
    20814.9—16.1
    201014.5—15.7
    下载: 导出CSV
  • [1]

    Lin S Y 2005 J. Acoust. Soc. Am. 117 653Google Scholar

    [2]

    Lin S Y 2006 Ultrasonics 44 109Google Scholar

    [3]

    Li X, Yao Z 2016 Smart Mater. Struct. 25 075026Google Scholar

    [4]

    Wei X, Yang Y, Yao W, Zhang L 2017 Sensors 17 2253Google Scholar

    [5]

    Zhang Q, Shi S, Chen W 2016 Ultrasonics 66 18Google Scholar

    [6]

    左斌, 邵华 2013 机械设计与研究 29 26Google Scholar

    Zuo B, Shao H 2013 Machine Design & Research 29 26Google Scholar

    [7]

    林书玉 2004 超声换能器的原理及设计 (北京: 科学出版社) 第98页

    Lin S Y 2004 The Theory and Design of Ultrasonic Transducers (Beijing: Science Press) p98 (in Chinese)

    [8]

    林书玉 1993 声学与电子工程 2 34

    Lin S Y 1993 Acoust. Electron. Engin. 2 34

    [9]

    林书玉, 张福成 1994 应用声学 3 30Google Scholar

    Lin S Y, Zhang F Z 1994 J. Appl. Acoust. 3 30Google Scholar

    [10]

    Kushwaha M S, Halevi P, Dobrzynski L, Djafari-Rouhani B 1993 Phys. Rev. Lett. 73 2022

    [11]

    唐一璠, 林书玉 2016 物理学报 65 164202Google Scholar

    Tang Y F, Lin S Y 2016 Acta Phys. Sin. 65 164202Google Scholar

    [12]

    张思文, 吴九汇 2013 物理学报 62 134302Google Scholar

    Zhang W S,Wu J H 2013 Acta Phys. Sin. 62 134302Google Scholar

    [13]

    Liu Z, Chan C T, Sheng P 2005 Phys. Rev. B 71 014103Google Scholar

    [14]

    温激鸿 2005 博士学位论文(长沙: 国防科学技术大学)

    Wen J H 2005 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)

    [15]

    温熙森, 温激鸿, 郁殿龙, 王刚, 刘耀宗, 韩小云 2004 声子晶体 (北京: 国防工业出版社) 第244页

    Wen X S, Wen J H, Yu D L, Wang G, Liu Y Z, Han X Y 2004 Phononic Crystals (Beijing: National Defense Industry Press) p244 (in Chinese)

    [16]

    Ronda S, Aragón J L, Iglesias E, Montero de E F 2017 Sensors 17 729Google Scholar

    [17]

    Aragón J L, Quinterotorres R, Domínguezjuárez J L, Iglesias E, Ronda S, Montero de E F 2016 Ultrasonics 71 177Google Scholar

    [18]

    Wen J H, Wang G, Yu D L, Zhao H G, Liu Y Z 2005 J. Appl. Phys. 97 141

    [19]

    Wen J H, Yu D L, Liu J W, Xiao Y, Wen X S 2009 Chin. Phys. B 18 2404Google Scholar

    [20]

    Zhao S Q, Liu B X, Wang Y Q, Chen H L 2013 Adv. Mater. Res. 694 354

  • [1] 林基艳, 林书玉. 管柱型近周期声子晶体点缺陷结构的大尺寸压电超声换能器. 物理学报, 2023, 72(9): 094301. doi: 10.7498/aps.72.20230195
    [2] 韩东海, 张广军, 赵静波, 姚宏. 新型Helmholtz型声子晶体的低频带隙及隔声特性. 物理学报, 2022, 71(11): 114301. doi: 10.7498/aps.71.20211932
    [3] 胡兵, 郁殿龙, 刘江伟, 朱付磊, 张振方. 流固耦合声子晶体管路冲击振动特性研究. 物理学报, 2020, 69(19): 194301. doi: 10.7498/aps.69.20200414
    [4] 贾鼎, 葛勇, 袁寿其, 孙宏祥. 基于蜂窝晶格声子晶体的双频带声拓扑绝缘体. 物理学报, 2019, 68(22): 224301. doi: 10.7498/aps.68.20190951
    [5] 叶荣, 钟哲强, 吴显云. 基于光束偏转的扫描式宽带光参量啁啾脉冲放大. 物理学报, 2019, 68(2): 024205. doi: 10.7498/aps.68.20181538
    [6] 孙伟彬, 王婷, 孙小伟, 康太凤, 谭自豪, 刘子江. 新型二维三组元压电声子晶体板的缺陷态及振动能量回收. 物理学报, 2019, 68(23): 234206. doi: 10.7498/aps.68.20190260
    [7] 廖涛, 孙小伟, 宋婷, 田俊红, 康太凤, 孙伟彬. 新型二维压电声子晶体板带隙可调性研究. 物理学报, 2018, 67(21): 214208. doi: 10.7498/aps.67.20180611
    [8] 赵甜甜, 林书玉, 段祎林. 类声子晶体结构对超声塑料焊接工具横向振动的抑制. 物理学报, 2018, 67(22): 224207. doi: 10.7498/aps.67.20181150
    [9] 陈巍, 高军, 张广, 曹祥玉, 杨欢欢, 郑月军. 一种编码式宽带多功能反射屏. 物理学报, 2017, 66(6): 064203. doi: 10.7498/aps.66.064203
    [10] 杜春阳, 郁殿龙, 刘江伟, 温激鸿. X形超阻尼局域共振声子晶体梁弯曲振动带隙特性. 物理学报, 2017, 66(14): 140701. doi: 10.7498/aps.66.140701
    [11] 唐一璠, 林书玉. LCR分流电路下压电声子晶体智能材料的带隙. 物理学报, 2016, 65(16): 164202. doi: 10.7498/aps.65.164202
    [12] 曹惠娴, 梅军. 声子晶体中的半狄拉克点研究. 物理学报, 2015, 64(19): 194301. doi: 10.7498/aps.64.194301
    [13] 梁文耀, 张玉霞, 陈武喝. 低对称性光子晶体超宽带全角自准直传输的机理研究. 物理学报, 2015, 64(6): 064209. doi: 10.7498/aps.64.064209
    [14] 郑月军, 高军, 曹祥玉, 郑秋容, 李思佳, 李文强, 杨群. 一种兼具宽带增益改善和宽带、宽角度低雷达散射截面的微带天线. 物理学报, 2014, 63(22): 224102. doi: 10.7498/aps.63.224102
    [15] 文岐华, 左曙光, 魏欢. 多振子梁弯曲振动中的局域共振带隙. 物理学报, 2012, 61(3): 034301. doi: 10.7498/aps.61.034301
    [16] 杨立峰, 王亚非, 周鹰. 一维压电Fibonacci类准周期声子晶体传输特性. 物理学报, 2012, 61(10): 107702. doi: 10.7498/aps.61.107702
    [17] 陈圣兵, 韩小云, 郁殿龙, 温激鸿. 不同压电分流电路对声子晶体梁带隙的影响. 物理学报, 2010, 59(1): 387-392. doi: 10.7498/aps.59.387
    [18] 张庆斌, 兰鹏飞, 洪伟毅, 廖青, 杨振宇, 陆培祥. 控制场对宽带超连续谱产生的影响. 物理学报, 2009, 58(7): 4908-4913. doi: 10.7498/aps.58.4908
    [19] 李晓春, 梁宏宇, 易秀英, 肖清武, 赵保星. 二维组合宽带隙材料的研究. 物理学报, 2007, 56(5): 2784-2789. doi: 10.7498/aps.56.2784
    [20] 李晓春, 易秀英, 肖清武, 梁宏宇. 三组元声子晶体中的缺陷态. 物理学报, 2006, 55(5): 2300-2305. doi: 10.7498/aps.55.2300
计量
  • 文章访问数:  7899
  • PDF下载量:  82
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-02
  • 修回日期:  2018-12-02
  • 上网日期:  2019-01-01
  • 刊出日期:  2019-01-20

/

返回文章
返回