搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

柔性Pb(Zr0.53Ti0.47)O3薄膜的高温铁电特性

李敏 时鑫娜 张泽霖 吉彦达 樊济宇 杨浩

引用本文:
Citation:

柔性Pb(Zr0.53Ti0.47)O3薄膜的高温铁电特性

李敏, 时鑫娜, 张泽霖, 吉彦达, 樊济宇, 杨浩

Ferroelectricity of flexible Pb(Zr0.53Ti0.47)O3 thin film at high temperature

Li Min, Shi Xin-Na, Zhang Ze-Lin, Ji Yan-Da, Fan Ji-Yu, Yang Hao
PDF
HTML
导出引用
  • 随着柔性电子产品的迅速发展, 具有优异铁电和压电性的Pb(Zr0.53Ti0.47)O3 (PZT)薄膜在柔性的非易失性存储器、传感器和制动器等器件中有广泛的应用前景. 同时, 由于外部环境越来越复杂, 具有高温稳定特性的材料和器件受到越来越多的关注. 本文在耐高温的二维层状氟晶云母衬底上, 用脉冲激光沉积技术制备出外延的PZT薄膜, 并通过机械剥离的方法, 得到柔性的外延PZT薄膜. 研究了Pt/PZT/SRO异质结的铁电和压电性及其高温特性, 发现样品表现出优越的铁电性, 剩余极化强度(Pr)高达65 ${\text{μ}} {\rm{C/c}}{{\rm{m}}^{\rm{2}}}$, 在弯曲104次后其铁电性基本保持不变, 且样品在275 ℃高温时仍然保持良好的铁电性. 本文为柔性PZT薄膜在航空航天器件中的应用提供了实验基础.
    Recently, flexible electronic devices have attracted extensive attention due to their characteristics of flexibility, miniaturization and portability. Flexible functional oxide thin films with high performance and stability are the basis for high-performance flexible electronic devices. Perovskite lead zirconate titanate Pb(Zr0.53Ti0.47)O3 (PZT) at "morphotropic phase boundary" indicates excellent ferroelectricity and piezoelectricity, and has broad prospects in flexible non-volatile memories, sensors and actuators. Moreover, high-temperature stable flexible memories and sensors have received increasing attention due to the escalating complexity of the external environment. In the present work, Pb(Zr0.53Ti0.47)O3/SrRuO3/BaTiO3 (PZT/SRO/BTO) heterostructures are prepared by pulsed laser deposition on high temperature resistant two-dimensional layered fluorphlogopite mica substrates. Afterward, flexible epitaxial PZT thin films are obtained by mechanical stripping. The ferroelectricity, piezoelectricity and high temperature characteristics of PZT thin films are investigated. The thin films show superior ferroelectricity at room and high temperatures. At room temperature, the thin films exhibit excellent ferroelectricity with a remnant polarization (Pr) of ~$ {\rm{65}}\;{\text{μ}} {\rm{C/c}}{{\rm{m}}^{\rm{2}}}$. A saturation polarization (Ps) of ~$ {\rm{80}}\;{\text{μ}} {\rm{C/c}}{{\rm{m}}^{\rm{2}}}$ and a coercive field (Ec) of ~100 kV/cm are also observed. In addition, after bending the thin films to a 1.5 cm radius 104 times, their ferroelectricity does not show deterioration at room temperature. In order to study the ferroelectricity of PZT thin films at high temperature, P-E loops from 27 ℃ to 275 ℃ are tested. The results show that the films still show excellent ferroelectricity with a Pr of ~$ {\rm{50}}\;{\text{μ}} {\rm{C/c}}{{\rm{m}}^{\rm{2}}}$ and a Ps of ~$ {\rm{70}}\;{\text{μ}} {\rm{C/c}}{{\rm{m}}^{\rm{2}}}$ at 275 ℃. The present work provides a basis for the application of flexible epitaxial PZT thin film. Especially, the ferroelectricity of flexible PZT thin films at high temperature provides a possibility of obtaining high-temperature flexible electronic devices.
      通信作者: 杨浩, yanghao@nuaa.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11774172, U1632122, 51602152)、中央高校基本科研业务费专项基金(批准号: NE2016102, NP2017103)和南京航空航天大学研究生创新基地(实验室)开放基金(批准号: kfjj20170801)资助的课题.
      Corresponding author: Yang Hao, yanghao@nuaa.edu.cn
    • Funds: Project supported by the National Nature Science Foundation of China (Grant Nos. 11774172, U1632122, 51602152), the Fundamental Research Funds for the Central Universitiesof Ministry of Education of China (Grant Nos. NE2016102, NP2017103), and the Foundation of Graduate Innovation Center in Nanjing University of Aeronautics and Astronautics, China (Grant No. kfjj20170801).
    [1]

    Forrest S R 2004 Nature 42 8911

    [2]

    Hou P F, Yang K X, Ni K K, Wang J B, Zhang X L, Liao M, Zheng S Z 2018 J. Mater. Chem. C 6 5193Google Scholar

    [3]

    Hoffman J, Pan X, Reiner J W, Walker F J, Han J P, Ahn C H, Ma T P 2010 Adv. Mater. 22 295Google Scholar

    [4]

    Scott J F, Araujo C A P 1989 Science 246 1400Google Scholar

    [5]

    Jaffe B, Roth R S, Marzullo S 2004 J. Appl. Phys. 2 56Google Scholar

    [6]

    Kim D J, Maria J P, Kingon A I, Streiffer S K 2003 J. Appl. Phys. 93 5568Google Scholar

    [7]

    Palneedi H, Yeo H G, Hwang G T, Annapureddy V, Kim J W, Choi J J, Susan T M, Ryu J 2017 APL Mater. 5 0096111Google Scholar

    [8]

    Bao D H, Zhu X H, Alexe M, Dietrich H 2008 J. Electroceram 21 72Google Scholar

    [9]

    Wang Y P, Zhou L, Lu X B, Liu Z G 2003 Appl. Surf. Sci. 205 176Google Scholar

    [10]

    Rho J, Kim S J, Heo W, Lee N E, Lee H S, Ahn J H 2010 Electron Dev. Lett. 31 1017Google Scholar

    [11]

    Bretos I, Jimenez R, Wu A, Kingon A I, Vilarinho P M, Calzada M L 2014 Adv. Mater. 26 1405Google Scholar

    [12]

    Aday J, Mendoza M, Lado J L, Joshua O I 2016 Chem. Mater. 28 4042Google Scholar

    [13]

    Chu Y H 2017 npj Quantum Mater. 2 67Google Scholar

    [14]

    Jiang J, Bite Y, Huang C W, Do T H, Liu H J, Hsieh Y H, Ma C H, Jang C Y, Lai P W, Wu W W, Chen Y C, Zhou Y C, Chu Y H 2017 Sci. Adv. 3 1700121Google Scholar

    [15]

    Gao W X, You L, Wang Y J, Yuan G L, Chu Y H, Liu Z G, Liu J M 2017 Adv. Electron 3 1600542Google Scholar

    [16]

    胡婷, 阚二军 2018 物理学报 67 157701Google Scholar

    Hu T, Kan E J 2018 Acta Phys. Sin. 67 157701Google Scholar

    [17]

    Tommaso G 2018 Nature Mater. 17 846Google Scholar

    [18]

    Lin S H, Chui Y S, Li Y Y, Lau S P 2017 FlatChem 2 15Google Scholar

    [19]

    Ohno T, Fukumitsu T, Honda T, Hirai S, Arai T, Sakamoto N, Wakiya N, Suzuki H, Matsuda T 2015 Mater. Lett. 181 74Google Scholar

    [20]

    Izyumskaya N, Alivov Y I, Cho S J, Morkoc H, Lee H, Kang Y S 2013 Crit. Rev. Solid Mater. Sci. 32 111Google Scholar

    [21]

    Li C I, Lin J C, Chu M W, Chen H W, Ma C H, Tsai C Y, Huang H W, Lin H J, Liu H L, Chiu P W Chu Y H 2016 Chem. Mater. 28 3914Google Scholar

  • 图 1  PZT薄膜柔性展示

    Fig. 1.  Flexibility of PZT thin films.

    图 2  PZT薄膜XRD图 (a) θ-2θ衍射图; (b) Φ扫描图

    Fig. 2.  (a) θ-2θ scan and (b) Φ-scans of PZT thin films.

    图 3  PZT薄膜的(a)表面形貌图, (b)局部极化翻转, (c) 图(b)中白线部分所对应的相位翻转示意图, (d)振幅和相位曲线

    Fig. 3.  (a) Surface morphology, (b) local polarization flipping, (c) intuitive data for white line in (b), (d) representative local PFM amplitude and phase hysteresis loops of PZT thin films.

    图 4  (a)不同电场强度下的P-E; (b)样品弯折104次后的P-E; (c)不同温度下的P-E; (d)样品PrPs随温度变化的示意图

    Fig. 4.  (a) P-E loops at various electric fields; (b) P-E loops after bending for 104 times; (c) P-E loops at various temperatures; (d) remnant and saturation polarizations as a function of temperature.

    表 1  脉冲激光沉积技术制备PZT/SRO/BTO异质结的实验条件

    Table 1.  Experimental conditions of PZT/SRO/BTO heterostructure by PLD.

    制备工艺沉积温度/℃腔内氧压/Pa激光能量/mJ脉冲频率/Hz沉积时间/min
    BTO5802010026
    SRO58020100320
    PZT60015165450
    下载: 导出CSV
  • [1]

    Forrest S R 2004 Nature 42 8911

    [2]

    Hou P F, Yang K X, Ni K K, Wang J B, Zhang X L, Liao M, Zheng S Z 2018 J. Mater. Chem. C 6 5193Google Scholar

    [3]

    Hoffman J, Pan X, Reiner J W, Walker F J, Han J P, Ahn C H, Ma T P 2010 Adv. Mater. 22 295Google Scholar

    [4]

    Scott J F, Araujo C A P 1989 Science 246 1400Google Scholar

    [5]

    Jaffe B, Roth R S, Marzullo S 2004 J. Appl. Phys. 2 56Google Scholar

    [6]

    Kim D J, Maria J P, Kingon A I, Streiffer S K 2003 J. Appl. Phys. 93 5568Google Scholar

    [7]

    Palneedi H, Yeo H G, Hwang G T, Annapureddy V, Kim J W, Choi J J, Susan T M, Ryu J 2017 APL Mater. 5 0096111Google Scholar

    [8]

    Bao D H, Zhu X H, Alexe M, Dietrich H 2008 J. Electroceram 21 72Google Scholar

    [9]

    Wang Y P, Zhou L, Lu X B, Liu Z G 2003 Appl. Surf. Sci. 205 176Google Scholar

    [10]

    Rho J, Kim S J, Heo W, Lee N E, Lee H S, Ahn J H 2010 Electron Dev. Lett. 31 1017Google Scholar

    [11]

    Bretos I, Jimenez R, Wu A, Kingon A I, Vilarinho P M, Calzada M L 2014 Adv. Mater. 26 1405Google Scholar

    [12]

    Aday J, Mendoza M, Lado J L, Joshua O I 2016 Chem. Mater. 28 4042Google Scholar

    [13]

    Chu Y H 2017 npj Quantum Mater. 2 67Google Scholar

    [14]

    Jiang J, Bite Y, Huang C W, Do T H, Liu H J, Hsieh Y H, Ma C H, Jang C Y, Lai P W, Wu W W, Chen Y C, Zhou Y C, Chu Y H 2017 Sci. Adv. 3 1700121Google Scholar

    [15]

    Gao W X, You L, Wang Y J, Yuan G L, Chu Y H, Liu Z G, Liu J M 2017 Adv. Electron 3 1600542Google Scholar

    [16]

    胡婷, 阚二军 2018 物理学报 67 157701Google Scholar

    Hu T, Kan E J 2018 Acta Phys. Sin. 67 157701Google Scholar

    [17]

    Tommaso G 2018 Nature Mater. 17 846Google Scholar

    [18]

    Lin S H, Chui Y S, Li Y Y, Lau S P 2017 FlatChem 2 15Google Scholar

    [19]

    Ohno T, Fukumitsu T, Honda T, Hirai S, Arai T, Sakamoto N, Wakiya N, Suzuki H, Matsuda T 2015 Mater. Lett. 181 74Google Scholar

    [20]

    Izyumskaya N, Alivov Y I, Cho S J, Morkoc H, Lee H, Kang Y S 2013 Crit. Rev. Solid Mater. Sci. 32 111Google Scholar

    [21]

    Li C I, Lin J C, Chu M W, Chen H W, Ma C H, Tsai C Y, Huang H W, Lin H J, Liu H L, Chiu P W Chu Y H 2016 Chem. Mater. 28 3914Google Scholar

  • [1] 李银辉, 殷荣艳, 梁建国, 李玮栋, 范凯, 周赟磊. 一种耐高温的柔性压电/热释电双功能传感器. 物理学报, 2024, 73(20): 206801. doi: 10.7498/aps.73.20241006
    [2] 黄鸿飞, 姚杨, 姚承君, 郝翔, 吴银忠. In2Se3薄膜的掺杂效应及其纳米带铁电性. 物理学报, 2022, 71(19): 197701. doi: 10.7498/aps.71.20220654
    [3] 杨如霞, 卢玉明, 曾丽竹, 张禄佳, 李冠男. 钆掺杂对0.7BiFe0.95Ga0.05O3-0.3BaTiO3陶瓷的结构、介电性能和多铁性能的影响. 物理学报, 2020, 69(10): 107701. doi: 10.7498/aps.69.20200175
    [4] 胡婷, 阚二军. 低维铁电材料研究进展. 物理学报, 2018, 67(15): 157701. doi: 10.7498/aps.67.20180483
    [5] 石玉君, 张旭, 秦雷, 金魁, 袁洁, 朱北沂, 竺云. Bi1-xLaxFeO3±δ薄膜的快速制备及铁电性. 物理学报, 2016, 65(5): 058101. doi: 10.7498/aps.65.058101
    [6] 蒋钊, 陈学康. 界面合金化控制柔性Al/PI薄膜应力的研究. 物理学报, 2015, 64(21): 216802. doi: 10.7498/aps.64.216802
    [7] 张润兰, 邢辉, 陈长乐, 段萌萌, 罗炳成, 金克新. YMnO3薄膜的铁电行为及其纳米尺度铁电畴的研究. 物理学报, 2014, 63(18): 187701. doi: 10.7498/aps.63.187701
    [8] 闻心怡, 王耘波, 周文利, 高俊雄, 于军. 张应力对准同形相界Pb(Zr,Ti)O3薄膜相变和铁电性能影响. 物理学报, 2011, 60(9): 097701. doi: 10.7498/aps.60.097701
    [9] 何建平, 吕文中, 汪小红. Ba0.5Sr0.5TiO3有序构型的第一性原理研究. 物理学报, 2011, 60(9): 097102. doi: 10.7498/aps.60.097102
    [10] 顾建军, 刘力虎, 岂云开, 徐芹, 张惠敏, 孙会元. 复合薄膜NiFe2 O4-BiFeO3 中的磁电耦合. 物理学报, 2011, 60(6): 067701. doi: 10.7498/aps.60.067701
    [11] 朱杰, 张辉, 张鹏翔, 谢康, 胡俊涛. Pb(Zr0.3Ti0.7)O3铁电薄膜激光感生电压效应. 物理学报, 2010, 59(9): 6417-6422. doi: 10.7498/aps.59.6417
    [12] 赵庆勋, 马继奎, 耿波, 魏大勇, 关丽, 刘保亭. 氮氢混合气氛退火中氢对Bi4Ti3O12铁电性能的影响. 物理学报, 2010, 59(11): 8042-8047. doi: 10.7498/aps.59.8042
    [13] 孙源, 明星, 孟醒, 孙正昊, 向鹏, 兰民, 陈岗. 多铁材料BaCoF4电子结构的第一性原理研究. 物理学报, 2009, 58(8): 5653-5660. doi: 10.7498/aps.58.5653
    [14] 孙源, 黄祖飞, 范厚刚, 明星, 王春忠, 陈岗. BiFeO3中各离子在铁电相变中作用本质的第一性原理研究. 物理学报, 2009, 58(1): 193-200. doi: 10.7498/aps.58.193.1
    [15] 王秀章, 刘红日. La0.3Sr0.7TiO3模板层对Pb(Zr0.5Ti0.5)O3薄膜的铁电性能增强效应的研究. 物理学报, 2007, 56(3): 1735-1740. doi: 10.7498/aps.56.1735
    [16] 郭冬云, 王耘波, 于 军, 高俊雄, 李美亚. La掺杂对Bi4Ti3O12薄膜铁电性能的影响. 物理学报, 2006, 55(10): 5551-5554. doi: 10.7498/aps.55.5551
    [17] 薛卫东, 陈召勇, 杨 春, 李言荣. 四方相BaTiO3铁电性的第一性原理研究. 物理学报, 2005, 54(2): 857-862. doi: 10.7498/aps.54.857
    [18] 李正法, 钟维烈, 裘忠平, 葛洪良, 张沛霖, 王春雷. 钛酸铋钡陶瓷的介电性、铁电性及对晶格结构的依赖性. 物理学报, 2004, 53(9): 3200-3204. doi: 10.7498/aps.53.3200
    [19] 张 磊, 钟维烈, 彭毅萍, 王玉国. 钛酸锶钡的铁电相变与晶胞体积的关联. 物理学报, 2000, 49(7): 1371-1376. doi: 10.7498/aps.49.1371
    [20] 张 磊, 钟维烈. 横场-伊辛模型中BaTiO3的铁电行为. 物理学报, 2000, 49(11): 2296-2299. doi: 10.7498/aps.49.2296
计量
  • 文章访问数:  9511
  • PDF下载量:  164
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-05
  • 修回日期:  2019-01-31
  • 上网日期:  2019-04-01
  • 刊出日期:  2019-04-20

/

返回文章
返回