-
利用光声光谱技术进行痕量气体的检测具有独特的优势, 光声池是系统装置中最为重要的核心部件, 它决定着整机性能的优劣. 以一圆柱形共振型光声池为研究对象, 基于声学与吸收光谱学的基本理论, 建立了光声池声场激发的数学模型; 利用数值模拟方法对光声池空腔结构进行了声学模态仿真, 获得了前8阶声学模态值以及声压可视化振型; 在考虑热黏性声学损耗的作用下, 对光声池进行了热-声耦合多物理场仿真计算;将仿真结果与解析计算和实验结果进行对比, 明确了利用数值模拟方法来计算光声池有关指标的可靠性与可行性; 针对光声池的优化问题, 提出了一种将响应面代理模型与遗传算法相结合的优化算法, 在将原光声池中的谐振腔两端形貌更改为喇叭口形的情况下, 通过优化算法获得了以光声池品质因数Q及池常数Ccell为最大值寻优的Pareto最优解集; 选取一组解进行考察, 结果表明, 代理模型预测值与数值模拟值指标最大误差仅为1.3%, 优化后的新型光声池Q较之前增长了48.9%, Ccell增长了34.4%. 研究方法可为光声光谱中光声池的优化设计提供参考借鉴.Photoacoustic spectroscopy (PAS) offers intrinsic attractive features in the detection of trace gases, including ultra-compact size and background-free absolute absorption measurement. The photoacoustic (PA) cell is a key component in the PAS system, which determines the performance of the PAS sensor. In this paper, a cylindrical resonant photoacoustic cell is taken as a research target. Based on the fundamental theory of acoustics and absorption spectrum, a mathematical model of acoustic field excitation in the PA cell is established. The acoustic resonance frequency, quality factor and cell constant of the PA cell are used as three key parameters to describe its performance. By employing advanced computer numerical calculation and finite element simulation technology, we establish a simulation model and impose the excitation load and boundary conditions on the model according to the actual working conditions. Then we calculate and simulate the acoustic modal of the PA cell, and the first eight acoustic modal values of the cavity and the visual vibration model of the acoustic pressure are obtained. With considering the acoustic loss, the thermo-acoustic coupling multi-physical field simulation of photoacoustic cell is carried out. Comparing with analytical calculation and experiment results, the reliability and feasibility of using numerical simulation method to calculate the relevant parameters of photoacoustic cell are demonstrated. In order to obtain a better structure of photoacoustic cell, an optimization algorithm combining response surface proxy model with multi-objective genetic algorithm is proposed. We try to change the shapes of both ends of the resonator in the original photoacoustic cell into the shape of the bell mouth. Take into account the case that the longitudinal acoustic normalization frequency of the PA cell is larger than 1000 Hz, Pareto optimal solution set with the maximum quality factor Q and cell constant Ccell of the PA cell is obtained. The results show that the maximum error between the predicted and simulated values of the proxy model of the PA cell Q and Ccell is only 1.3%. Comparing with the original PA cell, the Q factor and the Ccell of the optimized PA cell are increased by 48.9% and 34.4%, respectively. The performance of the optimized photoacoustic cell is obviously improved. The proposed algorithm of photoacoustic numerical simulation combined with multi-objective optimization design can provide helpful reference for designing the PA cell in PAS sensor development.
-
Keywords:
- optics /
- photoacoustic spectroscopy /
- photoacoustic cell /
- numerical calculation
[1] Webber M E, MacDonald T, Pushkarsky M B, Patel C K N, Zhao Y J, Marcillac N, Mitloehner F M 2005 Meas. Sci. Technol. 16 1547Google Scholar
[2] Sicilianid C M, Viciani S, Borri S, Patimisco P, Sampaolo A, Scamarcio G, Natale P D, D'Amato F, Spagnolo V 2014 Opt. Express 22 28222Google Scholar
[3] Hussain A, Petersen W, Staley J, Hondebrink E, Steenbergen W 2016 Opt. Lett. 41 1720Google Scholar
[4] Yin X K, Dong L, Wu H P, Zheng H D, Ma W G, Zhang L, Yin W B, Xiao L T, Jia S T, Tittel F K 2017 Opt. Express 25 32581Google Scholar
[5] Thaler K M, Berger C, Leix C, Drewes J, Niessner R, Haisch C 2017 Anal Chem. 89 3795Google Scholar
[6] Kreuzer L B 1971 J. Appl. Phys. 42 2934Google Scholar
[7] Besson J P, Schilt S, Thévenaz L 2004 Spectrochim. Acta A: Mol. Biomol. Spectrosc. 60 3449Google Scholar
[8] Tavakoli M, Tavakolib A, Taheri M, Saghafifar H 2010 Opt. Laser Technol. 42 828Google Scholar
[9] Pernau H F, Schmitt K, Huber J 2007 Eurosensors 168 1325Google Scholar
[10] Baumann B, Kost B, Wolff M, Knickrehm S 2007 Comsol. Conference Grenoble, France, 2007 p1.
[11] 陈伟根, 刘冰洁, 胡金星, 周恒逸, 李剑 2011 重庆大学学报 34 7Google Scholar
Chen W G, Liu B J, Hu J X, Zhou H Y, Li J 2011 J. Chongqing Univ. 34 7Google Scholar
[12] 周彧, 曹渊, 朱公栋, 刘锟, 谈图, 王利军, 高晓明 2018 物理学报 67 084201Google Scholar
Zhou Y, Cao Y, Zhu G D, Liu K, Tan T, Wang L J, Gao X M 2018 Acta Phys. Sin. 67 084201Google Scholar
[13] Liu K, Mei J X, Zhang W J, Chen W D, Gao X M 2017 Sens. Actuat. B: Cheml. 251 632Google Scholar
[14] 彭勇, 于清旭 2009 光谱学与光谱分析 29 2030Google Scholar
Peng Y, Yu Q X 2009 Spectrosc. Spect. Anal. 29 2030Google Scholar
[15] Wu H P, Dong L, Zheng H D, Yu Y J, Ma W G, Zhang L, Yin W B, Xiao L T, Jia S T, Tittel F K 2017 Nat. Commun. 8 15331Google Scholar
[16] 马欲飞, 何应, 于欣, 于光, 张静波, 孙锐 2016 物理学报 65 060701Google Scholar
Ma Y F, He Y, Yu X, Yu G, Zhang J B, Sun R 2016 Acta Phys. Sin. 65 060701Google Scholar
[17] 史强, 胡水明 1998 化学物理学报 1 20
Shi Q, Hu S M 1998 Chin. J. Chem. Phys. 1 20 (in Chinese)
[18] 罗森威格A. 著(王耀俊, 张淑仪, 卢宗桂 译) 1986 光声学和光声谱学(北京: 科学出版社)第35页
Rosencwaig A (translated by Wang Y J, Zhang S Y, Lu Z G) 1986 Photoacoustics and Photoacoustic Spectroscopy (Beijing: Science Press) p35 (in Chinese)
[19] 周鋐, 侯维玲, 吴孟乔 2012 中国工程机械学报 10 463Google Scholar
Zhou H, Hou W L, Wu M Q 2012 Chin. J. Const. Mach. 10 463Google Scholar
[20] Kost B, Baumann B, Germer M, Wolff M, Rosenkranz M 2011 Appl. Phys. B 102 87Google Scholar
[21] 胡俊峰, 徐贵阳, 郝亚洲 2015 光学精密工程 23 1096Google Scholar
Hu J F, Xu G Y, Hao Y Z 2015 Opt. Precis Eng. 23 1096Google Scholar
-
图 4 光声池空腔声学模态仿真云图
Fig. 4. Acoustic mode simulation of photoacoustic cell cavity: (a)The first mode (265 Hz); (b) the second mode (1659 Hz); (c) the third mode (3125 Hz); (d) the fourth mode (3490 Hz); (e) the fifth mode (3680 Hz); (f) the sixth mode (4966 Hz) ; (g) the seventh mode (5123 Hz); (h) the eighth mode (6207 Hz).
表 1 因素水平表
Table 1. The factors and levels graph.
因素 编码水平 –1 0 1 A: 底圆半径rc/mm 5 6 7 B: 圆台高度hc/mm 8 10 12 C: 谐振腔半径Rc/mm 3 4 5 D: 谐振腔长度Lc/mm 60 70 80 表 2 代理模型拟合结果
Table 2. Fitting results of surrogate models.
目标响应 相关系数R2 校正系数R2adj P值 f1(x): Q 0.9997 0.9993 < 0.0001 f2(x): Ccell/(Pa·cm) · W–1 0.9999 0.9982 < 0.0001 f3(x): f/Hz 0.9998 0.9996 < 0.0001 表 3 优化后设计变量值
Table 3. Optimized scheme value.
方案 rc/mm hc/mm Rc/mm Lc/mm 1 5.96 11.99 3.55 61.43 2 5.6 11.99 4.78 60.28 3 7.0 11.99 5.0 60.0 4 5.6 12.0 4.7 60.0 表 4 相关指标结果对比
Table 4. Comparison of index results.
指标 初始值 优化后 变化率/% 代理
模型数值
模拟误差
率/%Q 63.7 95.2 94.9 0.32 + 48.9 Ccell/( Pa·cm) ·W–1 1750 2321 2353 1.3 + 34.4 f/Hz 1648 2000 2002 0.1 + 21.4 -
[1] Webber M E, MacDonald T, Pushkarsky M B, Patel C K N, Zhao Y J, Marcillac N, Mitloehner F M 2005 Meas. Sci. Technol. 16 1547Google Scholar
[2] Sicilianid C M, Viciani S, Borri S, Patimisco P, Sampaolo A, Scamarcio G, Natale P D, D'Amato F, Spagnolo V 2014 Opt. Express 22 28222Google Scholar
[3] Hussain A, Petersen W, Staley J, Hondebrink E, Steenbergen W 2016 Opt. Lett. 41 1720Google Scholar
[4] Yin X K, Dong L, Wu H P, Zheng H D, Ma W G, Zhang L, Yin W B, Xiao L T, Jia S T, Tittel F K 2017 Opt. Express 25 32581Google Scholar
[5] Thaler K M, Berger C, Leix C, Drewes J, Niessner R, Haisch C 2017 Anal Chem. 89 3795Google Scholar
[6] Kreuzer L B 1971 J. Appl. Phys. 42 2934Google Scholar
[7] Besson J P, Schilt S, Thévenaz L 2004 Spectrochim. Acta A: Mol. Biomol. Spectrosc. 60 3449Google Scholar
[8] Tavakoli M, Tavakolib A, Taheri M, Saghafifar H 2010 Opt. Laser Technol. 42 828Google Scholar
[9] Pernau H F, Schmitt K, Huber J 2007 Eurosensors 168 1325Google Scholar
[10] Baumann B, Kost B, Wolff M, Knickrehm S 2007 Comsol. Conference Grenoble, France, 2007 p1.
[11] 陈伟根, 刘冰洁, 胡金星, 周恒逸, 李剑 2011 重庆大学学报 34 7Google Scholar
Chen W G, Liu B J, Hu J X, Zhou H Y, Li J 2011 J. Chongqing Univ. 34 7Google Scholar
[12] 周彧, 曹渊, 朱公栋, 刘锟, 谈图, 王利军, 高晓明 2018 物理学报 67 084201Google Scholar
Zhou Y, Cao Y, Zhu G D, Liu K, Tan T, Wang L J, Gao X M 2018 Acta Phys. Sin. 67 084201Google Scholar
[13] Liu K, Mei J X, Zhang W J, Chen W D, Gao X M 2017 Sens. Actuat. B: Cheml. 251 632Google Scholar
[14] 彭勇, 于清旭 2009 光谱学与光谱分析 29 2030Google Scholar
Peng Y, Yu Q X 2009 Spectrosc. Spect. Anal. 29 2030Google Scholar
[15] Wu H P, Dong L, Zheng H D, Yu Y J, Ma W G, Zhang L, Yin W B, Xiao L T, Jia S T, Tittel F K 2017 Nat. Commun. 8 15331Google Scholar
[16] 马欲飞, 何应, 于欣, 于光, 张静波, 孙锐 2016 物理学报 65 060701Google Scholar
Ma Y F, He Y, Yu X, Yu G, Zhang J B, Sun R 2016 Acta Phys. Sin. 65 060701Google Scholar
[17] 史强, 胡水明 1998 化学物理学报 1 20
Shi Q, Hu S M 1998 Chin. J. Chem. Phys. 1 20 (in Chinese)
[18] 罗森威格A. 著(王耀俊, 张淑仪, 卢宗桂 译) 1986 光声学和光声谱学(北京: 科学出版社)第35页
Rosencwaig A (translated by Wang Y J, Zhang S Y, Lu Z G) 1986 Photoacoustics and Photoacoustic Spectroscopy (Beijing: Science Press) p35 (in Chinese)
[19] 周鋐, 侯维玲, 吴孟乔 2012 中国工程机械学报 10 463Google Scholar
Zhou H, Hou W L, Wu M Q 2012 Chin. J. Const. Mach. 10 463Google Scholar
[20] Kost B, Baumann B, Germer M, Wolff M, Rosenkranz M 2011 Appl. Phys. B 102 87Google Scholar
[21] 胡俊峰, 徐贵阳, 郝亚洲 2015 光学精密工程 23 1096Google Scholar
Hu J F, Xu G Y, Hao Y Z 2015 Opt. Precis Eng. 23 1096Google Scholar
计量
- 文章访问数: 15121
- PDF下载量: 346
- 被引次数: 0