搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光声光谱检测装置中光声池的数值计算及优化

程刚 曹渊 刘锟 曹亚南 陈家金 高晓明

引用本文:
Citation:

光声光谱检测装置中光声池的数值计算及优化

程刚, 曹渊, 刘锟, 曹亚南, 陈家金, 高晓明

Numerical calculation and optimization of photoacoustic cell for photoacoustic spectrometer

Cheng Gang, Cao Yuan, Liu Kun, Cao Ya-Nan, Chen Jia-Jin, Gao Xiao-Ming
PDF
HTML
导出引用
  • 利用光声光谱技术进行痕量气体的检测具有独特的优势, 光声池是系统装置中最为重要的核心部件, 它决定着整机性能的优劣. 以一圆柱形共振型光声池为研究对象, 基于声学与吸收光谱学的基本理论, 建立了光声池声场激发的数学模型; 利用数值模拟方法对光声池空腔结构进行了声学模态仿真, 获得了前8阶声学模态值以及声压可视化振型; 在考虑热黏性声学损耗的作用下, 对光声池进行了热-声耦合多物理场仿真计算;将仿真结果与解析计算和实验结果进行对比, 明确了利用数值模拟方法来计算光声池有关指标的可靠性与可行性; 针对光声池的优化问题, 提出了一种将响应面代理模型与遗传算法相结合的优化算法, 在将原光声池中的谐振腔两端形貌更改为喇叭口形的情况下, 通过优化算法获得了以光声池品质因数Q及池常数Ccell为最大值寻优的Pareto最优解集; 选取一组解进行考察, 结果表明, 代理模型预测值与数值模拟值指标最大误差仅为1.3%, 优化后的新型光声池Q较之前增长了48.9%, Ccell增长了34.4%. 研究方法可为光声光谱中光声池的优化设计提供参考借鉴.
    Photoacoustic spectroscopy (PAS) offers intrinsic attractive features in the detection of trace gases, including ultra-compact size and background-free absolute absorption measurement. The photoacoustic (PA) cell is a key component in the PAS system, which determines the performance of the PAS sensor. In this paper, a cylindrical resonant photoacoustic cell is taken as a research target. Based on the fundamental theory of acoustics and absorption spectrum, a mathematical model of acoustic field excitation in the PA cell is established. The acoustic resonance frequency, quality factor and cell constant of the PA cell are used as three key parameters to describe its performance. By employing advanced computer numerical calculation and finite element simulation technology, we establish a simulation model and impose the excitation load and boundary conditions on the model according to the actual working conditions. Then we calculate and simulate the acoustic modal of the PA cell, and the first eight acoustic modal values of the cavity and the visual vibration model of the acoustic pressure are obtained. With considering the acoustic loss, the thermo-acoustic coupling multi-physical field simulation of photoacoustic cell is carried out. Comparing with analytical calculation and experiment results, the reliability and feasibility of using numerical simulation method to calculate the relevant parameters of photoacoustic cell are demonstrated. In order to obtain a better structure of photoacoustic cell, an optimization algorithm combining response surface proxy model with multi-objective genetic algorithm is proposed. We try to change the shapes of both ends of the resonator in the original photoacoustic cell into the shape of the bell mouth. Take into account the case that the longitudinal acoustic normalization frequency of the PA cell is larger than 1000 Hz, Pareto optimal solution set with the maximum quality factor Q and cell constant Ccell of the PA cell is obtained. The results show that the maximum error between the predicted and simulated values of the proxy model of the PA cell Q and Ccell is only 1.3%. Comparing with the original PA cell, the Q factor and the Ccell of the optimized PA cell are increased by 48.9% and 34.4%, respectively. The performance of the optimized photoacoustic cell is obviously improved. The proposed algorithm of photoacoustic numerical simulation combined with multi-objective optimization design can provide helpful reference for designing the PA cell in PAS sensor development.
      通信作者: 刘锟, liukun@aiofm.ac.cn
    • 基金项目: 国家重点研发计划(批准号: 2017YFC0209700)和国家自然科学基金(批准号: 41730103, 41575030, 41475023)资助的课题.
      Corresponding author: Liu Kun, liukun@aiofm.ac.cn
    • Funds: Project supported by the National Key Research and Development Program, China (Grant No. 2017YFC0209700) and the National Natural Science Foundation of China (Grant Nos. 41730103, 41575030, 41475023).
    [1]

    Webber M E, MacDonald T, Pushkarsky M B, Patel C K N, Zhao Y J, Marcillac N, Mitloehner F M 2005 Meas. Sci. Technol. 16 1547Google Scholar

    [2]

    Sicilianid C M, Viciani S, Borri S, Patimisco P, Sampaolo A, Scamarcio G, Natale P D, D'Amato F, Spagnolo V 2014 Opt. Express 22 28222Google Scholar

    [3]

    Hussain A, Petersen W, Staley J, Hondebrink E, Steenbergen W 2016 Opt. Lett. 41 1720Google Scholar

    [4]

    Yin X K, Dong L, Wu H P, Zheng H D, Ma W G, Zhang L, Yin W B, Xiao L T, Jia S T, Tittel F K 2017 Opt. Express 25 32581Google Scholar

    [5]

    Thaler K M, Berger C, Leix C, Drewes J, Niessner R, Haisch C 2017 Anal Chem. 89 3795Google Scholar

    [6]

    Kreuzer L B 1971 J. Appl. Phys. 42 2934Google Scholar

    [7]

    Besson J P, Schilt S, Thévenaz L 2004 Spectrochim. Acta A: Mol. Biomol. Spectrosc. 60 3449Google Scholar

    [8]

    Tavakoli M, Tavakolib A, Taheri M, Saghafifar H 2010 Opt. Laser Technol. 42 828Google Scholar

    [9]

    Pernau H F, Schmitt K, Huber J 2007 Eurosensors 168 1325Google Scholar

    [10]

    Baumann B, Kost B, Wolff M, Knickrehm S 2007 Comsol. Conference Grenoble, France, 2007 p1.

    [11]

    陈伟根, 刘冰洁, 胡金星, 周恒逸, 李剑 2011 重庆大学学报 34 7Google Scholar

    Chen W G, Liu B J, Hu J X, Zhou H Y, Li J 2011 J. Chongqing Univ. 34 7Google Scholar

    [12]

    周彧, 曹渊, 朱公栋, 刘锟, 谈图, 王利军, 高晓明 2018 物理学报 67 084201Google Scholar

    Zhou Y, Cao Y, Zhu G D, Liu K, Tan T, Wang L J, Gao X M 2018 Acta Phys. Sin. 67 084201Google Scholar

    [13]

    Liu K, Mei J X, Zhang W J, Chen W D, Gao X M 2017 Sens. Actuat. B: Cheml. 251 632Google Scholar

    [14]

    彭勇, 于清旭 2009 光谱学与光谱分析 29 2030Google Scholar

    Peng Y, Yu Q X 2009 Spectrosc. Spect. Anal. 29 2030Google Scholar

    [15]

    Wu H P, Dong L, Zheng H D, Yu Y J, Ma W G, Zhang L, Yin W B, Xiao L T, Jia S T, Tittel F K 2017 Nat. Commun. 8 15331Google Scholar

    [16]

    马欲飞, 何应, 于欣, 于光, 张静波, 孙锐 2016 物理学报 65 060701Google Scholar

    Ma Y F, He Y, Yu X, Yu G, Zhang J B, Sun R 2016 Acta Phys. Sin. 65 060701Google Scholar

    [17]

    史强, 胡水明 1998 化学物理学报 1 20

    Shi Q, Hu S M 1998 Chin. J. Chem. Phys. 1 20 (in Chinese)

    [18]

    罗森威格A. 著(王耀俊, 张淑仪, 卢宗桂 译) 1986 光声学和光声谱学(北京: 科学出版社)第35页

    Rosencwaig A (translated by Wang Y J, Zhang S Y, Lu Z G) 1986 Photoacoustics and Photoacoustic Spectroscopy (Beijing: Science Press) p35 (in Chinese)

    [19]

    周鋐, 侯维玲, 吴孟乔 2012 中国工程机械学报 10 463Google Scholar

    Zhou H, Hou W L, Wu M Q 2012 Chin. J. Const. Mach. 10 463Google Scholar

    [20]

    Kost B, Baumann B, Germer M, Wolff M, Rosenkranz M 2011 Appl. Phys. B 102 87Google Scholar

    [21]

    胡俊峰, 徐贵阳, 郝亚洲 2015 光学精密工程 23 1096Google Scholar

    Hu J F, Xu G Y, Hao Y Z 2015 Opt. Precis Eng. 23 1096Google Scholar

  • 图 1  光声光谱气体检测原理示意图

    Fig. 1.  Schematic diagram of photoacoustic spectroscopy gas detection principle.

    图 2  光声光谱气体检测实验装置图

    Fig. 2.  Photoacoustic spectroscopy gas detection device.

    图 3  光声池空腔声学物理模型

    Fig. 3.  Acoustic physical model of photoacoustic cell cavity.

    图 4  光声池空腔声学模态仿真云图

    Fig. 4.  Acoustic mode simulation of photoacoustic cell cavity: (a)The first mode (265 Hz); (b) the second mode (1659 Hz); (c) the third mode (3125 Hz); (d) the fourth mode (3490 Hz); (e) the fifth mode (3680 Hz); (f) the sixth mode (4966 Hz) ; (g) the seventh mode (5123 Hz); (h) the eighth mode (6207 Hz).

    图 5  光声池二维轴对称物理模型

    Fig. 5.  Two dimensional axisymmetric physical model of photoacoustic cell.

    图 6  谐振腔中部混合网格剖分细节图

    Fig. 6.  Detail drawing of mixed meshes in the middle of resonator.

    图 7  光声池粗频响应仿真曲线

    Fig. 7.  Simulation curve of photoacoustic cell's coarse frequency response.

    图 8  光声池细频响应仿真曲线

    Fig. 8.  Simulation curve of photoacoustic cell's fine frequency response.

    图 9  光声池谐振腔母线声压特性曲线

    Fig. 9.  Sound pressure characteristic curve of cavity geometry of photoacoustic cell.

    图 10  光声池谐振腔轴线正交中心线温升特性曲线

    Fig. 10.  Temperature rise characteristic curve of orthogonal center line of photoacoustic cavity resonator axis.

    图 11  计算结果比较

    Fig. 11.  Comparison of calculation results: (a) Resonance frequency; (b) quality factor; (c) pool constant; (d) boundary layer thickness.

    图 12  光声池参数优化设计选取

    Fig. 12.  Optimum design parameters of photoacoustic cell.

    图 13  Pareto最优解前沿分布图

    Fig. 13.  Pareto optimal solution frontier distribution map.

    表 1  因素水平表

    Table 1.  The factors and levels graph.

    因素编码水平
    –101
    A: 底圆半径rc/mm567
    B: 圆台高度hc/mm81012
    C: 谐振腔半径Rc/mm345
    D: 谐振腔长度Lc/mm607080
    下载: 导出CSV

    表 2  代理模型拟合结果

    Table 2.  Fitting results of surrogate models.

    目标响应相关系数R2校正系数R2adjP
    f1(x): Q0.99970.9993< 0.0001
    f2(x): Ccell/(Pa·cm) · W–10.99990.9982< 0.0001
    f3(x): f/Hz0.99980.9996< 0.0001
    下载: 导出CSV

    表 3  优化后设计变量值

    Table 3.  Optimized scheme value.

    方案rc/mmhc/mmRc/mmLc/mm
    15.9611.993.5561.43
    25.611.994.7860.28
    37.011.995.060.0
    45.612.04.760.0
    下载: 导出CSV

    表 4  相关指标结果对比

    Table 4.  Comparison of index results.

    指标初始值优化后变化率/%
    代理
    模型
    数值
    模拟
    误差
    率/%
    Q63.795.294.90.32+ 48.9
    Ccell/( Pa·cm) ·W–11750232123531.3+ 34.4
    f/Hz1648200020020.1+ 21.4
    下载: 导出CSV
  • [1]

    Webber M E, MacDonald T, Pushkarsky M B, Patel C K N, Zhao Y J, Marcillac N, Mitloehner F M 2005 Meas. Sci. Technol. 16 1547Google Scholar

    [2]

    Sicilianid C M, Viciani S, Borri S, Patimisco P, Sampaolo A, Scamarcio G, Natale P D, D'Amato F, Spagnolo V 2014 Opt. Express 22 28222Google Scholar

    [3]

    Hussain A, Petersen W, Staley J, Hondebrink E, Steenbergen W 2016 Opt. Lett. 41 1720Google Scholar

    [4]

    Yin X K, Dong L, Wu H P, Zheng H D, Ma W G, Zhang L, Yin W B, Xiao L T, Jia S T, Tittel F K 2017 Opt. Express 25 32581Google Scholar

    [5]

    Thaler K M, Berger C, Leix C, Drewes J, Niessner R, Haisch C 2017 Anal Chem. 89 3795Google Scholar

    [6]

    Kreuzer L B 1971 J. Appl. Phys. 42 2934Google Scholar

    [7]

    Besson J P, Schilt S, Thévenaz L 2004 Spectrochim. Acta A: Mol. Biomol. Spectrosc. 60 3449Google Scholar

    [8]

    Tavakoli M, Tavakolib A, Taheri M, Saghafifar H 2010 Opt. Laser Technol. 42 828Google Scholar

    [9]

    Pernau H F, Schmitt K, Huber J 2007 Eurosensors 168 1325Google Scholar

    [10]

    Baumann B, Kost B, Wolff M, Knickrehm S 2007 Comsol. Conference Grenoble, France, 2007 p1.

    [11]

    陈伟根, 刘冰洁, 胡金星, 周恒逸, 李剑 2011 重庆大学学报 34 7Google Scholar

    Chen W G, Liu B J, Hu J X, Zhou H Y, Li J 2011 J. Chongqing Univ. 34 7Google Scholar

    [12]

    周彧, 曹渊, 朱公栋, 刘锟, 谈图, 王利军, 高晓明 2018 物理学报 67 084201Google Scholar

    Zhou Y, Cao Y, Zhu G D, Liu K, Tan T, Wang L J, Gao X M 2018 Acta Phys. Sin. 67 084201Google Scholar

    [13]

    Liu K, Mei J X, Zhang W J, Chen W D, Gao X M 2017 Sens. Actuat. B: Cheml. 251 632Google Scholar

    [14]

    彭勇, 于清旭 2009 光谱学与光谱分析 29 2030Google Scholar

    Peng Y, Yu Q X 2009 Spectrosc. Spect. Anal. 29 2030Google Scholar

    [15]

    Wu H P, Dong L, Zheng H D, Yu Y J, Ma W G, Zhang L, Yin W B, Xiao L T, Jia S T, Tittel F K 2017 Nat. Commun. 8 15331Google Scholar

    [16]

    马欲飞, 何应, 于欣, 于光, 张静波, 孙锐 2016 物理学报 65 060701Google Scholar

    Ma Y F, He Y, Yu X, Yu G, Zhang J B, Sun R 2016 Acta Phys. Sin. 65 060701Google Scholar

    [17]

    史强, 胡水明 1998 化学物理学报 1 20

    Shi Q, Hu S M 1998 Chin. J. Chem. Phys. 1 20 (in Chinese)

    [18]

    罗森威格A. 著(王耀俊, 张淑仪, 卢宗桂 译) 1986 光声学和光声谱学(北京: 科学出版社)第35页

    Rosencwaig A (translated by Wang Y J, Zhang S Y, Lu Z G) 1986 Photoacoustics and Photoacoustic Spectroscopy (Beijing: Science Press) p35 (in Chinese)

    [19]

    周鋐, 侯维玲, 吴孟乔 2012 中国工程机械学报 10 463Google Scholar

    Zhou H, Hou W L, Wu M Q 2012 Chin. J. Const. Mach. 10 463Google Scholar

    [20]

    Kost B, Baumann B, Germer M, Wolff M, Rosenkranz M 2011 Appl. Phys. B 102 87Google Scholar

    [21]

    胡俊峰, 徐贵阳, 郝亚洲 2015 光学精密工程 23 1096Google Scholar

    Hu J F, Xu G Y, Hao Y Z 2015 Opt. Precis Eng. 23 1096Google Scholar

  • [1] 刘丽娴, 陈柏松, 张乐, 章学仕, 宦惠庭, 尹旭坤, 邵晓鹏, 马欲飞, MandelisAndreas. 面向工业园区的多组分痕量气体光声光谱同时检测. 物理学报, 2022, 71(17): 170701. doi: 10.7498/aps.71.20220613
    [2] 尹旭坤, 董磊, 武红鹏, 刘丽娴, 邵晓鹏. 面向SF6气体绝缘设备故障检测的光声CO气体传感器设计和优化. 物理学报, 2021, 70(17): 170701. doi: 10.7498/aps.70.20210532
    [3] 靳华伟, 胡仁志, 谢品华, 陈浩, 李治艳, 王凤阳, 王怡慧, 林川. 适用于ppb量级NO2检测的低功率蓝光二极管光声技术研究. 物理学报, 2019, 68(7): 070703. doi: 10.7498/aps.68.20182262
    [4] 周彧, 曹渊, 朱公栋, 刘锟, 谈图, 王利军, 高晓明. 基于7.6 m量子级联激光的光声光谱探测N2O气体. 物理学报, 2018, 67(8): 084201. doi: 10.7498/aps.67.20172696
    [5] 林莹莹, 李葵英, 单青松, 尹华, 朱瑞苹. ZnSe/ZnS/L-Cys核壳结构量子点光声与表面光伏特性. 物理学报, 2016, 65(3): 038101. doi: 10.7498/aps.65.038101
    [6] 杨芳艳, 胡明, 姚尚平. 连续时间系统同宿轨的搜索算法及其应用. 物理学报, 2013, 62(10): 100501. doi: 10.7498/aps.62.100501
    [7] 阮鹏, 谢冀江, 潘其坤, 张来明, 郭劲. 非链式脉冲DF化学激光器反应动力学模型. 物理学报, 2013, 62(9): 094208. doi: 10.7498/aps.62.094208
    [8] 许雪梅, 戴鹏, 杨兵初, 尹林子, 曹建, 丁一鹏, 曹粲. 光声池中微弱光声信号检测. 物理学报, 2013, 62(20): 204303. doi: 10.7498/aps.62.204303
    [9] 许雪梅, 李奔荣, 杨兵初, 蒋礼, 尹林子, 丁一鹏, 曹粲. 基于光声光谱技术的NO,NO2气体分析仪研究. 物理学报, 2013, 62(20): 200704. doi: 10.7498/aps.62.200704
    [10] 余荣, 江月松, 余兰, 欧军. 利用散射光增强弱吸收固体混合物中主要光吸收物质的光声光谱特征. 物理学报, 2013, 62(8): 087802. doi: 10.7498/aps.62.087802
    [11] 李杰, 朱京平. 光波导短程透镜加工容限误差研究. 物理学报, 2012, 61(24): 244208. doi: 10.7498/aps.61.244208
    [12] 刘三秋, 国洪梅. 极端相对论快电子分布等离子体中横振荡色散关系. 物理学报, 2011, 60(5): 055203. doi: 10.7498/aps.60.055203
    [13] 郭向阳, 常本康, 王晓晖, 张益军, 杨铭. 反射式负电子亲和势GaN光电阴极的光电发射及稳定性研究. 物理学报, 2011, 60(5): 058101. doi: 10.7498/aps.60.058101
    [14] 花金荣, 李莉, 向霞, 祖小涛. 熔石英亚表面杂质颗粒附近光场调制的三维模拟. 物理学报, 2011, 60(4): 044206. doi: 10.7498/aps.60.044206
    [15] 邵先军, 马跃, 李娅西, 张冠军. 低气压氙气介质阻挡放电的一维仿真研究. 物理学报, 2010, 59(12): 8747-8754. doi: 10.7498/aps.59.8747
    [16] 袁长迎, 炎正馨, 蒙瑰, 李智慧, 尚丽平. 高浓度气体共振光声光谱信号饱和特性研究. 物理学报, 2010, 59(10): 6908-6913. doi: 10.7498/aps.59.6908
    [17] 宋法伦, 张永辉, 向 飞, 常安碧. 强流电子束碰撞电离背景气体研究. 物理学报, 2008, 57(3): 1807-1812. doi: 10.7498/aps.57.1807
    [18] 马再如, 冯国英, 陈建国, 朱启华, 曾小明, 刘文兵, 周寿桓. 多个超短脉冲相干叠加构成窄带平顶长脉冲的研究. 物理学报, 2007, 56(2): 933-940. doi: 10.7498/aps.56.933
    [19] 李宜德, 杜英磊, 李纪焕, 吴柏枚. 光声谱研究多孔碳化硅的能带特性. 物理学报, 2003, 52(5): 1260-1263. doi: 10.7498/aps.52.1260
    [20] 周文远, 田建国, 臧维平, 张春平, 张光寅, 王肇圻. 厚非线性介质瞬态热光非线性效应的研究. 物理学报, 2002, 51(11): 2623-2628. doi: 10.7498/aps.51.2623
计量
  • 文章访问数:  14907
  • PDF下载量:  337
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-23
  • 修回日期:  2019-01-24
  • 上网日期:  2019-03-23
  • 刊出日期:  2019-04-05

/

返回文章
返回