搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分子动力学模拟研究孪晶界对单层二硫化钼拉伸行为的影响

邵宇飞 孟凡顺 李久会 赵星

引用本文:
Citation:

分子动力学模拟研究孪晶界对单层二硫化钼拉伸行为的影响

邵宇飞, 孟凡顺, 李久会, 赵星

Molecular dynamics simulations for tensile behaviors of mono-layer MoS2 with twin boundary

Shao Yu-Fei, Meng Fan-Shun, Li Jiu-Hui, Zhao Xing
PDF
HTML
导出引用
  • 孪晶界是单层过渡金属二硫族化物材料中的一种重要结构缺陷. 本文通过分子动力学模拟结合Stillinger-Weber势函数研究单轴拉伸过程中孪晶界对单层MoS2力学行为的影响. 结果表明: 1)孪晶界能够诱发裂纹在孪晶界附近形核, 并促使裂纹沿界面扩展, 从而降低晶体的断裂应变; 2)温度的升高能够加剧孪晶界附近的裂纹形核过程, 从而进一步减弱单层MoS2的断裂强度和断裂应变; 3)孔洞能够造成应力集中, 从而进一步触发断裂过程, 但孪晶界能够阻碍孔洞应力场的扩散, 从而延缓单层MoS2材料的断裂过程; 4)孪晶片层间距对单层MoS2断裂应变具有重要影响, 特别是对于含孔洞的单层MoS2材料, 材料断裂应变能够随着片层间距的减小而显著提高.
    Grain boundary (GB) plays a key role in determining the electrical and mechanical properties of mono-layer transition metal dichalcogenide (TMDC), however it is still a challenge to uncover the GB-mediated TMDC material experimentally. In this paper, the effect of twin boundary on the tensile behaviors of mono-layer MoS2 is investigated by using the molecular dynamics simulation combined with the Stillinger-Weber potential. Mono-layer MoS2 model under the varied size and temperature condition is adopted. Stress calculation is performed by using Virial theorem. The results are obtained as follows. 1) Twin boundary promotes the brittle fracture of an undefected mono-layer MoS2 sheet by inducing the nucleation of the crack near boundaries, thus the fracture strength and strain are weakened. 2) Increasing the ambient temperature from 1 K to 600 K, the crack nucleation process near the twin boundary is intensely accelerated, and the fracture strength and strain are further declined. 3) Twin lamellar spacing also plays an important role in the tensile process of mono-layer MoS2, and the specimen with dense twin boundary, especially with void, shows higher fracture strain. 4) Stress analysis at an atomic level outlines the stress concentration caused by voids and the shielding effect of twin boundary. Because of the interactions between voids and twin boundary, the fracture strength and strain of a voided mono-layer MoS2 sheet can be greatly improved.
      通信作者: 邵宇飞, yfshao@alum.imr.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 51801091)和辽宁省自然基金(批准号: 201602360, 20180550484)资助的课题
      Corresponding author: Shao Yu-Fei, yfshao@alum.imr.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51801091) and the Provincial Natural Science Foundation of Liaoning of China (Grant Nos. 201602360, 20180550484)
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183Google Scholar

    [3]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotech. 6 147Google Scholar

    [4]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotech. 7 699Google Scholar

    [5]

    Yin X B, Ye Z L, Chenet D A, Ye Y, Brien K O, Hone J C, Zhang X 2014 Science 344 488Google Scholar

    [6]

    魏争, 王琴琴, 郭玉拓, 李佳蔚, 时东霞, 张广宇 2018 物理学报 67 128103Google Scholar

    Wei Z, Wang Q Q, Guo Y T, Li J W, Shi D X, Zhang G Y 2018 Acta Phys. Sin. 67 128103Google Scholar

    [7]

    吴木生, 徐波, 刘刚, 欧阳楚英 2012 物理学报 61 227102Google Scholar

    Wu M S, Xu B, Liu G, Ouyang C Y 2012 Acta Phys. Sin. 61 227102Google Scholar

    [8]

    Tao P, Guo H, Yang T, Zhang Z 2014 J. Appl. Phys. 115 054305Google Scholar

    [9]

    Dang K Q, Spearot D E 2014 J. Appl. Phys. 116 013508Google Scholar

    [10]

    Casillas G, Santiago U, Barron H, Alducin D, Ponce A, José-Yacamán M 2015 J. Phys. Chem. C 119 710Google Scholar

    [11]

    李明林, 万亚玲, 胡建玥, 王卫东 2016 物理学报 65 176201Google Scholar

    Li M L, Wan Y L, Hu J Y, Wang W D 2016 Acta Phys. Sin. 65 176201Google Scholar

    [12]

    Wang W D, Li L L, Yang C G, Soler-Crespo R A, Meng Z X, Li M L, Zhang X, Keten S, Espinosa H D 2017 Nanotechnology 28 164005Google Scholar

    [13]

    Wu J Y, Cao P Q, Zhang Z S, Ning F L, Zheng S S, He J Y, Zhang Z L 2018 Nano Lett. 18 1543Google Scholar

    [14]

    Zhang R, Koutsos V, Cheung R 2016 Appl. Phys. Lett. 108 042104Google Scholar

    [15]

    Hao S, Yang B, Gao Y 2017 Appl. Phys. Lett. 110 153105Google Scholar

    [16]

    Yang Y, Li X, Wen M, Hacopian E, Chen W, Gong Y, Zhang J, Li B, Zhou W, Ajayan P M, Chen Q, Zhu T, Lou J 2017 Adv. Mater. 29 1604201Google Scholar

    [17]

    Yun W S, Han S W, Hong S C, Kim I G, Lee J D 2012 Phys. Rev. B 85 033305Google Scholar

    [18]

    Wang X, Tabarraei A, Spearot D E 2015 Nanotechnology 26 175703Google Scholar

    [19]

    Zhou W, Zou X, Najmaei S, Liu Z, Shi Y, Kong J, Lou J, Ajayan P M, Yakobson B I, Idrobo J C 2013 Nano Lett. 13 2615Google Scholar

    [20]

    Lin Z, Carvalho B R, Kahn E, Lü R, Rao R, Terrones H, Pimenta M A, Terrones M 2016 2D Mater. 3 022002Google Scholar

    [21]

    Ly T H, Chiu M H, Li M Y, Zhao J, Perello D J, Cichocka M O, Oh H M, Chae S H, Jeong, Hye Yun, Yao F, Li L J, Lee Y H 2014 ACS Nano 8 11401Google Scholar

    [22]

    Cheng J, Jiang T, Ji Q, Zhang Y, Li Z, Shan Y, Zhang Y, Gong X, Liu W, Wu S 2015 Adv. Mater. 27 4069Google Scholar

    [23]

    van der Zande A M, Huang P Y, Chenet D A, Berkelbach T C, You Y M, Lee G H, Heinz T F, Reichman D R, Muller D A, Hone J C 2013 Nat. Mater. 12 554Google Scholar

    [24]

    Barja S, Wickenburg S, Liu Z F, Zhang Y, Ryu H, Ugeda M M, Hussain Z, Shen Z X, Mo S K, Wong E, Salmeron M B, Wang F, Crommie M F, Ogletree D F, Neaton J B, Weber-Bargioni A 2016 Nat. Phys. 12 751Google Scholar

    [25]

    Hong J, Wang Y, Wang A, Lü D, Jin C, Xu Z, Probert M I J, Yuan J, Zhang Z 2017 Nanoscale 9 10312Google Scholar

    [26]

    Jiang J W, Park H S, Rabczuk T 2013 J. Appl. Phys. 114 064307Google Scholar

    [27]

    Stillinger F H, Weber T A 1985 Phys. Rev. B 31 5262Google Scholar

    [28]

    Plimpton S 1995 J. Comp. Phys. 117 1Google Scholar

    [29]

    Stukowski A 2010 Modelling Simul. Mater. Sci. Eng. 18 015012Google Scholar

    [30]

    Xiong S, Cao G X 2015 Nanotechnology 26 185705Google Scholar

    [31]

    Du L J, Yu H, Xie L, Wu S, Wang S, Lu X, Liao M, Meng J, Zhao J, Zhang J, Zhu J, Chen P, Wang G, Yang R, Shi D, Zhang G 2016 Crystals 6 115Google Scholar

    [32]

    Dao M, Lu L, Asaro R J, De Hosson J T M, Ma E 2007 Acta Mater. 55 4041Google Scholar

    [33]

    Wang S S, Qin Z, Jung G S, Martin-Martinez F J, Zhang K, Buehler M J, Warner J H 2016 ACS Nano 10 9831Google Scholar

    [34]

    Peron-Luhrs V, Sansoz F, Noels L 2014 Acta Mater. 64 419Google Scholar

    [35]

    Dang K Q, Simpsona J P, Spearot D E 2014 Scripta Mater. 76 41Google Scholar

    [36]

    Lu L, Chen X, Huang X, Lu K 2009 Science 323 607Google Scholar

  • 图 1  单层MoS2的分子动力学模型 (a)含孪晶界; (b)不含孪晶界

    Fig. 1.  Molecular dynamics model of mono-layer MoS2: (a) With twin boundaries; (b) without twin boundary.

    图 2  (a)应变能E; (b)应力σ, 其中ε表示应变

    Fig. 2.  (a) Strain energy E and (b) stress σ, where ε denotes strain.

    图 3  与拉伸曲线相对应的原子结构 (a)孪晶界, A点, ε = 27.74%; (b)孪晶界, B点, ε = 27.79%; (c)不含孪晶界, A点, ε = 28.94%; (d)不含孪晶界, B点, ε = 29.24%

    Fig. 3.  Atomic structures corresponding to the tensile curves: (a) With twin boundary, point A, ε = 27.74%; (b) with twin boundary, point B, ε = 27.79%; (c) without twin boundary, point A, ε = 28.94%; (d) without twin boundary, point B, ε = 29.24%.

    图 4  温度和孪晶界面间距的影响 (a)不同温度下的应变能; (b)不同温度下的应力; (c)不同孪晶片层间距下的应变能; (d)不同孪晶片层间距下的应力

    Fig. 4.  Effects of temperature and the twin lamellar spacing: (a) Effect of temperature on strain energy; (b) effect of temperature on stress; (c) effect of twin lamellar spacing effect on strain energy; (d) effect of twin lamellar spacing effect on stress.

    图 5  孔洞对拉伸应力的影响

    Fig. 5.  Effect of a Mo3S2 void on the tensile stress of specimen

    图 6  不含孪晶界的带孔洞的单层MoS2 (a) ε = 0; (b) ε = 22.514%; (c) ε = 22.514%, 放大视图; (d) ε = 23.345%, 放大视图

    Fig. 6.  Voided mono-layer MoS2 without twin boundary: (a) ε = 0; (b) ε = 22.514%; (c) ε = 22.514%, enlarged view; (d) ε = 23.345%, enlarged view.

    图 7  含孪晶界的带孔洞的单层MoS2 (a) ε = 0; (b) ε = 19.971%; (c) ε = 19.971%, 放大视图; (d) ε = 20.779%, 放大视图

    Fig. 7.  Voided mono-layer MoS2 with twin boundaries: (a) ε = 0; (b) ε = 19.971%; (c) ε = 19.971%, enlarged view; (d) ε = 20.779%, enlarged view.

    图 8  带孔洞的含孪晶界模型断裂前后应力分布状态 (a) ε = 14.34%; (b) ε = 16.92%; (c) ε = 18.25%; (d) ε = 20.87%

    Fig. 8.  Distribution of tensile stress in the voided mono-layer MoS2 sheet with twin boundaries: (a) ε = 14.34%; (b) ε = 16.92%; (c) ε = 18.25%; (d) ε = 20.87%.

    图 9  断裂应变εA与孪晶片层间距D的关联

    Fig. 9.  Correlation of the fracture strain εA and the twin lamellar spacing D.

    表 1  模型平面内初始尺寸

    Table 1.  Initial in-plane size of model.

    Lx/nm Ly/nm
    含孪晶模型 25.96 5.70
    不含孪晶模型 13.16 5.70
    下载: 导出CSV
  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183Google Scholar

    [3]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotech. 6 147Google Scholar

    [4]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotech. 7 699Google Scholar

    [5]

    Yin X B, Ye Z L, Chenet D A, Ye Y, Brien K O, Hone J C, Zhang X 2014 Science 344 488Google Scholar

    [6]

    魏争, 王琴琴, 郭玉拓, 李佳蔚, 时东霞, 张广宇 2018 物理学报 67 128103Google Scholar

    Wei Z, Wang Q Q, Guo Y T, Li J W, Shi D X, Zhang G Y 2018 Acta Phys. Sin. 67 128103Google Scholar

    [7]

    吴木生, 徐波, 刘刚, 欧阳楚英 2012 物理学报 61 227102Google Scholar

    Wu M S, Xu B, Liu G, Ouyang C Y 2012 Acta Phys. Sin. 61 227102Google Scholar

    [8]

    Tao P, Guo H, Yang T, Zhang Z 2014 J. Appl. Phys. 115 054305Google Scholar

    [9]

    Dang K Q, Spearot D E 2014 J. Appl. Phys. 116 013508Google Scholar

    [10]

    Casillas G, Santiago U, Barron H, Alducin D, Ponce A, José-Yacamán M 2015 J. Phys. Chem. C 119 710Google Scholar

    [11]

    李明林, 万亚玲, 胡建玥, 王卫东 2016 物理学报 65 176201Google Scholar

    Li M L, Wan Y L, Hu J Y, Wang W D 2016 Acta Phys. Sin. 65 176201Google Scholar

    [12]

    Wang W D, Li L L, Yang C G, Soler-Crespo R A, Meng Z X, Li M L, Zhang X, Keten S, Espinosa H D 2017 Nanotechnology 28 164005Google Scholar

    [13]

    Wu J Y, Cao P Q, Zhang Z S, Ning F L, Zheng S S, He J Y, Zhang Z L 2018 Nano Lett. 18 1543Google Scholar

    [14]

    Zhang R, Koutsos V, Cheung R 2016 Appl. Phys. Lett. 108 042104Google Scholar

    [15]

    Hao S, Yang B, Gao Y 2017 Appl. Phys. Lett. 110 153105Google Scholar

    [16]

    Yang Y, Li X, Wen M, Hacopian E, Chen W, Gong Y, Zhang J, Li B, Zhou W, Ajayan P M, Chen Q, Zhu T, Lou J 2017 Adv. Mater. 29 1604201Google Scholar

    [17]

    Yun W S, Han S W, Hong S C, Kim I G, Lee J D 2012 Phys. Rev. B 85 033305Google Scholar

    [18]

    Wang X, Tabarraei A, Spearot D E 2015 Nanotechnology 26 175703Google Scholar

    [19]

    Zhou W, Zou X, Najmaei S, Liu Z, Shi Y, Kong J, Lou J, Ajayan P M, Yakobson B I, Idrobo J C 2013 Nano Lett. 13 2615Google Scholar

    [20]

    Lin Z, Carvalho B R, Kahn E, Lü R, Rao R, Terrones H, Pimenta M A, Terrones M 2016 2D Mater. 3 022002Google Scholar

    [21]

    Ly T H, Chiu M H, Li M Y, Zhao J, Perello D J, Cichocka M O, Oh H M, Chae S H, Jeong, Hye Yun, Yao F, Li L J, Lee Y H 2014 ACS Nano 8 11401Google Scholar

    [22]

    Cheng J, Jiang T, Ji Q, Zhang Y, Li Z, Shan Y, Zhang Y, Gong X, Liu W, Wu S 2015 Adv. Mater. 27 4069Google Scholar

    [23]

    van der Zande A M, Huang P Y, Chenet D A, Berkelbach T C, You Y M, Lee G H, Heinz T F, Reichman D R, Muller D A, Hone J C 2013 Nat. Mater. 12 554Google Scholar

    [24]

    Barja S, Wickenburg S, Liu Z F, Zhang Y, Ryu H, Ugeda M M, Hussain Z, Shen Z X, Mo S K, Wong E, Salmeron M B, Wang F, Crommie M F, Ogletree D F, Neaton J B, Weber-Bargioni A 2016 Nat. Phys. 12 751Google Scholar

    [25]

    Hong J, Wang Y, Wang A, Lü D, Jin C, Xu Z, Probert M I J, Yuan J, Zhang Z 2017 Nanoscale 9 10312Google Scholar

    [26]

    Jiang J W, Park H S, Rabczuk T 2013 J. Appl. Phys. 114 064307Google Scholar

    [27]

    Stillinger F H, Weber T A 1985 Phys. Rev. B 31 5262Google Scholar

    [28]

    Plimpton S 1995 J. Comp. Phys. 117 1Google Scholar

    [29]

    Stukowski A 2010 Modelling Simul. Mater. Sci. Eng. 18 015012Google Scholar

    [30]

    Xiong S, Cao G X 2015 Nanotechnology 26 185705Google Scholar

    [31]

    Du L J, Yu H, Xie L, Wu S, Wang S, Lu X, Liao M, Meng J, Zhao J, Zhang J, Zhu J, Chen P, Wang G, Yang R, Shi D, Zhang G 2016 Crystals 6 115Google Scholar

    [32]

    Dao M, Lu L, Asaro R J, De Hosson J T M, Ma E 2007 Acta Mater. 55 4041Google Scholar

    [33]

    Wang S S, Qin Z, Jung G S, Martin-Martinez F J, Zhang K, Buehler M J, Warner J H 2016 ACS Nano 10 9831Google Scholar

    [34]

    Peron-Luhrs V, Sansoz F, Noels L 2014 Acta Mater. 64 419Google Scholar

    [35]

    Dang K Q, Simpsona J P, Spearot D E 2014 Scripta Mater. 76 41Google Scholar

    [36]

    Lu L, Chen X, Huang X, Lu K 2009 Science 323 607Google Scholar

  • [1] 胡庭赫, 李直昊, 张千帆. 元素掺杂对储氢容器用高强钢性能影响的第一性原理和分子动力学模拟. 物理学报, 2024, 73(6): 067101. doi: 10.7498/aps.73.20231735
    [2] 韩同伟, 李选政, 赵泽若, 顾叶彤, 马川, 张小燕. 不同荷载作用下二维硼烯的力学性能及变形破坏机理. 物理学报, 2024, 73(11): 116201. doi: 10.7498/aps.73.20240066
    [3] 张宇航, 李孝宝, 詹春晓, 王美芹, 浦玉学. 单层MoSSe力学性质的分子动力学模拟研究. 物理学报, 2023, 72(4): 046201. doi: 10.7498/aps.72.20221815
    [4] 陈晶晶, 邱小林, 李柯, 周丹, 袁军军. 纳米晶CoNiCrFeMn高熵合金力学性能的原子尺度分析. 物理学报, 2022, 71(19): 199601. doi: 10.7498/aps.71.20220733
    [5] 王胜, 陈晶晶, 翁盛槟. 纳米孪晶界对可动位错演化特性与金属Al强化机理探究. 物理学报, 2022, 71(2): 029601. doi: 10.7498/aps.71.20211305
    [6] 辛勇, 包宏伟, 孙志鹏, 张吉斌, 刘仕超, 郭子萱, 王浩煜, 马飞, 李垣明. U1–xThxO2混合燃料力学性能的分子动力学模拟. 物理学报, 2021, 70(12): 122801. doi: 10.7498/aps.70.20202239
    [7] 韩同伟, 李仁, 操淑敏, 张小燕. 官能化对五边形石墨烯力学性能的影响及机理研究. 物理学报, 2021, 70(22): 226201. doi: 10.7498/aps.70.20210764
    [8] 陈晶晶. 纳米孪晶界对可动位错演化特性与金属Al强化机理探究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211305
    [9] 申天展, 宋海洋, 安敏荣. 孪晶界对Cr26Mn20Fe20Co20Ni14高熵合金力学行为影响的分子动力学模拟. 物理学报, 2021, 70(18): 186201. doi: 10.7498/aps.70.20210324
    [10] 周良付, 张婧, 何文豪, 王栋, 苏雪, 杨冬燕, 李玉红. 氦泡在bcc钨中晶界处成核长大的分子动力学模拟. 物理学报, 2020, 69(4): 046103. doi: 10.7498/aps.69.20191069
    [11] 李兴欣, 李四平. 退火温度调控多层折叠石墨烯力学性能的分子动力学模拟. 物理学报, 2020, 69(19): 196102. doi: 10.7498/aps.69.20200836
    [12] 李杰杰, 鲁斌斌, 线跃辉, 胡国明, 夏热. 纳米多孔银力学性能表征分子动力学模拟. 物理学报, 2018, 67(5): 056101. doi: 10.7498/aps.67.20172193
    [13] 易军. 非晶纤维的制备和力学行为. 物理学报, 2017, 66(17): 178102. doi: 10.7498/aps.66.178102
    [14] 李明林, 万亚玲, 胡建玥, 王卫东. 单层二硫化钼力学性能温度和手性效应的分子动力学模拟. 物理学报, 2016, 65(17): 176201. doi: 10.7498/aps.65.176201
    [15] 王卫东, 李龙龙, 杨晨光, 李明林. 单层二硫化钼纳米带弛豫性能的分子动力学研究. 物理学报, 2016, 65(16): 160201. doi: 10.7498/aps.65.160201
    [16] 马冰洋, 张安明, 尚海龙, 孙士阳, 李戈扬. 共溅射Al-Zr合金薄膜的非晶化及其力学性能. 物理学报, 2014, 63(13): 136801. doi: 10.7498/aps.63.136801
    [17] 喻利花, 马冰洋, 曹峻, 许俊华. (Zr,V)N复合膜的结构、力学性能及摩擦性能研究. 物理学报, 2013, 62(7): 076202. doi: 10.7498/aps.62.076202
    [18] 王颖, 卢铁城, 王跃忠, 岳顺利, 齐建起, 潘磊. 虚晶近似法研究AlN-Al2O3固溶体系的力学性能和电子结构. 物理学报, 2012, 61(16): 167101. doi: 10.7498/aps.61.167101
    [19] 翟秋亚, 杨 扬, 徐锦锋, 郭学锋. 快速凝固Cu-Sn亚包晶合金的电阻率及力学性能. 物理学报, 2007, 56(10): 6118-6123. doi: 10.7498/aps.56.6118
    [20] 张 林, 王绍青, 叶恒强. 大角度Cu晶界在升温、急冷条件下晶界结构的分子动力学研究. 物理学报, 2004, 53(8): 2497-2502. doi: 10.7498/aps.53.2497
计量
  • 文章访问数:  9911
  • PDF下载量:  174
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-03
  • 修回日期:  2019-08-25
  • 上网日期:  2019-11-01
  • 刊出日期:  2019-11-05

/

返回文章
返回