搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双波长外腔面发射激光器

邱小浪 王爽爽 张晓健 朱仁江 张鹏 郭于鹤洋 宋晏蓉

引用本文:
Citation:

双波长外腔面发射激光器

邱小浪, 王爽爽, 张晓健, 朱仁江, 张鹏, 郭于鹤洋, 宋晏蓉

Dual-wavelength external-cavity surface-emitting laser

Qiu Xiao-Lang, Wang Shuang-Shuang, Zhang Xiao-Jian, Zhu Ren-Jiang, Zhang Peng, Guo-Yu He-Yang, Song Yan-Rong
PDF
HTML
导出引用
  • 双波长激光光源在干涉测量、非线性频率变换产生中红外及太赫兹波段相干辐射等方面有重要的应用. 外腔面发射激光器具有输出功率高、光束质量好、发射波长可设计等突出优势, 非常适合用于双波长的产生. 用有源区为In0.185Ga0.815As/GaAs应变多量子阱、设计波长为960 nm, 以及有源区为In0.26Ga0.74As/GaAsP0.02应变多量子阱、设计波长为1080 nm的两块半导体增益芯片, 在一个共线Y型谐振腔中, 获得了激光波长分别为953 nm和1100 nm的双波长输出, 对应光谱线宽为1.1 nm和2.7 nm, 波长间隔147 nm. 室温下, 每块增益芯片的抽运吸收功率均为5.8 W时, 双波长激光器总的输出功率达到293 mW.
    Dual-wavelength laser sources have important applications in the interferometry and the nonlinear-frequency-conversion generated mid-infrared or terahertz-band coherent radiation. Vertical-external-cavity surface-emitting lasers own outstanding advantages such as high output power, good beam quality and flexible emission wavelength, which make them very suitable for dual-wavelength running. In this paper, we employ a collinear Y-type cavity to produce a dual-wavelength laser. There are two semiconductor gain chips in the resonant cavity, one has an active region of In0.185Ga0.815As/GaAs strained multiple quantum wells and a designed wavelength of 960 nm, and the other has an active region of In0.26Ga0.74As/GaAsP0.02 strained multiple quantum wells and a target wavelength of 1080 nm. The peak wavelength of the photoluminescence of chip 1 is 950 nm, which is 10 nm shorter than the designed wavelength under weak pump, and the peak wavelength of the photoluminescence of chip 2 is 1094 nm, which is 14 nm longer than the target wavelength under low pump. When the pump power is increased, the peak wavelengths of the photoluminescence of two gain chips are both red-shifted. The oscillating laser wavelengths are centered at 953 nm and 1100 nm, the corresponding full width at half maximum (FWHM) values of the laser spectra are 1.1 nm and 2.7 nm, respectively. The wavelength spacing of the dual-wavelength is 147 nm, and the related mid-infrared coherent radiation is about 7.1 μm on the assumption that the dual-wavelength laser is used for difference frequency generation. When the absorbed pump power of each gain chip is 5.8 W, the total output power of the dual-wavelength laser reaches 293 mW at room temperature.
      通信作者: 朱仁江, 834083237@qq.com
    • 基金项目: 重庆市基础研究与前沿探索项目(批准号: cstc2015jcyjBX0098, cstc2018jcyjAX0319)、国家自然科学基金(批准号: 61575011)、重庆市高校创新团队项目(批准号: CXTDX201601016)和教育部“蓝火计划”(惠州)产学研联合创新资金项目(批准号: CXZJHZ201728)资助的课题.
      Corresponding author: Zhu Ren-Jiang, 834083237@qq.com
    • Funds: Project supported by the Chongqing Research Program of Basic Research and Frontier Technology, China (Grant Nos. cstc2015jcyjBX0098, cstc2018jcyjAX0319), the National Natural Science Foundation of China (Grant No. 61575011), the Foundation for the Creative Research Groups of Higher Education of Chongqing, China (Grant No. CXTDX201601016), and the Blue Fire Plan (Huizhou) of the Industry-University-Research Joint Innovation Project of Ministry of Education of China (Grant No. CXZJHZ201728).
    [1]

    苏俊宏 2003 红外与激光工程 32 359Google Scholar

    Su J 2003 Infrared Laser Eng. 32 359Google Scholar

    [2]

    李践 2005 中国生物医学工程学报 24 237Google Scholar

    Li J 2005 Chin. J. Biomed. Eng. 24 237Google Scholar

    [3]

    Mao Q, Lit J W Y 2002 IEEE Photonic Tech. L. 14 1252Google Scholar

    [4]

    Schlager J B, Kawanishi S, Saruwatari M 1991 Electron. Lett. 27 2072Google Scholar

    [5]

    Kawase K, Mizuno M, Sohma S, Takahashi H, Taniuchi T, Urata Y, Wada S, Tashiro H, Ito H 1999 Opt. Lett. 24 1065Google Scholar

    [6]

    Tittel F K, Richter D, Fried A 2003 Mid-infrared Laser Applications in Spectroscopy (Springer, Berlin, Heidelberg) pp458−529

    [7]

    Beck M, Hofstetter D, Aellen T, Faist J, Oesterle U, Ilegems M, Gini E, Melchior H 2002 Science 295 301Google Scholar

    [8]

    Willer U, Saraji M, Khorsandi A, Geiser P, Schade W 2006 Opt. Laser Eng. 44 699Google Scholar

    [9]

    Waynant R W, Ilev I K, Gannot I 2001 Phil. Trans. R. Soc. A 359 635Google Scholar

    [10]

    Jeon M Y, Kim N, Shin J, Jeong J S, Han S P, Lee C W, Leem Y A, Yee D S, Chun H S, Park K H 2010 Opt. Express 18 12291Google Scholar

    [11]

    Jackson S D 2012 Nat. Photonics 6 423Google Scholar

    [12]

    Lee B G, Belkin M A , Audet R , MacArthur J, Diehl L, Pflügl C, Capasso F, Oakley D C, Chapman D, Napoleone A, Bour D, Corzine S, Höfler G, Faist J 2007 Appl. Phys. Lett. 91 231101Google Scholar

    [13]

    Schiessl U P, Rohr J 1999 Infrared Phys. Tech. 40 325Google Scholar

    [14]

    Budni P A, Pomeranz L A, Lemons M L, Miller C A, Mosto J R, Chicklis E P 2000 J. Opt. Soc. Am 17 723Google Scholar

    [15]

    Hastie J E, Calvez S, Dawson M D, Leinonen T, Laakso A, Lyytikäinen J, Pessa M 2005 Opt. Express 13 77Google Scholar

    [16]

    Fan L, Hader J, Schillgalies M, Fallahi M, Zakharian A R, Moloney J V, Bedford R, MurrayJ T, Koch S W, Stolz W 2005 IEEE Photonic Tech. L. 17 1764Google Scholar

    [17]

    Fallahi M, Fan L, Kaneda Y, Hessenius C, Hader J, Li H, Moloney J V, Kunert B, Stolz W, Koch S W, Murray J, Bedford R 2008 IEEE Photonic Tech. L. 20 1700Google Scholar

    [18]

    Maclean A J, Kemp A J, Calvez S, Kim J Y, Kim T, Dawson M D, Burns D 2008 IEEE J. Quantum Elect. 44 216Google Scholar

    [19]

    Fallahi M, Hessenius C, Kaneda Y, Hader J, Moloney J V, Kunert B, Stolz W, Koch S W 2009 Nonlinear Optics: Materials, Fundamentals and Applications Honolulu, Hawaii, July 12−17, 2009 pNThC1

    [20]

    De Groot P J, McGarvey J A 1994 US Patent 5 371

    [21]

    Keller U, Tropper A C 2006 Phys. Rep. 429 67Google Scholar

    [22]

    Zhu R, Wang S, Qiu X, Chen X, Jiang M, Guo-Yu H, Zhang P, Song Y 2018 J. Lumin. 204 663Google Scholar

    [23]

    Abram R H, Gardner K S, Riis E, Ferguson A I 2004 Opt. Express 12 5434Google Scholar

    [24]

    Alfieri C G, Waldburger D, Golling M, Keller U 2018 IEEE Photonic Tech. L. 30 525Google Scholar

    [25]

    Jasik A, Sokół A K, Broda A, Sankowska I, Wójcik-Jedlinska A, Wasiak M, Kubacka-Traczyk J, Muszalski J 2016 Appl. Phys. B 122 23

    [26]

    Polanik M 2015 Annual Report, Institute of Optoelectronics, Ulm University 3

    [27]

    Leinonen T, Ranta S, Laakso A, Morozov Y, Saarinen M, Pessa M 2007 Opt. Express 15 13451Google Scholar

    [28]

    Hessenius C, Lukowski M, Fallahi M 2012 Appl. Phys. Lett. 101 121110Google Scholar

    [29]

    Lukowski M, Hessenius C, Bedford R, Fallagi M 2015 Opt. Lett. 40 4174Google Scholar

    [30]

    Zhang F, Gaafar M, Möller C, Stolz W, Koch M, Rahimi-Iman A 2016 IEEE Photonic Tech. L. 28 927

    [31]

    Sandusky J V, Brueck S R J 1996 IEEE Photonic Tech. L. 8 313Google Scholar

  • 图 1  双波长VECSEL实验装置示意图

    Fig. 1.  Schematic of the experimental setup of dual-wavelength VECSEL.

    图 2  只抽运增益芯片1时所得荧光和激光光谱

    Fig. 2.  Photoluminescence and laser spectra when gain chip 1 is pumped only.

    图 3  只抽运增益芯片2所得荧光和激光光谱

    Fig. 3.  Photoluminescence and laser spectra when gain chip 2 is pumped only.

    图 4  双波长VECSEL输出的激光光谱图

    Fig. 4.  Laser spectra of the dual-wavelength VECSEL.

    图 5  953 nm和1100 nm单独振荡以及双波长工作时VECSEL的输出功率

    Fig. 5.  Output powers of the VECSEL when only 953 nm or 1100 nm mode oscillating, and dual-wavelength operating.

  • [1]

    苏俊宏 2003 红外与激光工程 32 359Google Scholar

    Su J 2003 Infrared Laser Eng. 32 359Google Scholar

    [2]

    李践 2005 中国生物医学工程学报 24 237Google Scholar

    Li J 2005 Chin. J. Biomed. Eng. 24 237Google Scholar

    [3]

    Mao Q, Lit J W Y 2002 IEEE Photonic Tech. L. 14 1252Google Scholar

    [4]

    Schlager J B, Kawanishi S, Saruwatari M 1991 Electron. Lett. 27 2072Google Scholar

    [5]

    Kawase K, Mizuno M, Sohma S, Takahashi H, Taniuchi T, Urata Y, Wada S, Tashiro H, Ito H 1999 Opt. Lett. 24 1065Google Scholar

    [6]

    Tittel F K, Richter D, Fried A 2003 Mid-infrared Laser Applications in Spectroscopy (Springer, Berlin, Heidelberg) pp458−529

    [7]

    Beck M, Hofstetter D, Aellen T, Faist J, Oesterle U, Ilegems M, Gini E, Melchior H 2002 Science 295 301Google Scholar

    [8]

    Willer U, Saraji M, Khorsandi A, Geiser P, Schade W 2006 Opt. Laser Eng. 44 699Google Scholar

    [9]

    Waynant R W, Ilev I K, Gannot I 2001 Phil. Trans. R. Soc. A 359 635Google Scholar

    [10]

    Jeon M Y, Kim N, Shin J, Jeong J S, Han S P, Lee C W, Leem Y A, Yee D S, Chun H S, Park K H 2010 Opt. Express 18 12291Google Scholar

    [11]

    Jackson S D 2012 Nat. Photonics 6 423Google Scholar

    [12]

    Lee B G, Belkin M A , Audet R , MacArthur J, Diehl L, Pflügl C, Capasso F, Oakley D C, Chapman D, Napoleone A, Bour D, Corzine S, Höfler G, Faist J 2007 Appl. Phys. Lett. 91 231101Google Scholar

    [13]

    Schiessl U P, Rohr J 1999 Infrared Phys. Tech. 40 325Google Scholar

    [14]

    Budni P A, Pomeranz L A, Lemons M L, Miller C A, Mosto J R, Chicklis E P 2000 J. Opt. Soc. Am 17 723Google Scholar

    [15]

    Hastie J E, Calvez S, Dawson M D, Leinonen T, Laakso A, Lyytikäinen J, Pessa M 2005 Opt. Express 13 77Google Scholar

    [16]

    Fan L, Hader J, Schillgalies M, Fallahi M, Zakharian A R, Moloney J V, Bedford R, MurrayJ T, Koch S W, Stolz W 2005 IEEE Photonic Tech. L. 17 1764Google Scholar

    [17]

    Fallahi M, Fan L, Kaneda Y, Hessenius C, Hader J, Li H, Moloney J V, Kunert B, Stolz W, Koch S W, Murray J, Bedford R 2008 IEEE Photonic Tech. L. 20 1700Google Scholar

    [18]

    Maclean A J, Kemp A J, Calvez S, Kim J Y, Kim T, Dawson M D, Burns D 2008 IEEE J. Quantum Elect. 44 216Google Scholar

    [19]

    Fallahi M, Hessenius C, Kaneda Y, Hader J, Moloney J V, Kunert B, Stolz W, Koch S W 2009 Nonlinear Optics: Materials, Fundamentals and Applications Honolulu, Hawaii, July 12−17, 2009 pNThC1

    [20]

    De Groot P J, McGarvey J A 1994 US Patent 5 371

    [21]

    Keller U, Tropper A C 2006 Phys. Rep. 429 67Google Scholar

    [22]

    Zhu R, Wang S, Qiu X, Chen X, Jiang M, Guo-Yu H, Zhang P, Song Y 2018 J. Lumin. 204 663Google Scholar

    [23]

    Abram R H, Gardner K S, Riis E, Ferguson A I 2004 Opt. Express 12 5434Google Scholar

    [24]

    Alfieri C G, Waldburger D, Golling M, Keller U 2018 IEEE Photonic Tech. L. 30 525Google Scholar

    [25]

    Jasik A, Sokół A K, Broda A, Sankowska I, Wójcik-Jedlinska A, Wasiak M, Kubacka-Traczyk J, Muszalski J 2016 Appl. Phys. B 122 23

    [26]

    Polanik M 2015 Annual Report, Institute of Optoelectronics, Ulm University 3

    [27]

    Leinonen T, Ranta S, Laakso A, Morozov Y, Saarinen M, Pessa M 2007 Opt. Express 15 13451Google Scholar

    [28]

    Hessenius C, Lukowski M, Fallahi M 2012 Appl. Phys. Lett. 101 121110Google Scholar

    [29]

    Lukowski M, Hessenius C, Bedford R, Fallagi M 2015 Opt. Lett. 40 4174Google Scholar

    [30]

    Zhang F, Gaafar M, Möller C, Stolz W, Koch M, Rahimi-Iman A 2016 IEEE Photonic Tech. L. 28 927

    [31]

    Sandusky J V, Brueck S R J 1996 IEEE Photonic Tech. L. 8 313Google Scholar

  • [1] 成佳, 伍亚东, 晏日, 彭雪芳, 朱仁江, 王涛, 蒋丽丹, 佟存柱, 宋晏蓉, 张鹏. 基于外腔面发射激光器腔内三倍频的可调谐紫外激光器. 物理学报, 2024, 73(8): 084202. doi: 10.7498/aps.73.20231923
    [2] 王涛, 彭雪芳, 贺亮, 沈小雨, 朱仁江, 蒋丽丹, 佟存柱, 宋晏蓉, 张鹏. 509 nm高功率宽调谐外腔面发射激光器. 物理学报, 2024, 73(12): 124204. doi: 10.7498/aps.73.20240499
    [3] 徐平, 李雄超, 肖钰斐, 杨拓, 张旭琳, 黄海漩, 王梦禹, 袁霞, 徐海东. 长红外双波长共聚焦超透镜设计研究. 物理学报, 2023, 72(1): 014208. doi: 10.7498/aps.72.20221752
    [4] 沈晓红, 曾盈莹, 毛琳, 朱仁江, 王涛, 罗海军, 佟存柱, 汪丽杰, 宋晏蓉, 张鹏. 双波长自锁模半导体薄片激光器. 物理学报, 2022, 71(20): 204202. doi: 10.7498/aps.71.20220483
    [5] 王志鹏, 关宝璐, 张峰, 杨嘉炜. 内腔亚波长光栅液晶可调谐垂直腔面发射激光器. 物理学报, 2021, 70(22): 224208. doi: 10.7498/aps.70.20210957
    [6] 徐平, 肖钰斐, 黄海漩, 杨拓, 张旭琳, 袁霞, 李雄超, 王梦禹, 徐海东. 简单结构超表面实现波长和偏振态同时复用全息显示新方法. 物理学报, 2021, 70(8): 084201. doi: 10.7498/aps.70.20201047
    [7] 窦微, 浦双双, 牛娜, 曲大鹏, 孟祥峻, 赵岭, 郑权. 双波长二极管合束端面抽运掺镨氟化钇锂单纵模360 nm紫外激光器. 物理学报, 2019, 68(5): 054202. doi: 10.7498/aps.68.20182018
    [8] 彭万敬, 刘鹏. 基于偏振依赖多模-单模-多模光纤滤波器的波长间隔可调谐双波长掺铒光纤激光器. 物理学报, 2019, 68(15): 154202. doi: 10.7498/aps.68.20190297
    [9] 廖宇, 简小华, 崔崤峣, 张麒. 一种基于双波长的光声测温技术. 物理学报, 2017, 66(11): 117802. doi: 10.7498/aps.66.117802
    [10] 陈俊, 陈建军, 吴正茂, 蒋波, 夏光琼. 可变偏振光注入下1550nm垂直腔面发射激光器的偏振开关及双稳特性. 物理学报, 2016, 65(16): 164204. doi: 10.7498/aps.65.164204
    [11] 王小发, 吴正茂, 夏光琼. 光反馈诱发长波长垂直腔面发射激光器低功耗偏振开关. 物理学报, 2016, 65(2): 024204. doi: 10.7498/aps.65.024204
    [12] 关宝璐, 刘欣, 江孝伟, 刘储, 徐晨. 多横模垂直腔面发射激光器及其波长特性. 物理学报, 2015, 64(16): 164203. doi: 10.7498/aps.64.164203
    [13] 王小发, 李骏. 短外腔偏振旋转光反馈下1550 nm垂直腔面发射激光器的动力学特性研究. 物理学报, 2014, 63(1): 014203. doi: 10.7498/aps.63.014203
    [14] 邓伟, 夏光琼, 吴正茂. 基于双光反馈垂直腔面发射激光器的双信道混沌同步通信. 物理学报, 2013, 62(16): 164209. doi: 10.7498/aps.62.164209
    [15] 孙悟, 邓小玖, 李耀东, 张永明, 郑赛晶, 王维妙. 双波长抗干扰光电感烟探测机理. 物理学报, 2013, 62(3): 030201. doi: 10.7498/aps.62.030201
    [16] 李硕, 关宝璐, 史国柱, 郭霞. 亚波长光栅调制的偏振稳定垂直腔面发射激光器研究. 物理学报, 2012, 61(18): 184208. doi: 10.7498/aps.61.184208
    [17] 杜文博, 冷进勇, 朱家健, 周朴, 许晓军, 舒柏宏. 增益竞争双波长放大单频光纤放大器理论研究. 物理学报, 2012, 61(11): 114203. doi: 10.7498/aps.61.114203
    [18] 关宝璐, 郭霞, 张敬兰, 任秀娟, 郭帅, 李硕, 揣东旭, 沈光地. 双波长垂直腔面发射激光器及特性研究. 物理学报, 2011, 60(1): 014209. doi: 10.7498/aps.60.014209
    [19] 林燕凤, 张戈, 朱海永, 黄呈辉, 李爱红, 魏勇. Nd:YAG调Q激光器双波长振荡机理分析. 物理学报, 2009, 58(6): 3909-3914. doi: 10.7498/aps.58.3909
    [20] 顾晓玲, 郭 霞, 梁 庭, 林巧明, 郭 晶, 吴 迪, 徐丽华, 沈光地. GaN基双波长发光二极管电致发光谱特性研究. 物理学报, 2007, 56(9): 5531-5535. doi: 10.7498/aps.56.5531
计量
  • 文章访问数:  8648
  • PDF下载量:  96
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-24
  • 修回日期:  2019-02-26
  • 上网日期:  2019-06-01
  • 刊出日期:  2019-06-05

/

返回文章
返回